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With the development of deep neural networks, automatic music composition

has made great progress. Although emotional music can evoke listeners’

di�erent auditory perceptions, only few research studies have focused

on generating emotional music. This paper presents EmotionBox -a

music-element-driven emotionalmusic generator based onmusic psychology

that is capable of composing music given a specific emotion, while this

model does not require a music dataset labeled with emotions as previous

methods. In this work, pitch histogram and note density are extracted as

features that represent mode and tempo, respectively, to control music

emotions. The specific emotions are mapped from these features through

Russell’s psychology model. The subjective listening tests show that the

Emotionbox has a competitive performance in generating di�erent emotional

music and significantly better performance in generating music with

low arousal emotions, especially peaceful emotion, compared with the

emotion-label-based method.

KEYWORDS

emotional music generation, deep neural networks, auditory perceptions, music

psychology, music element

Introduction

Computational modeling of polyphonic music has been deeply studied for decades

(Westergaard et al., 1959). Recently, with the development of deep learning, neural

network systems for automatic music generation have made great progress on the quality

and coherence of music (Herremans et al., 2017; Herremans and Chew, 2019; Jin et al.,

2020). As we know, emotion is of great importance in music since the music consistently

elicits auditory responses from its listeners (Raynor and Meyer, 1958). Therefore,
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Emotional music has significant implications for subjects such

as music psychology, music composition, and performance.

However, surprisingly, automatic systems rarely consider

emotion when generating music, which lacks the ability to

generate music that evokes a specific auditory response.

To study the automatic music generation with music

psychology, it is necessary to review the relation between music

emotions andmusic elements. Asmentioned by Parncutt (2014),

the relationship in Western tonal music between emotional

valence (positive vs. negative) and music-structural factors, such

as tempo (fast vs. slow) and mode (major vs. minor tonality),

have been studied. Experimental results have illustrated that

a fast tempo tends to make music sound happy while slow

tempo has the opposite effect (Rigg, 1940). In typical tonal

musical excerpts, the experimental result showed that tempo

was more determinant than the mode in forming happy-sad

judgments (Gagnon and Peretz, 2003). Many experiments have

demonstrated that musical excerpts written in the major or

minor mode were judged to be positive or negative, respectively

(Hevner, 1935, 1936). Recent psychological studies have shown

that the happiness ratings were elevated for fast-tempo and

major-key stimuli while sadness ratings were elevated for slow

tempo and minor-key stimuli (Hunter et al., 2008, 2010).

Another study has revealed that mode and tempo were the

most impactful cues in shaping emotions while sadness and

joy were among the most accurately recognized emotions

(Micallef Grimaud and Eerola, 2022). The effect of cues on

emotions in music as combinations of multiple cues rather than

as individual cues has also been discussed, as mixed cues might

portray a complicated emotion.

Most previous emotional music generation models were

based on emotion labels (Ferreira and Whitehead, 2019;

Zhao et al., 2019; Ferreira et al., 2020), without taking into

consideration the effect of music psychology. Moreover, label-

based methods require a huge music dataset labeled with

different emotions, which need a lot of tedious work. Utilizing

music psychology instead of the manual labels to train the

emotional music generator and exploring the most suitable

music elements for evoking the specific emotion are the main

focuses in this paper.

In this work, we extract two features from two music

elements (i.e., tempo and mode) to supervise the deep neural

network for generating music with a specific emotion. To the

best of our knowledge, this is the first music-element-driven

emotional symbolic music generation system based on a deep

neural network.

Related work

Currently, deep learning algorithms have become

mainstream methods in the field of music generation research.

Music generation can be classified into two types: symbol

domain generation (i.e., generating MIDIs or piano sheets

Yang et al., 2017; Dong et al., 2018) and audio domain

generation (i.e., directly generating sound waves van den

Oord et al., 2016; Schimbinschi et al., 2019; Subramani et al.,

2020).

Recurrent Neural Network (RNN) or its variants have been

widely used to model sequential data. Its outstanding temporal

modeling ability makes it suitable for music generation.

The first attempt is that Todd used RNN to generate

monophonic melodies early in Todd (1989). To solve the

gradient vanishing problem of RNN, Eck et al. proposed an

LSTM-based model in music generation for the first time

(Eck and Schmidhuber, 2002). In Boulanger-Lewandowski

et al. (2012), RNN combined with Restricted Boltzmann

Machines was proposed to model polyphonic music, which

is superior to the traditional model in various datasets. In

2016, the magenta team proposed the Melody RNN model

which can generate long-term structures in songs (Waite,

2016). In 2017, anticipate RNN (Hadjeres and Nielsen, 2017)

was used to generate music interactively with positional

constraints. Moreover, Bi-axial LSTM (BALSTM) (Johnson,

2017) proposed by Johnson et al. are capable of generating

polyphonic music while preserving translation invariance of

the dataset. Recently, more advanced deep generative models,

such as VAE (Hadjeres and Nielsen, 2017; Brunner et al., 2018),

GAN (Guan et al., 2019; Huang et al., 2019), and Transformer

(Huang et al., 2019; Zhang, 2020), have gradually been used in

music generation.

The expressive generation has long been explored in the

field of computer music, reviewed in Kirke and Miranda (2009).

With the development of deep learning, there are several

previous attempts to generate emotional music based on deep

neural networks. Ferreira et al. proposed a multiplicative

long short-term memory (mLSTM) based model that can be

directed to compose music with a specific emotion and analyze

music emotions (Ferreira and Whitehead, 2019). mLSTM is

a RNN architecture for sequence modeling that combines

the factorized hidden-to-hidden transition of multiplicative

RNN with the gating framework from the LSTM. However,

only video game soundtracks are used in training and

evaluation. In 2019, Zhao et al. extended the BALSTM

network proposed in Mao (2018) and used the model in

emotional music generation (Zhao et al., 2019). Recently,

Ferreira et al. proposed a system called Bardo Composer,

which generates music with different emotions for the tabletop

role-playing games based on the mood of players (Ferreira

et al., 2020). However, all methods mentioned above are label-

based thus a large dataset labeled with emotions is needed.

Moreover, to the best of our knowledge, no MIDI dataset

labeled with emotion is available online. Labeling the dataset

manually takes a lot of time and effort. In our work, we

train the model on an open-source MIDI dataset without

emotion labels.
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Data preprocessing

Note representation

The input of our proposed generation model consists of

polyphonic MIDI files, which are composed of both melody

and accompaniment. To present notes with expressive timing

and dynamics, we use the performance encoding proposed in

Oore et al. (2020), which consists of a vocabulary of NOTE-ON,

NOTE-OFF, TIME-SHIFT, and VELOCITY events. The main

purpose of encoding is to transform the music information in

MIDI files into a suitable presentation for training the neural

network.

The pitch information in MIDI files ranges from 0 to 127,

which is beyond the pitch range of a piano. In our work, pieces

in the training set are all performed by piano. Thus, the pitch

range is only presented from 21 to 108, which corresponds to A0

and C8 on piano, respectively. For each note, music dynamics

is recorded in MIDI files, ranging from 0 to 127 to present how

loud a note is. For convenience, we use velocity ranges from 0 to

32 to convey the dynamics. The range can be mapped from 0 to

127 when generating MIDI files.

Finally, aMIDI excerpt is represented as a sequence of events

from the following vocabulary of 240 different events:

• 88 NOTE-ON events: one for each of the 88 (21-108) MIDI

pitches. Each event starts a new note.

• 88NOTE-OFF events: one for each of the 88 (21-108)MIDI

pitches. Each event releases a note.

• 32 TIME-SHIFT events: each event moves the time step

forward by increments of 15 ms up to 1 s.

• 32 VELOCITY events: each event changes the velocity

applied to all upcoming notes.

Feature extraction

In this work, the model is fed with two extracted musical

features, namely pitch histogram and note density. All these

calculations are done automatically by computers and thus no

human labors are required. A pitch histogram (Tzanetakis et al.,

2003) is an array of 12 integer values indexed by 12 semitones in

a chromatic scale, showing the frequency of occurrence of each

semitone in a music piece. An example of a pitch histogram in

C major is shown in Table 1. According to music theory, notes

with a sharp sign are not included in C major. Therefore, in

this work, we set their corresponding value in pitch histogram

as 0 so that they will never be played in a C major music.

C, F, and G are the tonic, subdominant, and dominant in C

major, respectively. They are the main elements in a C major

music so their corresponding value in pitch histogram is set as

2, which means the probability of starting these notes is two

times as much as other notes in C major. Pitch histograms

can capture musical information regarding harmonic features of

different scales.

Note density is a number to record how many notes will be

played within a time window (2 s in our work). Note density can

present the speed information in each part of a music piece. Note

density and pitch histogram are calculated at each time step.

The motivation for this is that we can explicitly choose a

pitch histogram and note density when creating samples, which

provides us with two options to control the music generation. By

changing the pitch histogram and note density, we can therefore

alter the mode and tempo of the music, which ultimately leads

to emotional difference.

Russell emotion model

There are various models for describing emotion and

they can be mainly divided into four categories: discrete,

dimensional, miscellaneous, and music-specific models (Eerola

and Vuoskoski, 2012). This work is based on the simplified

emotion model of Russell (1980). Russell’s circumplex model is

a typical dimensional model, which uses two coordinate axes

to present the degree of valence and arousal, respectively. This

emotion model is shown in Figure 1. For simplicity, we only

use four basic emotions as shown in four quadrants. Our model

is designed to generate music with these four basic emotions,

namely happy, tensional, sad, and peaceful. The four emotions

are located in four different quadrants, presenting four varying

degrees of valence and arousal.

Emotion presentation

As we have mentioned in the introduction, there is

a strong connection between music elements and music

emotional valence. Therefore, we combine note density and

pitch histogram to control the tempo and mode of the generated

sample. According to twelve-tone equal temperament, an octave

is divided into 12 parts, all of which are equal on a logarithmic

scale. So, we can choose the mode when generating music by

changing the probability of each semitone. We use an array

containing 12 integers to present a pitch histogram. For example,

C major is presented as [2, 0, 1, 0, 1, 2, 0, 2, 0, 1, 0, 1] where 2

presents the tonic, subdominant, and dominant while 1 presents

other notes in the scale. Pitch histogram of C minor is presented

as [2, 0, 1, 1, 0, 2, 0, 2, 1, 0, 1, 0] according to music theory. A

pitch histogram is used to control the valence of music.

Note density indicates the number of notes that will be

performed within 2 s (the time window is adjustable). We set

note density as 1 to present slow music and note density as

5 to present fast music. Note density is used to control the

arousal of music. Combining mode and note density as two

adjustable parameters, we aim to generate four categories of
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TABLE 1 An example of a pitch histogram in a C major scale.

Pitch name C C♯ D D♯ E F F♯ G G♯ A A♯ B

Pitch histogram 2 0 1 0 1 2 0 2 0 1 0 1

Probability distribution 0.2 0 0.1 0 0.1 0.2 0 0.2 0 0.1 0 0.1

♯Means higher in pitch by one semitone.

FIGURE 1

Simplified Russell’s two-dimensional valence-arousal emotion space. The x-axis denotes valence while the y-axis denotes arousal.

emotional music: happy (with the major scale and fast tempo),

tensional (with the minor scale and fast tempo), peaceful (with

the major scale and slow tempo), and sad (with the minor scale

and slow tempo).

Method

Neural network architecture

A recurrent neural network has an excellent performance in

modeling sequential data. A gated recurrent unit (GRU) (Cho

et al., 2014) is an improved version of the standard RNN. It was

proposed to solve the vanishing gradient problem of a standard

recurrent neural network during backpropagation. The gating

mechanism enables GRU to carry information from earlier time

steps to later ones. The illustration of GRU is shown in Figure 2.

In our work, GRU is used for temporal modeling.

The model is shown in Figure 3. Input X represents the

masked performance events while Input Z represents the pitch

histogram and the note density. Masking means the last event of

each event sequence is dropped out and the rest part of the event

sequence is sent to the neural network as the input. The reason

for this is to make the model generate the unmasked sequence

recursively. Then, we can calculate the loss, i.e., the difference,

between the generated unmasked sequence and ground truth.

If the length of an event sequence is T, the size of Input X

(i.e., the masked performance events) will be (T − 1) × 1. Each

performance event is converted to a 240-dimension vector by

a 240 × 240 embedding layer. The 240-dimension vector was

chosen for convenience. The pitch histogram is a (T − 1) × 12

vector and note density is converted to a (T − 1) × 12 one-hot
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FIGURE 2

The illustration of gated recurrent units (GRU). xi and yi denote the current input and output of GRU, hi−1 and hi are the last hidden information

and current hidden information, ri and zi are the reset and update gates. A GRU network is formed from a series of GRUs.

vector. A (T−1)×1 zero vector is used to increase the stability of

the neural network. Therefore, the size of input Z is (T−1)×25.

The pitch histogram and note density are then concatenated

with the 240-dimension vector. The size of the concatenated

vector is (T − 1) × 265. The concatenated input is fed into a

265×512 full connection layer and a rectified linear unit (ReLU)

activation function. Then, this (T − 1) × 512 vector is sent into

a three-layer, 512-unit GRU, with a 0.3 dropout applied after

each of the first two GRU layers. The GRU output is then fed

to a 240-unit linear layer. The output of the neural network is

a T × 240 vector. The output presents the probability of each

event at each time step. The cross-entropy loss between the

generated sequence and the unmasked event sequence, namely,

the ground truth, is then calculated. The codes of this work have

been open-sourced on Github1.

Emotional music generation

At the generating stage, we generate samples with different

emotions by specifying a particular pitch histogram and note

density. When the model generates music, the first event will

be randomly selected. The first event, pitch histogram, and note

density are sent to the model to create new events recursively.

The output of our model is the probability of 240 events. If

we use greedy sampling to select an event with the largest

1 The codes are available on https://github.com/KaitongZheng/

EmotionBox.

probability, the sample may end up with some partial repetition,

which means a small part of the music may repeat again and

again. Therefore, we combine greedy sampling with stochastic

sampling. We select a threshold ranged from 0 to 1. Whenever

a new event is sampled, we produce a random number ranged

from 0 to 1. If the random number is larger than the threshold,

this event will be sampled using the greedy algorithm, which

means selecting an event with the largest probability. If not, this

event will be sampled based on the probability of each event,

which produces a lot of uncertainty.

When generating a new piece of emotional music, we

can use temperature (He et al., 2018) to alter the degree

of uncertainty. Temperature is a hyperparameter used to

control the randomness of predictions by scaling the logits

before applying softmax. Lower temperature results in more

predictable events, while higher temperature results in more

surprising events. The temperature parameter is manually tuned

by listening to the generated music. If the music is too random,

the temperature will be turned down. If the music is too

repetitive, the temperature will be turned up.

Experiment

Dataset

We selected a widely used dataset, piano-midi2, to train

our model. It includes 329 piano pieces from 23 classical

2 The training data can be found on http://www.piano-midi.de/.
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FIGURE 3

Diagram of the EmotionBox model architecture. “Input X” denotes a sequence of events and “Input Z” denotes the pitch histogram and note

density.

composers. Each piece is a MIDI file capturing a classical

piano performance with expressive dynamics and timing. The

dataset is highly homogeneous because all of the pieces in it are

classical music, and the solo instrument is consistently piano.

The authors in Zhao et al. (2019) labeled this dataset with

four basic emotions mentioned above (i.e., happy, tensional,

peaceful, and sad) manually to train their label-based automatic

emotional music generator. For the comparison experiment, we
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also used this emotion-labeled dataset with the permission of the

authors to train a label-based model. The Pretty-Midi package

was used to extract the note information from the MIDI files

(Raffel and Ellis, 2014).

Training

At the training stage, the whole sequence of events is cut into

200-event-wide event sequences. The stride of event sequences is

10 events. The network was trained using the ADAM optimizer

with a loss function of cross-entropy loss between the predicted

event and the ground truth event. We used a learning rate of

0.0002, and the model was trained for 100 epochs with a batch

size of 64. We implemented our models in PyTorch.

Comparison

We implement a label-based model for comparison as all

previous emotional music generation models were based on

emotion labels (Ferreira andWhitehead, 2019; Zhao et al., 2019).

In order to evaluate the performance between our proposed

method and the labeled-basedmethod, the structure of the label-

based model remains unchanged except that the inputs Z of

the model are substituted with emotion labels. One-hot coding

is used to present four basic emotions. The neural network is

trained to learn the mapping between music emotions and well-

classified emotion labels. In the generation stage, the label-based

model takes the emotion label as input.

Results and discussion

To evaluate the performance of music generation given a

specific emotion, a subjective listening test study was carried out

to compare our proposed method with the label-based method.

Similar to the subjective listening test for analyzing different

styles of classification, three 6-s long music samples were

provided for each emotion and each model3. The total amount

of music samples was 24 (3 samples × 4 emotions × 2 models).

The samples were randomly selected and shuffled. Table 2 shows

the average note density of the experimental stimuli. Twenty-six

subjects took part in the test. For each sample, participants were

asked which emotion was observed in the sample? They have

to choose one option from happy, peaceful, sad, and tensional.

It is a little difficult for untrained participants to classify the

music’s emotion. Therefore, we provided a warming-up stage

by playing four manually selected emotional music samples

with their corresponding emotional labels. During the listening

3 The subjective listening test files can be found on https://github.com/

KaitongZheng/EmotionBoxDEMO.

TABLE 2 The average note density of the experimental stimuli.

EmotionBox Label-based method

Happy 18.03 20.54

Tensional 17.23 32.39

Sad 6.24 12.06

Peaceful 6.29 14.41

test, samples can be stopped and replayed to make sure the

participants can hear the music clearly.

Emotion classification

In this section, we calculated the accuracy of emotion

classification for each of the four emotions and two methods.

The statistical results are shown in Figure 4. In Figure 4, it

shows that our proposed model, without a database labeled with

emotions, has comparable performance to the label-basedmodel

in terms of emotion classification accuracy. Among the four

kinds of emotion, the results indicate that the music samples

with tensional and happy emotions were correctly recognized by

the highest accuracy for both methods. These observations can

be explained by an emotion psychology study that showed that

valence can be distinguished more easily by high-arousal stimuli

(Bradley et al., 2001). The proposed method outperforms the

label-based method on peaceful and sad samples, which greatly

overcome the shortcomings of the label-based method and yield

amore balanced result. A two-way ANOVA is used with emotion

(happy, sad, tensional, peaceful) and model (EmotionBox, label-

based) set as within-subject factors to investigate how these

two factors, in combination, affect the accuracy of subjective

experiments. For each subject, the accuracy of emotion

classification was calculated for each emotion and model. The

classification accuracy was calculated by dividing the number

of samples that were correctly recognized by the number of

samples tested for each emotion and model (3 tested samples

for each emotion and model). The statistical results show

that model [F(1,25) = 0.603, p = 0.445, partial η2 = 0.024]

has no significant effect while emotion [F(3,75) = 15.115, p

< 0.01, partial η2 = 0.377] has a significant effect on the

accuracy of subjective experiments. For the interaction of model

and emotion, Mauchlys test of sphericity indicates that the

assumption of sphericity has been violated [χ2
(5)

= 12.904, p =

0.024]. By applying the Greenhouse-Geisser correction, the

interaction of model and emotion shows a significant effect on

the accuracy of subjective experiments [F(2.435,60.865) = 6.475, p

< 0.01, partial η2 = 0.206].

Table 3 shows a post-hoc Bonferroni adjusted pairwise

comparison within each emotion pair of two methods. Table 3

indicates that there are significant differences between the
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FIGURE 4

The mean accuracy and SD of subjective evaluation test for classifying generated music samples into emotion categories.

TABLE 3 A post-hoc Bonferroni adjusted pairwise comparison of each

emotion pair between two methods.

EmotionBox Label-based method p-value

Happy Happy 0.606

Tensional Tensional 0.004

Sad Sad 0.240

Peaceful Peaceful 0.045

p-value less than 0.05 means a statistically significant difference at a confidence

level of 5% and is presented in bold type.

two methods on tensional and peaceful samples. The emotion

classification accuracy of the label-based method is significantly

high on tensional emotion while that is significantly low on

peaceful emotion. There are no significant differences between

the two methods on happy and sad samples. The note density of

experimental stimuli can be used to explain why the proposed

model achieved good performance for peaceful whereas the

label-based model worked well for tensional. Table 2 shows that

the tensional samples of the label-based model have a much

higher note density than that of the EmotionBox. Therefore, the

subjects are more likely to judge the former as tensional. On

the other hand, the peaceful samples of the EmotionBox have

a much lower note density than that of the label-based model.

Therefore, the subjects are more likely to judge the former as

peaceful. A post-hoc Bonferroni adjusted pairwise comparison

between each emotion of EmotionBox has been conducted.

The result shows no statistically significant differences (p >

0.05) between these emotions. Another post-hoc Bonferroni

adjusted pairwise comparison between each emotion of label-

based method has also been conducted. The result shows no

statistically significant differences (p > 0.05) between happy and

tensional, peaceful and sad. For other pairs, there are statistically

significant differences (p < 0.05). Combined with Figure 4, the

results indicate that emotions with higher arousal like happy and

tensional are more likely to be distinguished than emotions with

low arousal like sad and peaceful for label-based method.

To investigate the performance of generating different

emotional music within each model, we also count the result

of all the combinations between specific emotions at generating

stage and emotions classified by subjects as shown in Table 4.

From Table 4A, it shows that the arousal of music is more

distinguishable than valence. For example, for the first row,

28% of happy samples were classified as tensional samples that
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TABLE 4 The results of human classification for each combination between specific emotion at generating stage and emotion classified by subjects.

(A)

Generated samples

Subjects classification Happy Tensional Sad Peaceful

Happy 71% 28% 0% 1%

Tensional 17% 74% 5% 4%

Sad 1% 8% 56% 35%

Peaceful 8% 4% 26% 63%

(B)

Generated samples

Subjects classification Happy Tensional Sad Peaceful

Happy 74% 23% 0% 3%

Tensional 10% 90% 0% 0%

Sad 4% 18% 47% 31%

Peaceful 26% 28% 5% 41%

(A) The results of the EmotionBox. (B) The results of the emotion-label-based model.

have the same level of arousal but a different level of valence.

However, a happy sample is rarely classified as a peaceful sample

as they have a different level of arousal. This experimental result

agrees with the observation that tempo is more determinant

than the mode in forming happy-sad judgments as reported in

Gagnon and Peretz (2003). In our work, the tempo and themode

are associated with arousal and valence of music, respectively.

The classification of arousal and valence will be discussed in

next section.

From Table 4B, the classification accuracy is similar for

high arousal music. However, for low arousal music, the

classification accuracy in terms of both arousal and valence

of emotion decreases significantly. For the last row, 26 and

28% peaceful samples were perceived as happy samples and

tensional samples, respectively, which indicates that the label-

based method has a poor performance on generating music with

a low arousal emotion.

Arousal and valence classification

Our proposedmethod uses note density and pitch histogram

as features to present the arousal and valence of a specific

emotion, respectively. To investigate whether these two features

are suitable or not for training the deep neural networks, we

calculated the accuracy of arousal and valence classification as

shown in Figure 5. If the emotion specified during generating

stage and the emotion classified by subjects have the same

arousal or valence, the classification result will be calculated as

correct. For example, if the emotion of a sample specified during

generating stage is happy while classified as tensional by subjects,

the classification result will be viewed as correct because of the

same arousal of happy and tensional.

A two-way ANOVA is used with arousal and model set as

within-subject factors to investigate how these two factors affect

the accuracy of subjective experiments. The statistical results

show that model [F(1,25) = 20.457, p < 0.01, partial η2 = 0.450]

and arousal [F(1,25) = 42.989, p < 0.01, partial η2 = 0.632] have

a significant effect on the accuracy of subjective experiments.

The interaction of model and arousal has a significant effect

on the accuracy of subjective experiments [F(1,25) = 43.846,

p < 0.01, partial η2 = 0.637]. Another two-way ANOVA is

also adopted with valence and model set as within-subject

factors. The statistical results show that model [F(1,25) = 0.962,

p = 0.346, partial η2 = 0.036] and valence [F(1,25) = 0.962,

p = 0.259, partial η2 = 0.051] have no significant effect on

the accuracy of subjective experiments. The interaction of

model and valence shows no significant effect on the accuracy

of subjective experiments [F(1,25) = 1.000, p = 0.327, partial

η2 = 0.038]. Table 5 shows a post-hoc Bonferroni adjusted

pairwise comparison between two methods in terms of arousal

and valence.

It shows that the classification accuracy of EmotionBox is

significantly higher than that of the label-based method on low

arousal emotions. For other emotion categories, Table 5 shows

that there is no significant difference between two methods for

other three pairs. The tempo and the mode are relevant with

note density and pitch histogram, respectively, in our work.

Note density and pitch histogram further present arousal and

valence, respectively. Without the limitation of note density, the

label-based method tends to generate music with a faster tempo,

which results in a low classification accuracy of the samples with

Frontiers in Psychology 09 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.841926
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zheng et al. 10.3389/fpsyg.2022.841926

FIGURE 5

The mean accuracy and SD of subjective evaluation test for classifying generated music samples into arousal and valence categories.

TABLE 5 A post-hoc Bonferroni adjusted pairwise comparison of each

arousal and valence conditions of the two methods.

EmotionBox Label-based method p-value

High arousal High arousal 0.325

Low arousal Low arousal < 0.01

High valence High valence 0.891

Low valence Low valence 0.220

p-value less than 0.05means a statistically significant difference at a confidence level of 5%

and is presented in bold type.

low arousal emotions. This result means note density is a suitable

feature to control the arousal of music.

Limitations and outlook

However, there are still some limitations to the proposed

method. First, the classification of valence is still challenging,

which indicates that the valence of music cannot solely be

presented by mode. A more appropriate presentation method

of valence should be investigated in future work. Second, the

generated music is more like an improvization. The model

learns how to play the next note according to the previous

notes whereas it has no idea about the structure of music. The

structure of music is important and needs to be considered in

the future work.

The EmotionBox can be used to help the composers create

music with a specific emotion by providing various novel

samples. By tuning the network’s parameters, the EmotionBox

can be a versatile assistant to create music. The combination of

intelligent music composition and performance of music robot

based on emotional computing is a promising approach for

the future development of human-machine interaction, which

provides a practical solution to eliminate the interaction barrier

between humans and machines. Automatic emotional music

may also be helpful for music therapy. Studies have shown

neurological evidence that music effectively enhances auditory

and language function through the human brain’s plasticity

(Hyde et al., 2009; Dittinger et al., 2017). Music therapies

that utilize music as a treatment for tinnitus can leverage the

plasticity in the auditory cortex and thus reduce the impact of

tinnitus (Ellis et al., 2010). Some researchers have also shown

that emotional music may support emotion recognition in
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children with ASD, and thus improve their social skills (Wagener

et al., 2021). Music therapy often needs to avoid repetitive music.

By tuning the networks parameters, the proposed method can

generate non-repetitive music with a predefined emotion, which

may be helpful for music therapy applications.

Conclusion

In this work, we propose a music-element-driven automatic

emotional music generator based on music psychology. This

model does not need any music datasets with emotion labels

that the previous methods required. The note density and

the pitch histogram are chosen to present the arousal and

valence of music, respectively. Then, different combinations

of arousal and valence will be mapped to different emotions

according to the Russell emotion model. Based on the specific

note density and pitch histogram, our proposed method will

be able to evoke listeners’ different auditory perceptions and

emotions. Subjective experimental results indicate that our

proposed method has a significantly better performance in

generating music with low arousal emotions. The results of

the subjective listening test also indicate that note density is

a suitable presentation for the arousal of music while more

research studies should be carried out to find a more appropriate

feature to convey the valence of music. The proposed method

may have unique values for some music therapy applications.
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