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Abstract. Temozolomide (TMZ) resistance is a complication 
of treatment of glioma, and new strategies are urgently required 
to overcome chemoresistance in glioma cells. In the present 
study, it was demonstrated that tripartite motif‑containing 31 
(TRIM31) was abnormally upregulated in glioma tissues and 
cell lines compared with normal samples. Furthermore, the 
role of TRIM31 was assessed by overexpressing and knocking 
down its expression. Overexpression of TRIM31 increased cell 
viability, increased TMZ IC50 values and inhibited apoptosis 
in A172 and U251 cells; whereas overexpression of TRIM31 
decreased the expression of the apoptosis‑associated protein 
p53. Knockdown of TRIM31 increased apoptosis in cells 
treated with TMZ. Additionally, the mechanisms by which 
TRIM31 affected glioma cells treated with TMZ were deter-
mined. Overexpression of TRIM31 increased phosphorylation 
of AKT and inhibiting the PI3K/AKT signaling pathway abol-
ished the increase in cell viability and decreased phospho‑Akt 

protein expression in TRIM31 overexpressing A172 cells 
treated with TMZ. Together, the findings suggest that TRIM31 
may be a potentially novel target for glioma chemotherapy.

Introduction

Malignant gliomas are the most common primary tumors 
observed in the central nervous system with a median survival 
time of 12‑15 months (1‑3). At present, the available treatment 
options are surgical resection and adjuvant temozolomide 
(TMZ)‑based chemotherapy combined with radiotherapy (4,5). 
TMZ is a DNA‑alkylating drug which has improved overall 
survival in patients (6,7). However, its efficacy is limited by the 
development of chemotherapeutic resistance in tumors (8,9). 
Therefore, identifying novel molecular mechanisms underlying 
TMZ resistance may improve outcomes for patients.

The tripartite motif‑containing (TRIM) family of proteins 
contains more than 70 members and each member consists of 
a conserved RING finger, B‑box, and coiled‑coil domains (10), 
These members are primarily involved in important cellular 
biological processes (11,12). TRIM31 is one member of the 
TRIM family which has been reported to be involved in innate 
immunity and cancer development (13‑20), and TRIM31 
expression was found to be upregulated in pancreatic cancer 
tissues (20). Mechanistically, TRIM31 confers gemcitabine 
resistance in pancreatic cancer cells by activating the NF‑κB 
signaling pathway  (20). However, the role of TRIM31 in 
governing TMZ resistance remains unclear and the exact 
mechanism underlying its effects are unknown.

In the present study, TRIM31 was analyzed in glioma 
tissues and we clarified the relationship between TRIM31 
upregulation and certain clinicopathological features including 
age, sex and WHO grade. Upregulation of TRIM31 enhanced 
TMZ resistance in glioma cells in  vitro. Mechanistically, 
the PI3K/Akt pathway was determined to be involved 
in TRIM31‑mediated chemoresistance in glioma cells. The 
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present study demonstrated that overexpression of TRIM31 
resulted in TMZ chemoresistance in glioma and it may be 
possible to improve the chemosensitivity to TMZ in patients 
with glioma by downregulating the expression of or inhibiting 
TRIM31.

Materials and methods

Tissue samples. A total of 40 tissue samples and 8 cases of 
adjacent normal brain tissues were collected at Department of 
Neurosurgery, The Second Hospital of Shandong University 
(Shandong, China) between June 2016 and March 2019. The 
samples ranged from 5 years old to 72 years old, 27 males and 
13 females with an average age of 45.3 years old. All samples 
were histopathologically and clinically diagnosed and none of the 
patients received chemotherapy or radiotherapy prior to obtaining 
the tissue samples. All samples were frozen in liquid nitrogen 
and stored at ‑80˚C until further use. Patient characteristics are 
presented in Table I. All patients provided written informed 
consent and the study was approved by the Medical Ethics 
Committee of the Second Hospital of Shandong University.

Cell culture and treatments. Normal human astrocytes (NHA) 
were obtained from ScienCell Research Laboratories, Inc. 
LN229 cells were obtained from American Type Culture 
Collection. U87, U251 and A172 cell lines were purchased 
from The Cell Bank of Type Culture Collection of the 
Chinese Academy of Sciences. U87 cells are a glioblastoma 
of unknown origin which was authenticated by STR profiling, 
Cells were cultured in DMEM (Thermo Fisher Scientific, Inc.) 
supplemented with 10% FBS (Biological Industries). The cells 
were cultured at 37˚C with 5% CO2. TMZ (cat. no. T2577; 
Sigma‑Aldrich; Merck KGaA) was dissolved in DMSO 
(Sigma‑Aldrich; Merck KGaA) at a stock concentration of 
200 mM and stored at ‑20˚C. A 5 mM solution of LY294002 
was purchased from MedChemExpress (cat. no. HY‑10108), 
after 10 h transfection, the glioma cells were incubated with 
LY294002 for 12 h. Cells were harvested for further analysis.

Plasmid construction and cell transfection. TRIM31 expres-
sion plasmids were kindly provided by Professor Chengjiang 
Gao and Professor Lihui Han (Shandong University School 
of Medicine, Shandong, China). TRIM31 small interfering 
(si)RNAs were synthesized by Shanghai GenePharma Co., Ltd. 
And the sequences were as follows: siTRIM31, 5'‑GGA​CCA​
CAA​AUC​CCA​UAA​U‑3'; and si‑negative control (NC), 5'‑UUC​
UCC​GAA​CGU​GUC​ACG​U‑3'. A172 and U251 cells were trans-
fected using Lipofectamine® 2000 (cat .no. 11668019, Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
protocol. A total of 3x105 A172 or U251 cells/well were seeded 
in 6‑well plates and cultured overnight. Lipofectamine® 2000 
and opti‑MEM (cat. no. 31985; Gibco; Thermo Fisher Scientific, 
Inc.) were used for transient transfection with 3 µg plasmid or 
100 pmol siRNA. Subsequent experiments were performed after 
24 or 48 h of transfection. Transfection efficiency was determined 
using reverse transcription‑quantitative (RT‑q)PCR.

RT‑qPCR. Total RNA was extracted using a RNeasy kit (cat. 
no. DP430; Tiangen Biotech, Co., Ltd.) and 1 µg RNA was reverse 
transcribed into cDNA using a First‑strand Synthesis kit (cat. 

no. KR116; Tiangen Biotech, Co., Ltd.). qPCR was performed on 
a Mastercycler ep realplex (Eppendorf) with SuperReal Premix 
Plus (cat. no. FP205; Tiangen Biotech, Co., Ltd.). The reverse tran-
scription temperature protocol was: 42˚C for 15 min and reverse 
transcriptase inactivation 95˚C for 3 min. qPCR was performed 
using 10 µl 2x SuperReal Premix Plus, 20 ng cDNA template, 
10 µM each forward and reverse primers, and ddH2O. The ther-
mocycling conditions were: 95˚C for 15 min; followed by 40 cycles 
of denaturation at 95˚C for 10 sec, annealing at 60˚C for 25 sec 
and extension at 72˚C for 20 sec. The data were analyzed using 
the 2‑ΔΔCq method (21) and normalized to the internal control. The 
sequence of the primers were: TRIM31 forward, 5'‑GGC​AGA​
TTC​AAG​AGC​AG‑3' and reverse, 5'‑TCA​GTG​GAG​GCA​ACA​
TAG‑3'; and β‑actin forward, 5'‑GGA​AAT​CGT​GCG​TGA​CAT​
TAA‑3' and reverse, 5'‑AGG​AAG​GAA​GGC​TGG​AAG​AG‑3'.

Western blotting. Cells were lysed with 1 ml RIPA buffer (Beijing 
Solarbio Science & Technology Co., Ltd.) supplemented with 
a protease inhibitor (Beijing Solarbio Science & Technology 
Co., Ltd.) and centrifuged at 4˚C 12,000 x g for 15 min, and 
the supernatant was collected. The protein concentration was 
measured using a bicinchoninic acid protein assay kit (ABP 
Biosciences) according to the manufacturer's protocol. Protein 
samples (20 µg) were loaded on a 12% SDS gel and resolved 
using SDS‑PAGE. Resolved proteins were transferred onto 
PVDF membranes (EMD Millipore). The PVDF membranes 
were blocked in 5% nonfat milk at room temperature for 1 h and 
subsequently incubated with the following primary antibodies 
at 4˚C overnight: anti‑TRIM31 (cat. no. 12543‑1‑AP; 1:500; 
ProteinTech Group, Inc.), anti‑p‑AKT (cat. no. 4060, 1:1,000), 
AKT (cat. no. 4685; 1:1,000), anti‑p53 (cat. no. 2524; 1:1,000) 
and GADPH (cat. no. 2118s; 1:1,000) all from Cell Signaling 
Technology, Inc. The membranes were washed three times in 
PBS‑Tween (PBST) for 6 min. Membranes were incubated with 
a secondary goat anti‑rabbit immunoglobulin G (IgG) antibody 
(1:5,000, OriGene Technologies, Inc.) at room temperature for 
1 h. Membranes were washed with PBST three times for 10 min. 
Signals were visualized using a chemiluminescence fluorescent 
detection kit (EMD Millipore) in the dark. Membranes were 
exposed in a gel imaging system. The ratios of gray values of 
each band was semi‑quantified using Alpha Imager version 2011 
(ProteinSimple). All experiments were performed in triplicate.

Apoptosis assay. An AnnexinV/propidium iodide (PI) double 
staining kit (cat. no. BB‑4101; Bestbio) was used to measure 
apoptosis. Cells were harvested using 0.25% trypsin following 
TMZ treatment, washed twice with pre‑cooled PBS and cells 
were resuspended in binding buffer. 5 µl Annexin V/fluores-
cein isothiocyanate and 5 µl PI was added. After incubation in 
the dark for 15 min at 4˚C, cells were analyzed using BD flow 
cytometry. All experiments were performed in triplicate.

Cell viability assay. Cell viability was measured using an 
MTT assay. Cells were seeded in a 96‑well plate at a density 
of 1x103 cells/well in 100 µl of culture medium and incubated 
at 37˚C with 5% CO2 for 24 h. After treatment with different 
concentrations of TMZ for 48  h, 5  mg/ml MTT solution 
(Beijing Solarbio Science & Technology Co., Ltd.) was added 
to each group at the appropriate time and incubated for a further 
4 h at 37˚C in the dark, after which 200 µl DMSO was added 
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to dissolve the purple crystals. Cell viability was detected at 
450 nm using a microplate reader (Infinite M200 Pro; Tecan 
Group). IC50 was calculated using GraphPad Prism version 5.01 
(GraphPad Software, Inc.) by plotting a nonlinear regression 
curve fit using log (inhibitor) vs. normalized response (variable 
slope). Experiments were performed in triplicate.

Colony formation assay. A172 or U251 cells were plated in 
a 6‑well plate at a density of 100 cells/well and cultured in 
DMEM supplemented with 10% FBS. Cells were treated with 
the indicated agents for 10‑14 days. Medium was replaced every 
3 days. Cell colonies were gently washed with PBS and fixed 
with 4% paraformaldehyde for 15 min at room temperature, 
and subsequently stained with 0.1% crystal violet for 20 min 
at room temperature. The stain was carefully washed using 
running water and dried. The number of colonies with >50 cells 
were counted under a NikonTS‑100F microscope light. Three 
independent assays were performed for each condition.

Immunohistochemistry. Immunohistochemistry staining 
was performed using a kit (cat. no.  PV‑9001; OriGene 
Technologies, Inc.). The sections were deparaffinized with 
xylene, rehydrated and boiled in 0.01 M citrate buffer (pH 6.0) 
for antigen retrieval. Hydrogen peroxide was added to block 
endogenous peroxide activity, and the sections were washed 
three times, and subsequently incubated with TRIM31 
antibody (1:50) overnight at 4˚C. Tissues were washed three 
times in PBS for 3 min each, after which the sections were 
incubated with a secondary goat anti‑rabbit IgG antibody 
at room temperature for 20  min. Sections were colored 
using a 3,3'‑diaminobenzidine (cat. no. ZLI‑9018; OriGene 
Technologies, Inc.) at room temperature for 40 sec. Nuclei 
were counterstained with hematoxylin at room temperature 
for 3‑5 min. The intensity and the ratio of positive cells in at 
least five separate fields were evaluated at x400 magnification 
under a Nikon90i microscope light. The intensity of staining 
was scored between 1 and 4: 1, No staining; 2, weak staining; 
3, moderate staining; and 4, strong staining. The proportion 
of cells stained were scored as follows: 1, 0‑5%; 2, 6‑50%; 3, 

51‑75%; and 4, 76‑100%. The scores of the proportion of cells 
stained and the intensity scores were multiplied to give a final 
score between 1 and 16 and classed as follows: Negative, 1‑4; 
weakly positive, 5‑8; moderately positive, 9‑12; or strongly 
positive, >12. The scores were evaluated by two pathologists 
who were blinded to clinical data.

Statistical analysis. GraphPad Prism version 5.01 (GraphPad 
Software, Inc.) was used for all statistical analyses. All experi-
ments were independently performed three times. Data are 
presented as the mean ± standard deviation. Comparisons 
between two groups were analyzed using a Student's t‑test. 
A one‑way ANOVA with post hoc Tukey's test was used to 
analyze differences between multiple groups. The associations 
between TRIM31 levels and clinicopathological features were 
analyzed using a Fisher's exact probability test. P<0.05 was 
considered to indicate a statistically significant difference.

Results

TRIM31 is upregulated in human glioma tissues. To deter-
mine the role of TRIM31 in human glioma, its expression 
in normal brain tissues and glioma tissues were examined 
by RT‑qPCR and immunohistochemistry assay. The results 
showed that expression of TRIM31 was significantly upregu-
lated in glioma tissues compared with normal brain tissues 
and it was primarily expressed in the cytoplasm of glioblas-
toma cells (Fig. 1A). Additionally, the expression of TRIM31 
in NHA, U87, LN229 U251 and A172 cell lines was exam-
ined. TRIM31 expression was higher in U251 and A172 cells 
compared with the other cell lines at both the protein and 
mRNA levels (Fig. 1B). Therefore, the U251 and A172 cell 
lines were chosen for subsequent experiments. Subsequently, 
the association between TRIM31 expression and clinico-
pathological characteristics of patients with glioma were 
assessed. Analysis showed that TRIM31 expression was 
associated with World Health Organization grade. There was 
no significant difference between TRIM31 expression and sex 
or age. Taken together, these findings suggest that increased 

Table I. Correlations between TRIM31 expression and the clinicopathological characteristics of patients with glioma.

	 TRIM31 expression
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Clinicopathological characteristics	 Number of patients (n=40)	 Low	 High	 P‑value

Age	 	 	 	    0.7462
  <55	 26	 15	 11	 
  ≥55	 14	 9	 4	 
Sex	 	 	 	    0.5106
  Male	 27	 13	 14	 
  Female	 13	 8	 5	 
WHO grade	 	 	 	    0.007
  I‑II	 14	 12	 2	 
  III‑IV	 26	 10	 16	

TRIM31, tripartite motif‑containing 31.
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Figure 1. Expression levels of TRIM31 in glioma tissues and glioma cell lines. (A) TRIM31 protein levels in glioblastoma tissues compared with normal brain 
tissues. Magnification, x200; scale bar, 100 µm. (B) Western blot analysis of TRIM 31 protein expression levels in four different glioma cell lines and the NHA 
cell line. GAPDH was used as the loading control. (C) mRNA expression levels of TRIM31 in four different glioma cell lines and the NHA cell line. ***P<0.001 
NHA cell line was compared to different gliomas cell lines separately. Data are presented as the mean ± standard deviation of three independent experiments. 
NC, negative control; NB, normal brain tissue; GBM, glioblastoma; TRIM31, tripartite motif‑containing 31; NHA, normal human astrocytes.

Figure 2. TRIM31 confers TMZ resistance in glioma cells in vitro. (A) mRNA and protein expression levels of TRIM31 in cells transfected with empty 
plasmid, TRIM31 overexpression plasmid, siTRIM31 and siNC. (B) Cell viability of A172 and U251 cells transfected with the indicated plasmids. (C) IC50 
values of TMZ in A172 and U251 cells transfected with the empty plasmid and TRIM31 overexpression plasmid. (D) Colony formation in A172 and U251 
cells transfected with empty plasmid and TRIM31 overexpression plasmid and treated with 100 µM TMZ. *P<0.05, **P<0.01, ***P<0.001. Data are presented 
as the mean ± standard deviation of three independent experiments. TMZ, temozolomide; si, small interfering; NC, negative control; TRIM31, tripartite 
motif‑containing 31.
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TRIM31 expression was associated with aggressive clinical 
features of glioma.

TRIM31 overexpression confers TMZ resistance in glioma 
cells. To examine the potential role of TRIM31 in chemo-
resistance in glioma cells, TRIM31 expression was knocked 
down using siRNA or overexpressed in A172 and U251 cells. 
Overexpression and knockdown efficiency were confirmed 
by RT‑qPCR and western blotting (Fig. 2A). The effect of 
TRIM31 on the cell viability of A172 and U251 cells treated 
with different concentrations of TMZ for 48 h was subse-
quently determined. Cell proliferation was assessed using 
MTT assays and they showed that TRIM31 overexpression 
increased cell viability compared with the control group 
(Fig. 2B). The IC50 value of TMZ was significantly higher 
in TRIM31 overexpressing cells than transfecting blank 
plasmids cells (Fig. 2C). Colony formation assays showed that 
TRIM31 overexpression resulted in increased colony forma-
tion and exhibited greater clonogenic survival following TMZ 
treatment compared with the control (Fig. 2D). These data 
suggest that TRIM31 enhanced TMZ resistance in glioma 
cells in vitro.

TRIM31 inhibits TMZ‑induced glioma cell apoptosis. To 
further investigate the effect of TRIM31 on TMZ‑induced 
apoptosis, apoptosis rates were measured by flow cytometry 
analysis in A172 and U251 cells treated with TMZ for 48 h. 
A172 and U251 cells were transfected with empty vector 
or TRIM31 overexpression plasmid and treated with TMZ 
(100 µg/ml). The results demonstrated that TRIM31 overex-
pression significantly decreased the apoptotic proportion of 
cells compared with the control cells (Fig. 3A). In U251 cells 
transfected with siNC or siTRIM31 and treated with TMZ 
(100 µg/ml), knockdown of TRIM31 increased the apoptotic 
proportion of cells (Fig. 3B). Subsequently, p53 protein levels 
were detected in U251 and A172 cells treated with TMZ, 
overexpressing TRIM31 decreased the expression of p53 
protein (Fig. 3C). These results showed TRIM31 reduced 
TMZ‑induced glioma cells apoptosis, which suggested that 
TRIM31 decreased glioma cells sensitivity to TMZ.

The PI3K/Akt signaling pathway is involved in 
TRIM31‑mediated TMZ resistance of glioma cells. Activation 
of PI3K/Akt signaling is the primary pathway which 
participates in glioblastoma growth and therapy  (22‑29), 

Figure 3. TRIM31 decreased TMZ‑induced glioma cell apoptosis. (A) Apoptotic rates of A172 and U251 cells transfected with empty plasmid and TRIM31 
overexpression plasmid after 48 h of TMZ treatment (100 µM). (B) Apoptotic rate of U251 cells transfected with siTRIM31 and negative control after 48 h of 
TMZ treatment (100 µM). (C) Protein expression levels of p53 were analyzed by western blot in U251 and A172 cells transfected with TRIM31 plasmids and 
treated with TMZ. **P<0.01, ***P<0.001. Data are presented as the mean ± standard deviation of three independent experiments. Si, small interfering; TMZ, 
temozolomide; TRIM31, tripartite motif‑containing 31.
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and activated Akt is indicative of increased signaling via 
this pathway. Whether PI3K/Akt pathway was involved in 
TRIM31‑mediated chemoresistance of glioma cells was 
unknown. TRIM31 overexpression upregulated the phos-
phorylation of AKT (Fig. 4A) compared with control cells 
treated with TMZ. TRIM31 knockdown downregulated the 
phosphorylation of AKT in U251 cells compared with control 
cells treated with TMZ (Fig. 4B). These results suggested that 
TRIM31 may activate the PI3K/Akt signal pathway in glioma 
cells treated with TMZ.

To further elucidate the mechanism by which TRIM31 
induced chemoresistance in glioma cells, LY294002 was 
used to inhibit PI3K/Akt activation in U251 and A172 cells. 
Inhibition of PI3K/Akt signaling decreased glioma cell 
viability and abolished the effects of TRIM31 expression 
(Fig. 4C). LY294002 also reduced the expression of p‑AKT 
induced by TRIM31 overexpression in A172 cells treated with 
TMZ (Fig. 4D). The PI3K/Akt inhibitor abolished the effects 
of TRIM31 on p‑AKT upregulation. These data suggest that 
TRIM31 regulated TMZ resistance through the PI3K/Akt 
activation and p‑AKT upregulation.

Discussion

TMZ chemoresistance is a significant challenge faced during 
glioma recurrence which results in treatment failure (8,9), 
Therefore, enhancement of sensitivity of the tumor to TMZ 
may improve the prognosis of patients with gliomas.

TRIM31, is a member of the TRIM family of proteins, 
which are been involved in various cellular processes (13‑20). 
Recently, studies have demonstrated that TRIM31 serves 
an important role in the development of various types 
of cancer  (15‑20). A recent study reported that TRIM31 
promoted progression of hepatocellular carcinoma through 
the mTORC1‑HIF1α pathway by directly targeting the 
TSC1‑TSC2 complex for degradation (19). Notably, TRIM31 
has also been found to be involved in the development of 
chemotherapeutic resistance in cancer cells. For instance, 
TRIM31 overexpression conferred gemcitabine resistance in 
pancreatic cancer cells via the NF‑κB signaling pathway (20). 
It has also been reported to participate in the development of 
drug resistance in ovarian cancer (30). In the present study, it 
was demonstrated that TRIM31 expression was upregulated 
in glioblastoma (GBM) tissues and TRIM31 expression was 
significantly correlated with tumor grade, indicating that 
TRIM31 functions as a tumor oncogene in glioma progression. 
The data together suggested that TRIM31 may be associated 
with chemoresistance in glioblastoma cells.

To clarify the biological function of TRIM31 in affecting 
TMZ sensitivity in glioblastoma cells, stable TRIM31 overex-
pression and knockdown models were created. MTT assays 
demonstrated that overexpression of TRIM31 increased cell 
viability and the effects were augmented by treatment with 
TMZ in a dose‑dependent manner. TRIM31 overexpression 
combined with TMZ promoted cell growth and resulted in 
reduced apoptosis of glioma cells compared with untransfected 
cells treated with TMZ. The IC50 value was used as a measure 
of TMZ chemoresistance in GBM cells, thus increased IC50 
generally corresponded to increased clinical chemoresistance 
to TMZ. TRIM31 overexpression significantly increased 
the IC50 values of TMZ. Furthermore, TRIM31 overexpres-
sion significantly increased colony formation ability in vitro 
compared with the TMZ treated untransfected cells. Similarly, 
flow cytometry analysis showed that combined TRIM31 
overexpression and TMZ treatment resulted in significantly 
reduced apoptosis compared with TMZ treated untransfected 
cells. Conversely, TRIM31 knockdown increased apoptosis. 
The results of the present study suggested that overexpression 
of TRIM31 in glioblastoma cells induced resistance to TMZ. 
The tumor suppressor protein p53 serves various functional 
roles in the cell by regulating responses to several cellular 
stresses and it is inactivated in a variety of cancer cells via 
point mutations (31,32). p53 regulates tumor proliferation and 
apoptosis synergistically (33‑35). p53 mimetic agents designed 
to stabilize the p53wt sensitize glioma cells to TMZ (36). In the 
present study, upregulation of TRIM31 significantly reduced 
the expression of p53, these results suggested that decreased 
p53 expression may account for the inhibitory role of TRIM31 
in TMZ‑induced glioma cell apoptosis.

Numerous studies have demonstrated a close asso-
ciation between the PI3K/Akt pathway and TMZ resistance in 
gliomas (37‑41). Akt is a primary regulator of PI3K‑initiated 

Figure 4. TRIM31 regulates TMZ resistance via the PI3K/Akt signaling 
pathway. (A) Protein expression levels of p‑AKT and AKT in A172 and 
U251 cells transfected with the indicated plasmids and treated with TMZ. 
(B) Protein expression levels of p‑AKT and AKT in U251 cells transfected 
with siTRIM31 and siNC and treated with TMZ. (C) Cell viability of A172 
cells transfected with the TRIM31 and control plasmids and treated with 
the PI3K inhibitor, LY294002, and TMZ. (D) Protein expression levels of 
p‑AKT and AKT in A172 cells transfected with the TRIM31 and control 
plasmids and treated with the PI3K inhibitor, LY294002, and TMZ. *P<0.05, 
***P<0.001. Data are presented as the mean ± standard deviation of three 
independent experiments. TMZ, temozolomide; si, small interfering; NC, 
negative control; TRIM31, tripartite motif‑containing 31; p, phosphorylated.
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signaling and its activation contributes to chemoresis-
tance  (42,43). Therefore, it was determined whether the 
PI3K/Akt signaling pathway was involved in TRIM31 induced 
TMZ resistance of glioma cells. Firstly, the results showed that 
TRIM31 overexpression significantly increased the expression 
of p‑Akt in glioma cells, which indicated that the biological 
effects of TRIM31 were partly mediated by the PI3K/Akt 
pathway. LY294002, a PI3K inhibitor, was used to further 
confirm this assumption. TRIM31 failed to upregulate cell 
viability when treated with LY294002, and the cell viability 
was reduced to levels similar to TMZ treated cells and in the 
TRIM31 overexpressing cells. The results indicated that PI3K 
inhibition decreased p‑Akt protein expression and abolished 
the effects of TRIM31 on p‑Akt upregulation, suggesting that 
TRIM31 regulated TMZ resistance possibly via the PI3K/Akt 
pathway.

In the present study, upregulation of TRIM31 resulted 
in an increase of p‑AKT and a decrease of p53 expression, 
which demonstrated that TRIM31 induced chemoresistance in 
gliomas to TMZ via the PI3K/Akt/p53 signaling. The E3 ubiq-
uitin ligase has been reported to catalyze the polyubiquitin of 
p53 and trigger the degradation of p53 in hepatocellular carci-
noma cells (44). In glioma cells, whether TRIM31 directly 
targeted p53 for ubiquitin‑mediated degradation or if TRIM31 
bound adaptors involved in the PI3K/Akt pathway remains 
unclear.

In conclusion, the present study showed that TRIM31 
mediated TMZ sensitivity via the PI3K/Akt signaling pathway 
in glioblastoma. The results present a possible molecular 
mechanism underlying TMZ resistance and proposed a novel 
strategy to potentially improve the therapeutic outcomes of 
glioblastoma treatment.
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