AIDS RESEARCH AND HUMAN RETROVIRUSES
Volume 36, Number 7, 2020

Mary Ann Liebert, Inc.

DOI: 10.1089/aid.2020.0031

EPIDEMIOLOGY

New Genomes from the Congo Basin Expand History
of CRFO1_AE Origin and Dissemination

Dennis Maletich Junqueira,™® Eduan Wilkinson?® Ana Vallari* Xianding Deng>® Asmeeta Achari>®
Guixia Yu?® Carole McArthur,” Lazare Kaptue? Dora Mbanya®'° Charles Chiu>®'
Gavin A. Cloherty,* Tulio de Oliveira®®'? and Mary A. Rodgers*

Abstract

Although the first HIV circulating recombinant form (CRFO1_AE) is the predominant strain in many Asian countries, it
is uncommonly found in the Congo Basin from where it first originated. To fill the gap in the evolutionary history of this
important strain, we sequenced near complete genomes from HIV samples with subgenomic CRFO1_AE regions
collected in Cameroon and the Democratic Republic of the Congo from 2001 to 2006. HIV genomes were generated
from N=13 plasma specimens by next-generation sequencing of metagenomic libraries prepared with spiked primers
targeting HIV, followed by Sanger gap-filling. Genome sequences were aligned to reference strains, including Asian
and African CRFOI_AE sequences, and evaluated by phylogenetic and recombinant analysis to identify four
CRFO1_AE strains from Cameroon. We also identified two CRF02, one CRF27, and six unique recombinant form
genomes (01|A1|G, 01|02|F|U, F|G|01, A1|D|01, F|G|01, and A1|G|01). Phylogenetic analysis, including the four new
African CRFO1_AE genomes, placed these samples as a bridge between basal Central African Republic CRFO1_AE
strains and all Asian, European, and American CRFO1_AE strains. Molecular dating confirmed previous estimates
indicating that the most recent common CRF01_AE ancestor emerged in the early 1970s (1968-1970) and spread
beyond Africa around 1980 to Asia. The new sequences and analysis presented in this study expand the molecular
history of the CRFO1_AE clade, and are illustrated in an interactive Next Strain phylogenetic tree, map, and timeline at
(https://mextstrain.org/community/EduanWilkinson/hiv-1_crf01).
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Introduction

RFO1_AE wAS THE FIRST circulating recombinant form
(CRF) to be identified in the HIV type 1 (HIV-1) epi-
demic."? The genome structure of this virus appeared to be a
mosaic strain containing a mixture of subtype A and portions
of sequences that did not cluster with other known subtypes

of HIV-1 at the time. The non-A regions (portions of vif, vpr,
env, nef, and 3’ long terminal repeat) were classified as sub-
type E, although a complete subtype E genome has not been
identified to date. The earliest isolates of CRFO1_AE were
collected in 1990 in the Central African Republic (CAR).*™
Molecular characterization of the envelope region from
strains circulating in Africa in the 1990s indicated that
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genotype E accounted for 31% of 29 randomly selected
samples collected in CAR,* whereas subtype E was absent
from studies conducted in Uganda, Zaire (now Democratic
Republic of the Congo [DRC]), Malawi, and Tanzania.>™®

In contrast, HIV isolates collected from Thailand in the
1990s were dominated by subtype E envelope sequences.’
Once this ‘“‘subtype” was officially recognized as
CRFO1_AE in the late 1990s, many molecular epidemio-
logical surveys confirmed that CRFO1_AE has continued to
predominate the epidemics in Southeast Asia over the past
three decades (reachin% up to almost 82% among HIV-1 in-
fections in the region).'® The spread of CRFO1_AE has been
tracked from Thailand to Vietnam, China, and ultimately a
global dissemination.' '~ However, CRFO1_AE has not
extensively spread within Central Africa, with CRFO1_AE
infection having a prevalence of <1% in nearby Cameroon, '
<4% in DRC,'*'7 <3% in Chad,'®'? <1% in the Republic of
the Congo,zo’22 and 6% in CAR?? in recent studies. However,
the extent to which CRFO1_AE may still be circulating
within recombinant strains cannot be evaluated with sub-
genomic sequences reported in most of these studies.

Both subgenomic sequences and complete genomes have
been used to estimate when CRFO1_AE first emerged in
Africa and became a key Asian strain. Bayesian analysis with
subgenomic sequences estimated the origins of CRFO1_AE
in Central Africa to the 1960s by several models.'* More
recently, analyses with four complete genome sequences
have estimated that CRFO1_AE first emerged in CAR in the
1970s and was introduced in Asia in the early 1980s
(Ref.'*'%). The evolutionary path of CRFO1_AE between
CAR and Asia has not been well characterized due to the
limited number of only four CRFO1_AE complete genome
sequences ever produced from Africa, which could be a re-
flection of its low prevalence.

To address this gap, near-complete genome sequences
were generated from N=13 specimens collected in Camer-
oon and DRC carrying HIV strains identified as CRFO1_AE
by next-generation sequencing (NGS) and subgenomic San-
ger sequencing. Phylogenetic analysis with references from
CAR and Asia indicates that four new Cameroonian
CRFO1_AE strains sequenced herein provide a new molec-
ular link between the two previously well-characterized
major clades.

Materials and Methods
Study subjects

Thirteen plasma specimens were collected between 2001
and 2006 from HIV-1-positive individuals participating in
viral diversity studies in Cameroon and the DRC (Table 1).
The specimens came from blood donors or participants seek-
ing voluntary testing as previously described.'®** The DRC
study was approved by the University of Missouri-Kansas City
Research Board. The Cameroon study was approved by the
Cameroon National Ethical Review Board, the Faculty of
Medicine and Biomedical Science Institutional Review
Boards (IRB), and the Ministry of Health of Cameroon.

Amplification and sequencing

All near full-length nucleotide sequences of HIV-1
(HXB2: 94-9720) were amplified and sequenced from
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“Reference sequences for the Simplot analyses are described in Supplementary Table S2.
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plasma viral RNA by a metagenomic sequencing with spiked
primer enrichment (MSSPE) NGS zlpproach.25 Gaps were
filled in by supplemental Sanger sequencing.'® Briefly, nu-
cleic acid was extracted from plasma according to the man-
ufacturers’ instructions using (i) the EZ1 Advanced XL
system and EZ1 Virus Mini Kit (Qiagen, Hilden, Germany)
for NGS or (ii) the RNA extraction protocol on an m2000sp
system (Abbott Molecular, Des Plaines, IL) for Sanger se-
quencing. For NGS, random hexamer (RH) primers (Life
Technologies) were spiked with HIV-specific primers.*’
These primers were designed from 3,571 reference genomes,
which cover genotypes M, N, O, and P of HIV-1 (Supple-
mentary Table S1). A total of 798 primers of 13 nucleotides
(464 forward and 334 reverse) were ordered and synthesized
by Integrated DNA Technologies, Inc. (IDT, Coralville, I1A).
The HIV RNA extract was mixed with spiked primer (4 uM)
plus RH (0.4 uM) in a 10:1 ratio and heated to 65°C for 5 min.
The reverse transcription master mix (10 mL SuperScript III
buffer, 5mL dNTP of 12.5mM, 2.5mL DTT of 0.1 M, and
1 mL SuperScript III enzyme) was added to each sample and
incubated at 25°C for 5 min, followed by 42°C for 30 min and
94°C for 2min. Generated complementary DNA went
through metagenomic library preparation using Illumina
Nextera XT protocol to be analyzed on a HiSeq instrument
(Illumina). Genome consensus sequences were generated
using CLC Bio and Sanger sequences covering gaps were
merged into the consensus using Sequencher v5.4.1 (Gene-
codes) as previously described.'® All open reading frames
were annotated with SeqBuilder (DNAStar Laservene, v15)
software. The Genbank accession numbers for the 13 HIV-1
genomes are MN116200-MN116212.

Recombination analysis and sequence data

Recombination structures of all thirteen genomes were de-
termined by five different detection methods: (i) REGA sub-
typing tool v3.0 (Ref.?®); (ii) jumping profile Hidden Markov
Model (jpHMM)-HIV?’; (iii) Simplot v3.5.1 (Ref.?®) under
the Kimura 2-parameter model and a sliding window of 200
nucleotides increased by increments of 20 nucleotides;
(iv) nucleotide Basic Local Alignment Search Tool (BLAST)
to search for the most similar sequences; and (v) through
phylogenetic reconstruction against a comprehensive dataset
of 500 HIV-1 whole-genome sequences'® or through. The
whole-genome phylogenetic reconstruction was performed in
Randomized Axelerated Maximum Likelihood (RAXML)*
incorporating the best-fitting model of nucleotide substitution
as determined in important quartets (IQ)-Tree30 and 1,000
bootstrap replicates’' that were used to infer transfer support
for branches in the phylogeny.** The final genome classifica-
tion was defined based on the results of all five methods.

Phylogenetic and phylogeographic reconstruction

Isolates identified as CRFO1_AE in this study were analyzed
against all whole-genome CRFO1_AE sequences in the Los
Alamos National Laboratory (LANL) HIV-1 sequence data-
base (n=382; accessed October 2018). First, we re-subtyped
these reference sequences with REGA v3.0 (Ref.?®) and
jpHMM?” to insure the correct subtype assignment. Sequences
presenting classification discrepancies from the Genbank in-
formation were excluded from the dataset (n=11).
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The final dataset was submitted to a Nextstrain build.*
Nextstrain consists of a suite of tools that take raw sequences
(in fasta format) and associated metadata (e.g., time, country,
publications, authors, and/or journals) as input. In short,
Nextstrain performs a sequence alignment of the input data in
multiple sequence alignment based on Fast Fourier transform
(MAFFT),3 which in turn is used to infer a maximum like-
lihood. For the purpose of this study, the maximum likelihood
(ML) tree topology was inferred in RAXML using the general
time-reversible (GTR)+G+I model of nucleotide substitu-
tion.*® The resulting tree topology is then transformed into a
dated phylogeny where the branches correspond to units of
real calendar time using a least squared dating approach.>® In
turn, the dated phylogeny is used to perform ancestral state
reconstruction to infer the probable location of internal nodes
in the phylogeny using a marginal likelihood approach. Fi-
nally, the time-scaled tree and the spatial reconstruction are
then visualized together in a web browser with auspice.>

Phylodynamic reconstruction

Demographic history of the CRFO1_AE epidemic was ex-
amined under a Bayesian Markov Chain Monte Carlo ap-
proach as implemented in BEAST v.1.8.4 (Ref.’”). First, a
phylogenetic tree of the CRFO1_AE whole-genome sequences
(n=4) was aligned with 371 whole-genome CRFO1_AE ref-
erence sequences from LANL in MAFFT v7.0 (Ref.34). The
subsequent alignment was used to construct an ML tree to-
pology in RAXML v8.0 under the GTR+G+I model of nu-
cleotide substitution and 1,000 bootstrap replicates. The
resulting phylogeny was manually inspected in FigTree®® and
highly monophyletic clades—defined as containing three or
more sequences from the same country and with good branch
support (>0.95)—were pruned with the ape package in R* to
only one sequence, preferably keeping the oldest isolate in the
clade. The pruned phylogeny (N=179) was tested for good
clock-like signal in Tempest v1.5.1 using the sampling dates
and root-to-tip divergence.*® An additional 61 sequences were
removed as outliers resulting in a final R? of 0.903 and a slope
rate of ~3.22x 10~ mutations per site per year, and with an
x-intercept around 1969.7 (Supplementary Fig. S1).

This dataset was submitted to a Bayesian analysis incorpo-
rating the best-fitted nucleotide substitution model (GTR
+4I'+I+F) as determined in IQ-Tree41 with an uncorrelated
lognormal relaxed molecular clock® and various coalescent
tree priors (e.g., skyride, skygrid, and skyline, constant and
exponential growth). Bayes factor comparison between various
coalescent tree priors consistently favored the use of the skyride
coalescent tree prior.*> The molecular clock was calibrated
using the sampling dates of the sequences under a uniform-
distributed prior for the evolutionary rate according to previous
simulations. After 5x 10® steps, convergence was checked us-
ing Tracer v1.6 discarding the first 50% of values for burn-in.**
Following the discarding of the burn-in, the remaining posterior
parameters and trees were used to reconstruct the demographic
growth of the global HIV-1 CRFO1_AE linage through time.

Results
Sequence generation

A set of N=13 specimens with subgenomic sequences
classified as CRFO1 was identified from previous viral
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FIG.1. Schematic representation of jpHMM recombination results for thirteen HIV samples collected between 2001 and 2006
from HIV-1-positive individuals in Cameroon and the DRC samples isolated in the Congo Basin, Africa. Viral subtypes were
denoted by different colors according to the legend. The gray N/A portions correspond to unclassifiable regions. CRF, circulating
recombinant form; DRC, Democratic Republic of the Congo; jpHMM, jumping profile Hidden Markov Model; LTR, long
terminal repeat; N/A, not assigned.
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diversity studies conducted in Cameroon and DRC for
complete genome sequencing. A range of 4.11-5.32 log
copies/ml HIV RNA was detected among samples with pre-
vious viral load results available (N=7). NGS of all 13
samples using the MSSPE method yielded complete or near-
complete genomes of at least 8,800 nucleotides in length. Full
coverage was achieved for N=8 samples and >90% coverage
for N=5 (A1549, 1002-28, 234-40, A1152, and A1188),
which were filled in further by Sanger sequencing. Average
read depths for each genome ranged from 14 to 18,899 x and
the number of reads mapping to the consensus ranged from
1,060 to 1,744,672.

Recombination analysis

Genome-wide recombination analyses of whole-genome
sequences were performed to determine the viral subtype and
to detect evidence of intersubtype recombination. Despite
minor differences, all five methods we employed to charac-
terize the genome profiles of the whole-genome sequences
broadly led to similar results (Table 1). Based on consensus
agreement between the five different methods, we identified
four CRFO1_AE isolates (U7957, U8216, 234-40, and 1002-
28) and six unique recombinant forms (260-27, A1188,
A1549, CG-0422-02V, CG-0427a-02V, and CG-0070-01)
that included portions of genomic regions assigned to
CRFO1_AE (Fig. 1). Of the remaining three whole-genome
sequences, two were classified as CRF02_AG (890-05 and
A1152) and one as belonging to CRF27_cpx (CG-0077-01).
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Phylogenetic and phylogeographic reconstruction

Only CRFO1_AE sequences were submitted to further
phylogenetic analysis. The four CRFO1_AE strains isolated
in this study were aligned to 371 CRF01_AE sequences from
LANL, after a filtering step to achieve a more equitable
temporal and geographic distribution as implemented in
Nextstrain (final alignment; n=358). Our phylogenetic and
evolutionary analysis of near full-length CRFO1_AE se-
quences in Nextstrain indicates that HIV-1 CRFO1_AE arose
in Africa in the early 1970s (1968-1970) (Figs. 2-4). As
expected, our isolates grouped at the base of the tree with four
other samples from Central Africa (three from the CAR and
one from Cameroon) (Fig. 2). This pattern suggests that
Cameroon has a secondary role in the African CRFO1_AE
epidemic and was seeded by Central African viruses around
1974 (1973-1975). The grouping of the four sequences in the
base of the tree suggests that the current epidemic in Africa
was directly derived from the primary CRFO1_AE strains.
The estimated evolutionary rate for this dataset was
1.5% 107 nucleotide substitutions/site/year.

After almost 10 years of localized transmissions, the first
divergence from the African strains was estimated to have
occurred in the early 1980s (1980-1981) by the introduction
of the virus in Thailand. It seems that only one or a few strains
were imported from Africa and reached Asia. Thai sequences
were found to be dispersed throughout the tree, structuring
the basal positions to several clusters (Fig. 2). This pattern
suggests that this lineage is likely to be the ancestor of all

P————————

1970 1975 1980

1985 1990

1995

2000 2005 2010 2015

FIG. 2. Nextstrain maximum-likelihood phylogenetic analysis of CRFO1_AE whole-genome sequences. Tree branches
are colored according to sampling origin. The sequences described in this study are located at the base of the tree identified
by a red contour.
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CRFO1_AE strains in Asia (Fig. 4). Specifically, Thai se-
quences seeded the epidemics in China, Myanmar, the Phi-
lippines, Indonesia, the United States, The United Kingdom,
and Sweden (Fig. 4). The epidemic in China that started in
1984 was driven by multiple independent lineages, most of
them imported from Thailand. Thai sequences fall within the
base of four major Chinese clusters and point to independent
introductions of this strain into China. The Chinese epidemic
was also seeded by strains from Vietnam in the mid-1990s
(Fig. 2). In addition, Chinese sequences were also found
dispersed throughout the tree lying next to Thai sequences
indicating extensive interaction between the two epidemics.
The evolutionary history of the CRFO1_AE strains as they
exited Africa and were introduced to Asia, Europe, and the
Americas is illustrated in an interactive phylogenetic tree,
map, and timeline at https://nextstrain.org/community/
EduanWilkinson/hiv-1_crfOl1.

Phylodynamics of CRFO1_AE

We further investigated the past population dynamics of
CRFO1_AE using 179 sequences under a Bayesian skyride
model (Fig. 3). Consistent with the ML results, we estimated
the time of the most recent common ancestor of CRFO1_AE to
be around 1971 (95% highest posterior density (HPD): 1970
1973) (Supplementary Fig. S2). The estimate of the effective
number of HIV-1 infections through time shows an exponen-
tial increase in the viral population between 1971 and 1980,
period in which the virus was still circulating in Africa (Fig. 4).
The introduction of CRFO1_AE in Asian countries is followed
by a short decrease in the CRFO1_AE population probably due
to the unsustained number of dead-end infections (Figs. 3 and
4). After 1985, the number of new CRFO1_AE infections ex-
ponentially increases, reaching a plateau after the 2000s. More
recently, we observed a decrease in these estimates; however,
the 95% Bayesian confidence interval prevents us to con-
firming this hypothesis.

Discussion

The four African CRFO1_AE genomes presented in this
study provide further resolution for the epidemiology of the
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CRFO1_AE clade and provide a new genetic link between the
African and Asian CRFO1_AE clades of the HIV-1 pan-
demic. First, phylogenetic analysis with the new Camer-
oonian CRFO1_AE strains confirmed the African origin of
CRFOl_AE.lz’14 Likewise, molecular dating with these
strains was consistent with previous estimates of emergence
of CRFO1_AE in Africa in the early 1970s and in Asia in the
early 1980s (Refs.'>'¥). CRFO1_AE appears to have origi-
nated in CAR where it spread to Cameroon and other coun-
tries in central Africa, although limited sampling from
African countries prevents further resolution of the spread of
CRFO1_AE in the region. After ~10 years of localized
transmission in central Africa, CRFO1_AE spread to Thai-
land and onward to other Asian countries (Fig. 4). These
results suggest a scenario of multiple introductions into epi-
demiologically linked, high-risk groups, primarily hetero-
sexual, people who inject drugs and man who have sex with
man related clusters.

The four CRFO1_AE genomes from Cameroon were iden-
tified among a larger set of N=13 genomes that were previ-
ously classified as CRFO1_AE based on sequencing of smaller
subgenomic regions. However, the detection of recombination
in the majority of these strains (N=9) highlights the limita-
tions of subgenomic sequences for classifying strains. Sur-
prisingly, three recombinant genomes were identified among
these that were classified as CRF02_AG or CRF27_cpx
(Table 1). This finding is likely explained by similarities in the
regions found in both CRFO1_AE and CRFO1_AG, as well as
the presence of CRFO1_AE in the complex recombinant pat-
tern of CRF27_cpx.**>*® These unexpected classifications
confirm that full-length sequences provide the most accurate
classification. Furthermore, the identification of mostly re-
combinant genomes in this dataset indicates that reliance upon
subgenomic sequences alone can lead to underestimation of
the amount of HIV recombination in a population. This is
especially relevant for estimating the true prevalence of
CRFO1_AE, which could be skewed by subgenomic se-
quences from unrecognized recombinant genomes. Although
CRFO1_AE is rare in the Congo Basin, it is likely that its
prevalence is actually much lower than has been estimated due
to subgenomic sequence limitations. Interestingly, CRFO1_
AE has recently been found at dramatically higher rates in
Kenya in 2008 and 2015 (14%-25%),*"*® although with
subgenomic sequence classifications. Whether these strains
represent a resurgence of CRFO1_AE or a CRFOI_AE-
containing recombinant in East Africa remains to be seen.

The phylodynamic reconstruction with a skyride tree prior
and the addition of more African sequences led to a more
refined demographic reconstruction of this HIV-1 clade. The
reconstruction suggests a small decrease in the effective
population size in the early 1980s with another dip in the mid
1990s. The first followed the transmission from Africa to
Asia and may relate to this migration event, while the second
dip in the effective population size may very well be due to
behavioral changes in Thailand at the outbreak of the epi-
demic in that country.*

We anticipate that further sampling and sequencing of
global CRFO1_AE strains will provide additional resolution
for the molecular and geographical epidemiology presented
herein. To accommodate these future updates, the interactive
CRFO1_AE Next Strain phylogenetic tree, map, and timeline
provide an ongoing resource for tracking this HIV clade. As
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FIG. 4. Nextstrain geographical view of CRFO1_AE temporal dynamics. The geographical locations of isolates at each
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more strains are sequenced, they can easily be merged with
the CRFO1_AE Next Strain dataset to enable comprehensive
monitoring of this clade in real time.

Sequence Data

The Genbank accession numbers for the 13 HIV-1 ge-
nomes are MN116200-MN116212.
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