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ABSTRACT
◥

Immunotherapy has failed to achieve durable remissions
in advanced prostate cancer patients. More potent T-cell–
redirecting strategies may be needed to overcome the immunolog-
ically exclusive and suppressive tumor microenvironment. Clinical
trials are underway, seeking to define the optimal target for T-cell
redirection, such as PSMA, PSCA, or STEAP-1, as well as the
optimal strategy, with CAR or bispecific antibodies. As results

continue to emerge from these trials, understanding differential
toxicity and efficacy of these therapies based on their targets and
functional modifications will be key to advancing these promising
therapies toward clinical practice. This review provides a unique
depth and breadth of perspective regarding the diverse immuno-
therapy strategies currently under clinical investigation for men
with advanced prostate cancer.

Introduction
Metastatic castration-resistant prostate cancer (mCRPC) remains a

lethal disease, causing>30,000deaths in theUnited States each year (1).
Although many new life- prolonging treatments have been developed
over the last decade, all of these eventually fail due to the development
of resistance, and durable remissions remain rare beyond first-line
therapy. Strategies involving immune-checkpoint inhibitors have been
minimally successful (2, 3), and the autologous activated cellular
therapy Sipuleucel-T is the only immunotherapeutic that has shown
a survival benefit in mCRPC (4). Except for some subgroups yet to be
fully defined, mCRPC is regarded as a “cold” tumor characterized by
sparse infiltration of lymphocytes and dominance of suppressive
immune components including myeloid-derived suppressive cells (5).
Thus, additional immunotherapy modalities are needed, and powerful
cellular strategies may be key to inducing inflammation in the tumor
microenvironment (TME).

Novel immunotherapies that harness the redirection of T lympho-
cytes against cancer have recently garnered significant attention. In
particular, chimeric antigen receptor-modified (CAR) T cells and
bispecific antibodies (e.g., bispecific T-cell engagers, referred to as
BiTEs), which both utilize single-chain variable fragment (scFv)
technologies for the recognition of tumor-associated antigens

(TAA), have demonstrated therapeutic promise in hematologic
malignancies. Although CAR-T-cell therapies entail an engineered
chimeric receptor comprised of an extracellular scFv TAA recog-
nition domain and intracellular CD3z and costimulatory domains,
BiTE therapies link a TAA scFv with an anti-CD3 scFv, thereby
facilitating T-cell–mediated antitumor responses. Importantly,
through these novel T-cell redirection approaches, cytolytic T-cell
activity may be stimulated in an MHC-independent manner, thus
obviating the need for conventional TCR-MHC signaling that may be
severely impaired in the “cold” TME of mCRPC.

Both BiTE and CAR-T-cell therapeutic strategies have demonstrat-
ed compelling and durable clinical outcomes in a variety of treatment-
refractory hematologic malignancies, resulting in several FDA
approvals (6–8). More recently, based on this initial success, these
T-cell redirection approaches have additionally been applied to the
treatment of advanced solidmalignancies (9, 10). BothCAR-T-cell and
BiTE therapies have been an active area of investigation for the
treatment of mCRPC. Indeed, mCRPC offers many potential advan-
tages for the successful development of T-cell–redirecting therapies,
including a large unmet clinical need and the availability of a variety of
putative TAAs. However, there are several disease-specific aspects of
prostate cancer that warrant consideration when developing these
therapies. These considerations include the appropriate selection of
TAA targets, which vary in their prostate cancer specificity, potential
for off- tumor toxicity, functional significance, heterogeneity of
expression, and amenability to noninvasive detection. Additionally,
the bone-predominant and immune-inhibitory nature of prostate
cancer metastases imposes both physical and immunologic barriers
to T-cell therapies. Finally, the typical elderly male mCRPC popula-
tion, oftenwith comorbidmedical conditions,may increase the risk for
treatment-related toxicities and issues regarding optimal patient
selection.

Given the recent high interest in the development and clinical
testing of T-cell–redirecting therapies for prostate cancer, this review
focuses on BiTE and CAR-T therapies currently under investigation
for the treatment of mCRPC. We will specifically discuss current
antigen targets, observed barriers to success, and potential future
approaches to improve durable remissions for these therapies in
mCRPC. In particular, we will review the more well-established
cell-surface prostate adenocarcinoma targets, including prostate stem
cell antigen (PSCA), prostate-specificmembrane antigen (PSMA), and
six-transmembrane epithelial antigen of the prostate (STEAP-1), as
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well as implications for future neuroendocrine prostate cancer (NEPC)
targets including carcinoembryonic antigen-related cell adhesion
molecule 5 (CEACAM5, also known as CEA) and Notch ligand
delta-like protein 3 (DLL3).

Prostate Tumor-Associated Antigens
for Redirected T-Cell Therapies
Prostate stem cell antigen (PSCA)

PSCA is a cell-surface glycosylphosphatidylinositol (GPI)-anchored
glycoprotein that belongs to the Thy-1/Ly-6 family, which was iden-
tified in 1998 as an overexpressed gene in prostate cancer cells and
localized to chromosome 8q24 (11). PSCA is expressed in up to 94% of
prostate primaries and 87.5% to 100% of prostate cancer metastases
with moderate to strong intensity immunohistochemical staining in
84%, weakly positive staining in 17%, and negative staining in
6% (12, 13). PSCA has additionally been noted to be expressed in
urothelial, pancreatic, renal cell and non–small cell lung can-
cers (14, 15) with limited normal tissue expression in the urinary
bladder, kidney, skin, esophagus, brain, and stomach (16–18). A
summary of PSCA expression is presented in Table 1, along with the
other prostate cancer TAA that are addressed in this review.

PSCA expression in tumors correlates with disease progression and
prognosis in prostate cancer (12, 19–21). For example, PSCA mRNA
levels in peripheral blood are also associated with high-grade and
extra-prostatic disease (22) and has predictive value for biochemical
recurrences and overall survival (23). Therefore, PSCA has been
explored as a PET imaging target for cancer detection, staging, and
monitoring (24).

The biological function of PSCA is not entirely known; in some
studies, PSCA abrogation in cancer cells reduces metastatic
potential (25–27), whereas other studies suggest that PSCA sup-
presses metastasis (28). It is not entirely understood if PSCA is
controlled by AR signaling, but studies show androgen-responsive
elements in the PSCA gene and the potential for androgen-
mediated PSCA expression (29).

Important to immunotherapy considerations, PSCA is immuno-
genic. PSCA-derived peptides were shown to induce cytotoxic T cells
in HLA-A24þ prostate cancer patients (30). Preclinical studies with
PSCA-based vaccines demonstrated long-term protective immunity,
without evidence of autoimmunity, in prostate cancer–prone trans-
genic adenocarcinoma mouse prostate (TRAMP) mice mediated in
part by cytotoxic T cells (31). Dendritic cell–based PSCA vaccine
approaches yielded similar preclinical antitumor responses (32). A

phase I/II trial recently demonstrated safety and immunogenicity of a
prostate cancer–specific self-adjuvanted mRNA vaccine with multiple
antigens, including PSCA, further supporting the immunogenicity of
PSCA (33).

PSCA can also be targeted using MHC-independent T-cell–
engineering therapies due to its cell-surface expression profile.
Early attempts of engineered T cells showed in vitro targeting of
PSCAþ prostate and pancreatic cancer cell lines using first-
generation chimeric antigen receptors (CAR) strategies (34, 35).
Hillerdal and colleagues demonstrated antitumor efficacy and pro-
longed survival of mice bearing subcutaneous PSCAþ tumors that
were treated with third-generation (containing costimulatory
domains of CD28 and OX40) PSCA-CAR T cells (36). Superior
antitumor activity of CD28 costimulatory domain-containing sec-
ond-generation PSCA-CAR T cells, compared with third-
generation PSCA-CAR T cells, were shown in human xenograft
models of pancreatic cancer (17). Subsequent studies further opti-
mized a second-generation CAR-T- cell containing a 4-1BB costi-
mulatory domain for improved tumor selectivity, potent antitumor
activity, and bone-homing ability of PSCA-CAR T cells in human
xenograft models of bone metastatic prostate cancer (37).

Our more recent study using a fully immunocompetent mouse
model of PSCAþ prostate and pancreatic cancers offered the ability to
assess both safety and efficacy of PSCA-CAR T cells. Murad and
colleagues demonstrated safety and durable antitumor immune
responses with PSCA-CAR T cells (38), even with PSCA expression
in various normal tissues including the prostate, bladder, and stomach.
Importantly, these preclinical studies also highlight the potential for
engaging endogenous immunity in targeting PSCAþ and PSCA�

prostate tumors. Two clinical trials of PSCA-targeted CAR-T cells
are under way; a summary of ongoing CAR-T and BiTE antibody
studies is presented in Table 2.

Other T-cell–redirecting approaches have been preclinically eval-
uated that target PSCA, including bispecific T-cell engagers. CD3-
PSCA bispecific antibodies have demonstrated potent and selective
CD4þ and CD8þ cytolytic T-cell activity in cell culture systems (39).
Additionally, various formats of novel bispecific antibodies and anti-
body-based modular targeting of PSCA have shown efficient cell lysis
with an ability to further redirect to different TAAs (40). However,
bispecific modalities targeting PSCA have not yet been investigated
clinically.

Prostate-specific membrane antigen (PSMA)
For nearly three decades, PSMA, a type II transmembrane protein,

has been explored as a biomarker of disease activity, as a method for
in vivo imaging, and as a disease-specific therapeutic target in prostate
cancer. The PSMAgenewas cloned in 1993 and found to encode a 750-
amino acid transmembrane protein (2, 3). The extracellular binding
domain of PSMA forms a dimer that binds to glutamate and gluta-
mate-like structures and acts as a glutamate carboxypeptidase. Under
normal physiologic conditions, PSMA is found with variable low
expression in the prostate gland (secretory acinar epithelium), kidney
(proximal tubules), nervous system glia (astrocytes and Schwann
cells), salivary glandular cells, and the small intestine (jejunal brush
border; ref. 41). However PSMA is highly expressed in malignant
prostate tissue and directly correlates with both advancing prostate
cancer stage/metastases and higher histologic grade (42). PSMA
upregulation may serve as a marker for prostate cancer progression
and has been independently associated with prostate-specific antigen
(PSA) recurrence following local therapy and with the development of
the castration-resistant phenotype (43).

Table 1. TAAs and their expression in type of prostate cancer
versus their normal distribution.

Tumor-associated
antigen Cell/tissue distribution

PSCA Prostate adenocarcinoma, urothelial, skin,
esophagus, neuronal, stomach

PSMA Prostate adenocarcinoma, prostate acinar
epithelium, proximal tubular cells, glial cells,
jejunal brush border cells, salivary glandular cells

STEAP-1 Prostate adenocarcinoma, bladder, ovary, bone
marrow, cardiac, respiratory

DLL3 Neuroendocrine prostate cancer (NEPC), neurons,
pancreatic islet cells, pituitary

CEA NEPC, urogenital, respiratory, gastrointestinal

T-Cell Immunotherapy for Prostate Cancer
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Due to its high expression and membrane-bound antigen, PSMA
has been proposed as an ideal TAA for targeted prostate cancer
therapies. Notably, the expression of PSMA on tumor neovascula-
ture-rich malignancies (ex: renal cell carcinoma and adenoid cystic
carcinoma) raise the potential for non–prostate PSMA-directed cancer
therapies (44, 45). Although the exact functional significance of PSMA
is currently unknown, its extracellular binding domain possesses folate
hydrolase activity, and increased PSMA expression may confer a
proliferative advantage by increasing the levels of extracellular folate
available for prostate cancer cellular import (46). It was recently
demonstrated that PSMA interacts with the scaffolding protein recep-
tor for activated C kinase 1 (RACK1), disrupting signaling between the
b1 integrin and insulin-like growth factor type 1 receptor (IGF-1R)
complex to the mitogen-activated protein kinase (MAPK) pathway,
potentiating protein kinase B (AKT) pathway activation instead and
thus controlling primary tumor advancement (47). Targeting PSMA-
dependent signaling that drives tumor progression may provide a new
treatment paradigm due to inhibition of both progression and vas-
cularization, as PSMAblockadewith the inhibitor 2-PMPAdiminishes
integrin activation, endothelial cell adhesion, and angiogenesis (48).

The advent of urea-based small-molecule PSMA ligands has her-
alded an era of PSMA PET imaging and theranostics. Both 68Ga-
labeled (ex: Ga-68 PSMA-11) and 18F-labeled (ex: DCFPyL) PSMA
ligands have demonstrated compelling test characteristics for the
detection of prostate cancer in men with biochemical recurrence and
negative or equivocal conventional imaging, even in patients with low
PSA values (49–51). PSMA imaging has paved the way for a ther-
anostic strategy for men with mCRPC—confirming expression of the
target antigen radiographically followed by administering a treatment
dose radiopharmaceutical. Radiolabeled PSMA ligands (177Lu-PSMA-
617) have demonstrated significant antitumor responses, including in
cohorts of treatment-refractory mCRPC patients (52, 53). Recently, a
large phase III randomized trial demonstrated that 177Lu-PSMA-617
plus standard-of-care treatment improved progression-free and over-

all survival when compared with standard-of-care treatment alone for
men with mCRPC and at least one PSMA PET-avid lesion (54).
However, the predictive value of baseline PSMA PET avidity for
benefit remains unknown.

A BiTE against PSMA was initially developed in a standard for-
mulation requiring continuous intravenous infusion (AMG212 or
pasotuxizumab). A phase I trial (NCT01723475) involving 47 patients
showed PSA declines, including two long-term therapeutic
responses (55). A reformulation with half-life extension (AMG160)
has also been tested in a phase I trial (NCT03792841). This agent
yielded PSA50 reductions in 6 of 24 evaluable patients as well as 1
objective radiographic response among 18 patients with measurable
disease (56). Two subjects did experience 1 year of cancer control.
Toxicity was largely predictable, including cytokine release syndrome
in the majority of patients and dry mouth in 28%. Additionally, a
PSMA-targeted CAR-T was tested in 5 subjects with mCRPC and
evoked PSA declines in 2 men (57). However, the study was stopped
due to lack of engraftment. Although sialotoxicity is common with
177Lu-PSMA617 and with AMG160, this has not been reported with
PSMA-targeted CAR-T, raising the possibility that on-target off-
tumor toxicities may differ between modalities. Ongoing PSMA-
targeted immunotherapy trials are summarized in Table 2.

Six-transmembrane epithelial antigen of the prostate-1
(STEAP-1)

STEAP-1 is part of the STEAP family that act as ion channels at cell
junctions and serve ametalloreductase role (58). Importantly, STEAP-
1 has been shown to be overexpressed in prostate cancer as well as in
other hematologic and solid tumors. It is expressed in low levels in
some normal tissues such as bladder, ovary, marrow, heart, and
lung (59). In terms of diagnostic value of STEAP-1, 89Zr-DFO-
MSTP2109A is a radiolabeled antibody targeting STEAP-1 that was
well tolerated in studies and showed excellent visualization in mCRPC
sites including bone and soft tissue, therefore establishing a potential

Table 2. List of past, current, and future trials for CAR-T and BiTE therapies in prostate cancer.

NCT# Biological/drug name Targets Status Phase

CAR-T
NCT04227275 CART-PSMA-TGFbRDN PSMA Active Phase I
NCT03873805 Autologous anti-PSCA-CAR-4–1BB/TCRzeta-CD19t-expressing T lymphocytes PSCA Recruiting Phase I
NCT04053062 LIGHT-PSMA-CART PSMA Recruiting Phase I
NCT01140373 Engineered autologous T cells PSMA Active Phase I
NCT04249947 P-PSMA-101 CAR-T cells PSMA Recruiting Phase I
NCT04107142 NKG2DL-targeting chimeric antigen receptor–grafted gamma delta T-cell NKG2DL Not yet recruiting
NCT04633148 UniCAR02-T-pPSMA PSMA Recruiting Phase I
NCT02744287 BPX-601 PSCA Recruiting Phase I
NCT04429451 4SCAR-PSMA T cells PSMA Recruiting Phase I
BiTE
NCT04104607 CC-1 PSMA x CD3 Recruiting Phase I
NCT03406858 HER2 bi-armed activated T cells HER2 x CD3 Recruiting Phase II
NCT04702737 AMG 757 DLL3 x CD3 Not yet recruiting Phase I
NCT03792841 AMG 160 PSMA x CD3 Recruiting Phase I
NCT02262910 ES414 PSMA x CD3 Completed Phase I
NCT00635596 MT110 EpCAM x CD3 Completed Phase I
NCT03927573 GEM3PSCA PSCA x CD3 Recruiting Phase I
NCT01723475 BAY2010112 PSMA x CD3 Completed Phase I
NCT04221542 AMG 509 STEAP-1 x CD3 Recruiting Phase I
NCT04631601 AMG 160 PSMA x CD3 Not yet recruiting Phase I
NCT04424641 GEN1044 5T4 x CD3 Recruiting Phase I/II
NCT03517488 XmAb20717 PDL1 x CTLA4 Recruiting Phase I
NCT03849469 XmAb22841 CTLA4 x LAG-3 Recruiting Phase I
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role as a predictive biomarker for STEAP-1–directed therapy (60).
DSTP3086S, a STEAP-1–targeting antibody conjugated with an anti-
mitotic agent monomethyl auristatin E, showed some antitumor
activity in mCRPC with an acceptable safety profile in a phase I
study (61).

For immunotherapy considerations, STEAP-1 is also immunogen-
ic (62, 63). STEAP-1–derived peptides were shown to induce cytotoxic
CD8þ T cells in an HLA-A�0201–restricted manner, which were
shown to be reactive in non–small cell lung cancer and prostate cancer
patients ex vivo (64).

Vaccine approaches have also demonstrated immunotherapy
potential of targeting STEAP-1 (64, 65). As STEAP-1 is primarily
expressed at the cell surface, BiTE strategies are also being explored
(Table 2).

Carcinocembryonic antigen (CEA) and delta-like protein 3
(DLL3)

Although less is known about immunotherapeutic approaches
for the treatment of NEPC, recent studies have identified cell-
surface targets that may be used to develop CAR-T-cell and BiTE
therapy strategies. Most notable has been the identification that
human carcinoembryonic antigen-related cell adhesion molecule 5
(CEACAM5, also known as CEA) is highly expressed in a large
subset of NEPC (66). Lee and colleagues recently demonstrated
in vitro support for the rational targeting of NEPC with CAR-T

cells. In addition, there have been recent promising in vitro studies
showing successful application of anti-CEA CAR-T cells in CEA-
positive solid tumors, further supporting CEA as a potential target
for NEPC (67).

Another candidate for immunotherapeutic targeting of NEPC is
delta-like protein 3 (DLL3), which was originally identified as an
overexpressed surface protein in small cell lung cancer. Recent studies
have demonstrated that DLL3 is also highly expressed in NEPC (68)
and may also be therapeutically evaluated as both a BiTE (69) and
CAR-T-cell strategy for late-stage prostate cancer patients. In fact,
DLL3 has been studied extensively as a possible therapeutic target for
small cell lung cancer with ongoing phase I trials involving AMG 757
(an anti-DLL3 x CD3 bispecific antibody) and AMG 119 (CAR-T cells
directed against DLL3; ref. 69). Although the field is at its infancy in
realizing the potential for T-cell–redirecting therapies in treating
NEPC, this area of research is likely burgeoning in the coming years,
andmay provide for an arsenal of cellular immunotherapy approaches
in targeting advanced heterogeneous prostate cancers.

Advantages and Disadvantages of
T-Cell–Redirected Therapies for
mCRPC

A summary of the mechanism of action of BiTE antibodies and
CAR-T cells is presented in Fig. 1.
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Figure 1.

Mechanisms of action of BiTE antibody (A, B) and CAR-T (C, D) therapies.
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CAR T-cell therapy in mCRPC
The transformative promise of CAR-T-cell therapy relates to its

unique ability to achieve durable clinical remissions for advanced
malignancies following a single administration. Indeed, successful
in vivo expansion of adoptive cell transfer raises the potential for
long-term engraftment and antitumor activity (70). Treatment-related
factors associatedwith long-termpersistence and clinical remissions in
patients with hematologic malignancies treated with CD19-directed
CAR-T-cell therapy have included increased peak expansion and
immunophenotypic signatures of early memory T-cell differentia-
tion (71). An early stem cell memory differentiation state may offer
enhanced cell persistence, and the opportunity for a perpetual source
of tumor-reactive T cells though their specificity may be limited by
TAA expression heterogeneity. Notably, however, the factors required
for the optimal expansion, persistence, and bioactivity in solid tumors,
including prostate cancer, remain unknown, and recent solid malig-
nancy experiences have lagged behind those in hematologic cancers,
which provide better opportunity for high levels of antigen stimulation
and more permissive TME.

One aspect of the prostate cancer TME that may limit CAR-T
efficacy is the high level of TGFb, which inhibits T-cell–mediated
immunity. In preclinical studies, the antitumor potency of PSMA
CAR-T cells could be augmented by the coexpression of a domi-
nant-negative TGFbRII (TGFbRDN). CAR-T cells engineered to
express TGFbRDN (CART-PSMA-TGFBRDN) exhibited increased
proliferation, enhanced cytokine secretion, resistance to exhaustion,
long-term in vivo persistence, and the induction of tumor eradi-
cation in aggressive human prostate cancer mouse models (72). In
addition, prostate tumor–engrafted mice treated with CART-
PSMA-TGFBRDN had significantly higher levels of high-potency
central memory CD8þ T cells, compared with mice treated with
PSMA CAR-T cells. Although this approach is highly promising,
clinical activity has only been observed following infusion of a high
number of CART-PSMA-TGFBRDN cells and is tempered by the
concomitant induction of cytokine release syndrome, similar to
what is observed with CD19-directed CAR-T cells for leukemia.
Thus, new strategies are required to improve the persistence of these
cells in the toxic TME (Fig. 2), while avoiding dose-limiting toxicities.

CAR T-cell therapy
in advanced prostate

cancer

Tumor microenvironment
(TME)

Inhibition or deletion Reduced nutrient supply Stromal barrier

Bone metastasis

Intrinsic T-cell defects

Senescence

Inhibitory receptor
upregulation

Self-
renewal
capacity

CAR T cell

A

B

O2

TGFβ

O2

Immune cells:

Cytokine-
mediated suppression

PD-1/PD-L1-
mediated inhibition

CAR T-cell apoptosis

Cancer cells

CAFs

Stroma

Diverse immune
cells

Exhausted/
dysfunctional CAR T

cells

Red blood
cellVessels

A) Attracted to cancer
cell signals

B) Migrate along ECM
and unable to reach
tumor

↑ Hypoxia

↑ Metabolic stress/deficiency
• ↑ Arginase
• ↑ Nitric oxide synthase
• ↑ Indoleamine 2,3-dioxygenase

↑ CAR T-cell dysfunction

↓ “Stemness” and/or
central memory functions

PD-1 CTLA-4

Figure 2.

Immunosuppressive barriers to CAR T-cell function in advanced (metastatic) prostate cancer. Recent studies, including those discussed in this review, suggest that
both tumor- and T-cell–intrinsic factors could hamper the efficacy of CAR T cells in prostate cancer. Barriers include elaboration of immunosuppressive cytokines
(e.g., TGFb), increased expression of inhibitory ligands (e.g., PD-L1), apoptosis of CAR T cells, andmetabolic stress operative in the TME. A formidable stromal barrier
may result in CART-cell and bystander immune cell migration along the protumor extracellularmatrix (ECM), instead of infiltration into the tumor bed. T cell–intrinsic
defects, including replicative senescence, inhibitory receptor upregulation/exhaustion, and reduced earlymemory T-cell function,may also prevent CAR T cells from
eliciting an effective antitumor response.
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Even if trafficking and infiltration are successful, T cells can become
dysfunctional due to a hostile TME characterized by the presence of
soluble inhibitory factors and cytokines, as well as suppressive immune
cells or tumor cells that secrete these mediators and overexpress
inhibitory ligands. For instance, tumor-infiltrating lymphocytes (TIL)
in prostate cancer appear to be defective, in part due to the presence of
high levels of arginase, nitric oxide synthase, and indoleamine 2,3-
dixoygenase (IDO; refs. 73, 74). IDO inhibitors and other specific
combination strategies to overcome the unique TME represent a
possible path forward to enhance CAR-T activity in prostate cancer.
Even when CD8þ T cells are effective in mediating tumor cell lysis, the
localization of cytotoxic T lymphocytes (CTL) within prostate tumors
is modest relative to the infiltration of these tumors with myeloid-
derived cells (75). The immunosuppressive TME formed by myeloid-
derived cells (PMN-MDSC/neutrophils, TAMs, mMDSCs, and sup-
pressive dendritic cells) hampers antitumor immunity and effective
treatment in prostate cancer, and this is supported by clinical evi-
dence (76). T-cell–intrinsic defects, such as upregulation of inhibitory
receptors (e.g., PD-1 and CTLA-4), a reduction in “stemness”/self-
renewal capacity, as well as impaired central memory functions,
increased apoptosis sensitivity and augmented replicative senes-
cence are also major barriers to the success of CAR-T cell thera-
py (77, 78). Accordingly, checkpoint blockade therapy combined
with targeted agents that inhibit MDSCs without impacting T-cell
function results in robust immunotherapy of mCRPC (79). Another
issue of the hostile TME is the accumulation of prostate cell
secretion products that can be inhibitor to T cells. In particular,
the polyamine spermine has been shown to have immunosuppres-
sive effects on T cells including downregulation of cytokine secre-
tion and decreased cytotoxic activity (80, 81).

It has recently been shown that conditioning chemotherapy, com-
monly referred to as “lymphodepletion,” plays a critical role in
modulating the TME for CAR-T cell effect. In particular, cyclophos-
phamide administration increased intratumoral PSCA-targeted CAR-
T cell accumulation and expansion in vivo (38). Gene ontology
enrichment analysis identified T-cell migration and IFNg production
as key processes enhanced by cyclophosphamide pretreatment. In
addition, Alzubi and colleagues showed significant inhibition of tumor
growth in prostate cancer xenograft models when they were treated
with PSMA-targeted CAR-T cells in combination with low-dose
docetaxel, compared with each component individually (82). Further
work will elucidate which immunosuppressive components these
chemotherapy regimens help to overcome, which will inform explo-
ration of additional strategies to modulate TME for enhanced success
with cellular immunotherapy. However, conditioning chemotherapy
regimens are not without their own side effects including myelosup-
pression, leading to potentially life-threatening infections (83). Study
of CAR-T cells alone, without conditioning chemotherapy, and vig-
ilance toward the contribution of chemotherapy to the overall toxicity
of the treatment will be keys to maximizing patient safety.

Finally, important practical and toxicity considerations must be
addressed during the development of CAR-T therapies in advanced
prostate cancer. The collection, manufacture, release testing, and
administration of autologous CAR-T therapies pose limitations to
patient selection in prostate cancer, particularly when heavily pre-
treated patients may develop rapid disease progression. In addition,
the unpredictable and potentially severe treatment-related toxicities
associated with CAR-T therapy (84) raise concerns in an elderly
prostate cancer population. Similar to the experience with anti-CD19
and other CAR-T therapies for hematologic malignancies, the solid
tumor experience to date has reported high-grade cytokine release

syndrome (CRS), neurotoxicity (ICANS), on-target/off-tumor effects,
and severe allergic reactions (85, 86). Moreover, in the mCRPC
experience to date, the reported time course for onset of high-grade
CRS, neurotoxicity, and other severe inflammatory events has varied
(within 6 hours of infusion to several weeks after infusion), which may
limit the ability to reduce inpatient and outpatient observation peri-
od (87).Additionallymacrophage activation syndromehas been a serious
toxicity in prostate cancer CAR-T trials (86), but can be abrogated,
indicating a need for highly specialized treatment teams in order to
optimize patient safety, especially during early-phase trials. Moving
forward, the development of predictive models for CAR-T–related CRS
and other toxicities, using disease-related variables and early cytokine
inputs,may provide needed guidance for prostate cancer–specificCAR-T
toxicity identification and management.

BiTE therapy
Bispecific antibody therapies, including BiTEs, have seen an explo-

sion of clinical development over the past several years (88). A major
advantage of BiTE therapy is the fact that it is not an individually
produced cellular product, making it easier to scale for widespread
use (89). Another advantage perhaps is the different tumor penetrating
capabilities of antibody therapies as compared with cellular therapies.
It is likely that BiTEs arrive at the tumor site either through direct
biodistribution to tumors or through “backpacking” via TILs. BiTE
therapies also differentiate from CAR-T cells in the kinetics and
severity of CRS, which have been relatively predictable and manage-
ablewithmitigation strategies andmay result in less need for ICU-level
care or tocilizumab administration (90).

A major disadvantage of BiTE antibody therapy is that, in its more
common format, it requires repeated dosing either weekly or bimonth-
ly, though this is feasible and preferable to continuous infusion.
Although toxicity is predictable, the frequency and severity of CRS
seen with AMG160, for instance, necessitated dexamethasone pre-
medication for the first several doses (56). There is concern that
steroids may blunt the full potential of a T-cell–mediated antitumor
response (91). Furthermore, efficacy has been correlated to the level of
TILs, and therefore success may require an already immunologically
“warm” tumor. And finally, BiTE antibodies may also generate anti-
drug antibodies; the extent to which this occurs and how much this
limits efficacy remains to be determined (56).

Future Directions
Based on our early experiences, it is likely that combination

therapies will be needed to induce significant and durable remissions
with solid tumor T-cell–redirected therapies. These combination
strategies will require identification of resistance mechanisms, ideally
frompatient blood and biopsy samples, though preclinicalmodelsmay
be helpful in preliminary mechanistic studies. For instance, adding
immune-checkpoint inhibitors would be considered if there is evi-
dence of T-cell exhaustion in patient samples after exposure to a
T-cell–redirected therapy, whereas something to reverse the immu-
nosuppressive TME and promote tumor infiltration of T cells in
advance of CAR-T-cell or BiTE therapy may be required if inadequate
trafficking of T cells into the tumor is identified. Additionally, struc-
tural modifications to circumvent stromal barriers may be needed to
enhance antitumor activity of CAR-T cell therapies. For example,
CAR-T cells redirected towardfibroblast activation protein-a, which is
highly expressed on cancer-associated fibroblasts, demonstrated target
cell lysis and therapeutic synergywith TAA-redirected CAR-T cells for
solid tumors (92). Additionally, CAR-T cells engineered to express
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heparanase, which is involved in the degradation of heparan sulfate
proteoglycans within the extracellular matrix, aided TILs and antitu-
mor activity (93).

Additionally, heterogeneity of neoantigen expression or dediffer-
entiation is often seen in late-stage or heavily pretreated mCRPC.
Epigenetic studies have identified differences in tumor RNA splicing
among men of differing ethnic backgrounds (94), which may lead to
racially described differences in neoantigen expression and outcomes,
but it is likely that specific molecular diagnostics to characterize an
individual’s expression of the target antigen will be needed to enrich
clinical trials to maximize benefit. Multitargeting approaches may also
be required to account for tumor antigen heterogeneity; future strat-
egies include next-generation CAR-T cells designed to target two or
more antigens simultaneously (i.e., tandem scFvs on CARs, multiple
BiTE coinfusions), or BiTE-secreting CAR-T cells (95). There is also
increased NEPC after the application of more potent antiandrogen
therapies. This has been noted incidentally on some on-study and
posttreatment biopsy samples in our experience, which makes dual
targeting of traditional plus neuroendocrine antigens attractive.

As discussed extensively in this review, novel immune therapies
provide a promising new avenue of treatment for advanced prostate
cancer with the possibility of sustained, durable responses. Further
modifications to CAR-T cells, or the addition of adjunctive therapies,
may be needed to overcome the immune-suppressive microenviron-
ment and physical barriers unique to prostate cancer. Although
preclinical models can reveal potential BiTE and CAR-T-cell poten-
cy-enhancing or toxicity-mitigating strategies in the presence of a
target antigen-expressing tumor, we acknowledge that there are many
limitations of preclinical models, and these findings therefore may not
translate fully into improved activity during future clinical applica-
tions. Well-defined toxicity management protocols will be crucial in
order for these treatments to be offered more broadly. Certification or
at least robust training will be needed to maintain safety of these

therapies and even regionalization to specialized center may end up
being necessary to ensure their proper use. Despite all of this, we are
optimistic that these therapies may become a significant therapeutic
advance in the future.
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