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Abstract: The feasibility of near-infrared spectroscopy (NIR) to detect chlorogenic acid, luteoloside
and 3,5-O-dicaffeoylquinic acid in Chrysanthemum was investigated. An NIR spectroradiometer
was applied for data acquisition. The reference values of chlorogenic acid, luteoloside, and 3,5-O-
dicaffeoylquinic acid of the samples were determined by high-performance liquid chromatography
(HPLC) and were used for model calibration. The results of six preprocessing methods were
compared. To reduce input variables and collinearity problems, three methods for variable selection
were compared, including successive projections algorithm (SPA), genetic algorithm-partial least
squares regression (GA-PLS), and competitive adaptive reweighted sampling (CARS). The selected
variables were employed as the inputs of partial least square (PLS), back propagation-artificial
neural networks (BP-ANN), and extreme learning machine (ELM) models. The best performance
was achieved by BP-ANN models based on variables selected by CARS for all three chemical
constituents. The values of rp

2 (correlation coefficient of prediction) were 0.924, 0.927, 0.933, the values
of RMSEP were 0.033, 0.018, 0.064 and the values of RPD were 3.667, 3.667, 2.891 for chlorogenic acid,
luteoloside, and 3,5-O-dicaffeoylquinic acid, respectively. The results indicated that NIR spectroscopy
combined with variables selection and multivariate calibration methods could be considered as a
useful tool for rapid determination of chlorogenic acid, luteoloside, and 3,5-O-dicaffeoylquinic acid
in Chrysanthemum.

Keywords: Chrysanthemum; chlorogenic acid; luteoloside; 3,5-O-dicaffeoylquinic acid; near-infrared
spectroscopy

1. Introduction

Chrysanthemum (the dry capitulum of Chrysanthemum morifolium Ramat) is a medicinal and edible
cognate plant [1]. It was harvested in full bloom, and dried in the shade or over a fire, or dried in the sun
after steaming. Modern studies show that Chrysanthemum has many biological and pharmacological
characteristics including antibacterial, anti-inflammatory, antioxidant, vasodilator, hypolipidemic,
and anti-tumor [2,3]. The Pharmacopoeia of the People’s Republic of China provides a standard
of content of chlorogenic acid, luteoloside and 3,5-O-dicaffeoylquinic acid in Chrysanthemum [4].
Chlorogenic acid shows the activity of protecting the cardiovascular, antioxidation, antibacterial,
antiviral, lipid-lowering, hypoglycemic, and liver protection [5,6]. Luteolin has anti-inflammatory,
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antiviral, and analgesic activity [7]. 3,5-O-dicaffeoylquinic acid is identified as an important chemical
composition for antioxidant activity [8]. Chrysanthemum is widely distributed around the world.

The contents of chemical composition are different according to different environment, cultivars,
harvest time, processing methods, and storage conditions [9,10]. The rapid determination of the
contents of chlorogenic acid, luteoloside, and 3,5-O-dicaffeoylquinic acid are important for quality
evaluation and clinical medication selection of Chrysanthemum.

Several techniques have been adopted for the determination of chlorogenic acid, luteoloside and
3,5-O-dicaffeoylquinicacid, including HPLC, gas chromatography–mass spectrometry and fluorescence
spectrometry [11,12]. Nevertheless, these methods are expensive, time-consuming and require complicated
sample preprocessing. Hence, it is necessary to develop a rapid and effective quantitative analysis method
for the quality determination of Chrysanthemum.

With the advantages of being nondestructive, simple and fast, near-infrared spectroscopy
(NIRS) has been widely applied in agriculture [13], the petroleum industry [14], food [15] and
traditional Chinese medicine [16]. For instance, chlorogenic acid, caffeic acid, luteoloside, baicalin,
ursodesoxycholic acid and chenodeoxycholic acid were analyzed in Tanreqing injection using FT-NIR,
Tao applied NIR to determine the concentration of seven analytes including chlorogenic acid [17,18].
However, few studies are developed for quantitative analysis of chlorogenic acid, luteoloside and
3,5-O-dicaffeoylquinic acid in Chrysanthemum.

In this work, a new method is proposed for the rapid determination of chlorogenic acid, luteoloside
and 3,5-O-dicaffeoylquinic acid based on NIRS technology, which can provide components information
for production, processing and the inspection of Chrysanthemum and its products.

2. Materials and Methods

2.1. Materials and Reagents

The reference substance of Chlorogenic acid, luteoloside, and 3,5-O-dicaffeoylquinic acid were
derived from the National Institutes for the Foods and Drug Control (Beijing, China). The HPLC-grade
acetonitrile was obtained from Tedia Scientific Inc. (Cincinnati, OH, USA). Methanol (analytical grade)
and phosphoric acid (analytical grade, P85%) were purchased from Zhejiang Chemicals Company
(Zhejiang, China). All other reagents were of analytical grade. Water used throughout the experiments
was purified water provided by Wahaha Company (Zhejiang, China).

112 samples of Chrysanthemum were used in this research. Samples were provided by Zhejiang
Research Institute of Traditional Chinese Medicine (Hangzhou, Zhejiang Province). Each sample was
dried and grounded into powder, and only the powder which could pass through 0.25 mm pore mesh
was used. These samples were kept in a temperature of 25 ± 2 ◦C and a moisture of 60 ± 10%. Among
the prepared samples, 76 samples were selected randomly for calibration and the remaining 36 samples
for independent prediction.

2.2. Spectrometric Measurements

Each sample was put in the sample cell and scanned by the Matrix Duplex NIR system working
in the wavenumber range of 12,000 cm−1 to 4000 cm−1. All spectra were collected in a diffuse reflection
mode with an optical fiber reflectance head and recorded as the log (1/R). Each sample was scanned
32 times and the average spectrum was regarded as the sample spectrum.

2.3. Reference Analysis Methods

The contents of chlorogenic acid, luteoloside, and 3,5-O-dicaffeoylquinic acid were determined by
the HPLC method according to the Pharmacopoeia of the People’s Republic of China (2015 edition).
The HPLC system was an Agilent 1100 series consisting of a vacuum degasser G1322A, a quaternary
pump G1311A, an autosampler G1329A, a programmable variable wavelength detector (VWD) G1314B
and a Thermostatted Column Compartment G1316A. The column was a Diamonsil C18 (250 × 4.6 mm,
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5 µm) column. The detection wavelength was 348 nm. A gradient system was used consisting of
two mobile phases. Mobile phase A was acetonitrile and the mobile phase B was 1% phosphoric acid
solution. The gradient system was as follows: 0–11 min, 10–18% A, 11–30 min, 18–20% A, 30–40 min,
20% A. The flow rate was 1.0 mL/min, the injection volume was 5 µL.

2.4. Spectral Preprocessing

Before the calibration process, six preprocessing strategies were employed to reduce high-frequency
random noise, baseline variation, path length differences and light scattering. The preprocessing
methods include moving averages smoothing (MAS), Savitzky–Golay smoothing (SG), standard
normal variate transformation (SNV), multiplicative scattering correction (MSC), the first derivative
(1st-Der) and de-trending (Detrend). The results of different preprocessing methods were compared to
choose the optimum preprocessing strategies. The preprocessing and calculations were carried out
using the Unscrambler® 10.1 software (Camo Process AS, Oslo, Norway).

2.5. Sensitive Variables Selection

A raw NIRS spectrum of a Chrysanthemum sample contained 2075 spectral bands, which suffered
the collinearity and high dimensionality problems. In some cases, suitable methods can identify
the most effective variables to reduce the input variables and improve the models’ accuracy and
robustness [19,20]. Three methods for variables selection were used to reduce the collinearity and
high dimensionality problems of NIR spectra and to develop simpler models. The methods include
successive projections algorithm (SPA) [21], which could minimize variable collinearity, genetic
algorithm-partial least squares regression (GAPLS) which combines the advantage of GA and PLS [22],
and competitive adaptive reweighted sampling (CARS) [23–25]. CARS is a feature selection method
combined Monte Carlo sampling with PLS regression coefficient.

2.6. Chemometric Calibration Method

Partial least square (PLS) algorithm [26] is a classic linear calibration method for spectral analysis.
PLS extracts the main factors or sensitive variables (SV). Models are developed based on the scores of
the main factors or SV according to their cumulative contribution rate [27,28].

Extreme learning machine (ELM) is one of learning neural algorithms, which has been successfully
applied in nonlinear regression problems [29]. The algorithm randomly generates the connection
weights between the input layer and the hidden layer. There is no need to adjust the threshold of the
hidden layer neurons in the training process. The optimal solution is achieved when the number of
hidden layer neurons is set. Comparing with traditional learning algorithms, ELM not only possesses
the fast learning speed but also has a good generalization performance [30].

Backpropagation artificial neural network (BP-ANN) is one of the most popular neural network
topologies [31]. BP-ANN extracts and establishes a complex correlation between inputs and outputs.
The output represents the similarity between an object and a training pattern. As each process of
the training pattern and the weight factor is adjusted, the difference between the calculated network
output and the expected value is defined as the network output error, which will gradually decrease
until the desired selection level is reached. An epoch is a one cycle through all training patterns [32,33].

2.7. Model Evaluation and Softwares

The performance of models was evaluated by five parameters including correlation coefficient of
calibration (rc

2), root mean square error of calibration (RMSEC), the correlation coefficient of prediction
(rp

2), root mean square error of prediction (RMSEP) and relative percent deviation (RPD). A good
model should have higher rc

2 and rp
2 values, and lower RMSEC and RMSEP values. An RPD more

than 1.5 is regarded as good predictions; an RPD between 2.0 and 2.5 indicates a satisfactory model for
prediction, an RPD larger than 3.0 is considered as an efficient prediction model. In this study, rp

2,
RMSEP, and RPD were used as evaluation indexes to compare the models.
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The spectral data extraction and the calculation of SPA, CARS, GA-PLS, ELM, and BP-ANN
algorithms were performed by Matlab R2011a (The Math Works, Natick, MA, USA). PLS was conducted
by Unscrambler® 10.1 (CAMO AS, Oslo, Norway).

3. Results and Discussion

3.1. Features of NIR Spectra and HPLC Analysis

The original spectra of 112 Chrysanthemum samples are shown in Figure 1. It is noticed that the
trends of all samples were quite similar except the different magnitudes of the spectra reflectance. This
might be caused by different contents of chemical constituents of the samples, including chlorogenic
acid, luteoloside and 3,5-O-dicaffeoylquinic acid. The reference values of chlorogenic acid, luteoloside
and 3,5-O-dicaffeoylquinic acid in Chrysanthemum determined by HPLC are shown in Table 1.
The content range of the measured components in the modeling set and the prediction set are similar,
so, the established model can be representative.
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Figure 1. Raw spectra of Chrysanthemum measured by the Matrix Duplex NIR system working in the
wavenumber range of 12,000 cm−1 to 4000 cm−1.

Table 1. Referent contents of Chlorogenic acid, luteoloside, and 3,5-O-dicaffeoylquinic acid in
Chrysanthemum determined by HPLC.

Calibration Set Prediction Set

Range (%) Mean (%) S.D. 1 Range (%) Mean (%) S.D.

Chlorogenic acid 0.388–0.961 0.648 0.121 0.390–0.950 0.660 0.121
Luteoloside 0.255–0.552 0.388 0.063 0.258–0.545 0.387 0.066

3,5-O-dicaffeoylquinic acid 0.985–1.839 1.506 0.189 1.193–1.838 1.499 0.185
1 Standard deviation.

3.2. Determination of the Best Preprocessing Algorithms

Different preprocessing methods were applied to the raw NIR spectra data. To identify the optimal
preprocessing methods, PLS models were established based on different pretreated spectra data as
input variables. Results of the PLS models based on the raw and pretreated spectra data are shown in
Table 2. The best result was obtained based on SG pretreated spectra for the chlorogenic acid prediction.
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The prediction results of the SG model had a good rp
2 value of 0.843 and a small RMSEP value of 0.047.

The optimal PLS model (rp
2 = 0.741 and RMSEP = 0.033) was achieved by the SNV preprocessing for

the luteoloside prediction. For the 3,5-O-dicaffeoylquinic acid prediction, the best performance with
rp

2 of 0.843 and RMSEP of 0.072 was obtained by the raw spectra data. The best input variables were
employed for further calculation.

Table 2. Results of PLS models with different data preprocessing methods.

Quality Preprocessing Number of Latent
Variables

Calibration Prediction

rc
2 RMSEC rp

2 RMSEP Slope Bias RPD

Chlorogenic Acid

None 9 0.906 0.036 0.797 0.054 0.775 −0.014 2.241
MAS 6 0.841 0.047 0.841 0.047 0.727 −0.011 2.574
SG 6 0.839 0.047 0.843 0.047 0.728 −0.010 2.574

SNV 7 0.876 0.041 0.762 0.059 0.756 −0.017 2.051
MSC 9 0.878 0.041 0.767 0.057 0.768 −0.017 2.123
1-Der 5 0.882 0.040 0.740 0.061 0.738 −0.009 1.984

Detrend 7 0.869 0.042 0.808 0.052 0.773 −0.014 2.327

Luteoloside

None 13 0.976 0.009 0.728 0.034 0.753 0.004 1.941
MAS 11 0.910 0.018 0.738 0.033 0.734 −0.004 2.000
SG 11 0.901 0.019 0.741 0.033 0.754 0.001 2.000

SNV 12 0.974 0.010 0.741 0.033 0.761 0.005 2.000
MSC 10 0.949 0.014 0.728 0.034 0.748 0.004 1.941
1-Der 8 0.918 0.018 0.650 0.039 0.624 −0.006 1.692

Detrend 11 0.964 0.012 0.691 0.036 0.731 0.003 1.833

3,5-O-dicaffeoylquinic
acid

None 10 0.920 0.053 0.843 0.072 0.842 0.012 2.569
MAS 10 0.918 0.054 0.832 0.075 0.838 0.014 2.467
SG 10 0.876 0.066 0.815 0.078 0.793 0.011 2.372

SNV 8 0.846 0.073 0.766 0.088 0.754 −0.004 2.102
MSC 9 0.908 0.057 0.823 0.077 0.831 −0.002 2.403
1-Der 5 0.803 0.083 0.605 0.114 0.791 −0.003 1.623

Detrend 9 0.918 0.054 0.814 0.079 0.843 0.015 2.342

3.3. Sensitive Variables Selection

The data of raw NIRS spectrum of Chrysanthemum contained 2075 bands. These bands had
collinearity and high dimensionality problems. To reduce the input variables and the collinearity
problems, SPA, GA-PLS, and CARS were compared. Shown from Figure 2, by applying these methods,
the number of variables decreased from 2075 to less than 106. The selected variables simplified the
model and improved the speed of the computation process.
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3.4. Model Calibration

Three kinds of regression models (PLS, ELM, BP-ANN) were established based on the selected
SVs as input variables. The performance of each model is shown in Table 3. Compared with full
spectral PLS models (Table 2), the CARS-PLS model had a better performance with rp

2 of 0.899, RMSEP
of 0.038 and RPD of 3.184 for the prediction of chlorogenic acid. The SPA-PLS and GAPLS-PLS models
had similar results, compared with the full spectral model. The results indicated that CARS was
an effective variable selection method and SVs identified by CARS contained the most relevant and
representative information. SPA and GAPLS also obtained positive results, as only 0.3% and 1.4% of
the full spectral bands were selected as input variables, and their models also had a good prediction.
Moreover, BP-ANN models achieved better performance than PLS and ELM models and the best
prediction performance was obtained by CARS-BP-ANN model (processed by SG), which had rp

2 of
0.924, RMSEP of 0.033 and RPD of 3.667.

Table 3. Results of different regression methods based on sensitive variables for chlorogenic acid,
luteoloside, and 3,5-O-dicaffeoylquinic acid.

Quality Preprocessing Variable Selection
Methods

Models
Calibration Prediction

rc
2 RMSEC rp

2 RMSEP RPD

Chlorogenic Acid

SG

SPA
PLS 0.859 0.044 0.843 0.047 2.574
ELM 0.846 0.046 0.876 0.047 2.574

BP-ANN 0.889 0.039 0.857 0.047 2.574

GAPLS
PLS 0.910 0.035 0.841 0.048 2.521
ELM 0.878 0.041 0.834 0.052 2.327

BP-ANN 0.885 0.039 0.874 0.044 2.750

CARS
PLS 0.970 0.020 0.899 0.038 3.184
ELM 0.972 0.020 0.882 0.041 2.951

BP-ANN 0.964 0.022 0.924 0.033 3.667
Luteoloside

SNV

SPA
PLS 0.803 0.027 0.736 0.033 2.000
ELM 0.856 0.023 0.738 0.033 2.000

BP-ANN 0.834 0.025 0.783 0.031 2.129

GAPLS
PLS 0.801 0.027 0.759 0.032 2.063
ELM 0.648 0.036 0.733 0.036 1.833

BP-ANN 0.846 0.024 0.814 0.028 2.357

CARS
PLS 0.976 0.009 0.910 0.020 3.300
ELM 0.998 0.000 0.819 0.041 1.610

BP-ANN 0.955 0.013 0.927 0.018 3.667
3,5-O-dicaffeoylquinic acid

None

SPA
PLS 0.808 0.082 0.771 0.087 2.126
ELM 0.843 0.074 0.808 0.083 2.229

BP-ANN 0.848 0.074 0.850 0.072 2.569

GAPLS
PLS 0.869 0.068 0.856 0.069 2.681
ELM 0.904 0.058 0.878 0.065 2.846

BP-ANN 0.906 0.058 0.908 0.056 3.304

CARS
PLS 0.974 0.031 0.927 0.049 3.776
ELM 0.949 0.042 0.893 0.064 2.891

BP-ANN 0.962 0.039 0.933 0.064 2.891

For the luteoloside content prediction, the GAPLS-PLS and CARS-PLS models showed better
results than the full spectral PLS model, indicating that the SVs selected by GAPLS and CARS extracted
the most useful information to represent the full spectra. Compared with the full spectra model,
similar performance was achieved based on the variables selected by SPA, which had only 0.6% of
full variables. Therefore, SPA was also regarded as a helpful way of variable selection. Similar to the
chlorogenic acid analysis, BP-ANN models were better than the corresponding PLS and ELM models.
The best result was obtained by the BP-ANN model based on the variables selected by CARS, and the
best model had rp

2 of 0.927, RMSEP of 0.018 and RPD of 3.667.
For 3,5-O-dicaffeoylquinic acid prediction, compared with the full spectral PLS models, GAPLS-PLS

and CARS-PLS models obtained better performance, which implied that GAPLS and CARS were
effective variable selection methods. Although the value of rp

2 of the SPA-PLS model was lower than
the PLS model based on full spectra, SPA was still considered as a useful method, since the number of
input variables of SPA-PLS model decreased 99.0%, from 2075 to 20, whereas the rp

2 value only reduced
8.5%. Same to the prediction of chlorogenic acid and luteoloside, BP-ANN models also achieved the
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best performance. The best prediction results were obtained by the CARS-BP-ANN model, which had
rp

2 of 0.933, RMSEP of 0.064, and RPD of 2.891. Therefore, BP-ANN was considered as the optimal
calibration method for the prediction of chlorogenic acid, luteoloside and 3,5-O-dicaffeoylquinic acid
in Chrysanthemum. The scatter plots of the best results of CARS-BP-ANN models in the prediction set
for prediction of chlorogenic acid, luteoloside and 3,5-O-dicaffeoylquinic acid are shown in Figure 3.Sensors 2019, 19, x FOR PEER REVIEW  8  of  10 
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Figure 3. Results of CARS-BP-ANN models in the prediction set for prediction of (a) chlorogenic acid,
(b) luteoloside, and (c) 3,5-O-dicaffeoylquinic acid.

4. Conclusions

In this work, the feasibility of NIR spectroscopy for the rapid determination of chlorogenic acid,
luteoloside and 3,5-O-dicaffeoylquinic acid contents in Chrysanthemum was explored. Different
preprocessing, variable selection and regression methods were employed and their results were
compared. SG and SNV were considered as the optimal preprocessing method for the prediction
of chlorogenic acid and luteoloside respectively and raw data was the best for the prediction of
3,5-O-dicaffeoylquinic acid. SPA, GAPLS and CARS were proposed to recognize sensitive variables
which were important to predict chlorogenic acid, luteoloside and 3,5-O-dicaffeoylquinic acid contents.
The BP-ANN models achieved better performance than PLS and ELM models and the best performance
was achieved by the BP-ANN models based on variables selected by CARS for the prediction of
all three chemical constituents in Chrysanthemum. The best spectral models for the prediction of
chlorogenic acid, luteoloside and 3,5-O-dicaffeoylquinic acid had rp

2 of 0.924, 0.927, 0.933, RMSEP
of 0.033, 0.018, 0.064, RPD of 3.667, 3.667, 2.891, respectively. The above results indicated that
NIR spectroscopy combined with variables selection and multivariate calibration methods has
the potential to be considered as a useful tool for the rapid determination of chlorogenic acid,
luteoloside and 3,5-O-dicaffeoylquinic acid in Chrysanthemum. In the future, more Chrysanthemum
samples with a wider range of chlorogenic acid, luteoloside and 3,5-O-dicaffeoylquinic acid contents
should be considered to further improve the accuracy, robustness and adaptability of models for
industrial application.
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