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Impaired diabetic wound healing constitutes a major health problem. e impaired healing is caused by complex factors such as
abnormal keratinocyte and �broblast migration, proliferation, differentiation, and apoptosis, abnormal macrophage polarization,
impaired recruitment of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), and decreased vascularization.
Diabetes-enhanced and prolonged expression of TNF-𝛼𝛼 also contributes to impaired healing. In this paper, we discuss the abnormal
cell responses in diabetic wound healing and the contribution of TNF-𝛼𝛼.

1. Introduction

Diabetes mellitus is one of the most prevalent and costly
chronic diseases in the United States [1]. Impaired wound
healing and diabetic foot ulcers constitute a major health
problem in patients with diabetes. Diabetic foot ulceration is
estimated to occur in 15% of diabetic patients, oen requires
prolonged hospitalization for its management, and is a major
cause of disease-associated amputations in the western world
[2].

Wound healing is a complex process involving a number
of interdependent and overlapping stages including hemosta-
sis, in�ammation, proliferation, vascularization, and produc-
tion of matrix and remodeling [3]. Many types of cells are
involved in each phase of wound healing including immune
cells, endothelial cells, keratinocytes, and �broblasts which
undergo marked changes in gene expression and phenotype
[4, 5]. e delayed wound healing in diabetes is caused
by complex factors such as diminished keratinocyte and
�broblast migration, proliferation, differentiation, apoptosis,
and vascularization. Several of these cellular de�cits have
been linked to greater in�ammation and proin�ammatory
cytokine production [6] (Figure 1).

Diabetic foot ulcers result from the simultaneous action
of multiple contributing causes. A critical triad of neuropa-
thy, minor foot trauma, and foot deformity is responsible
for over 50% of diabetic foot ulcers [7]. In�ammation,
immunode�ciency, peripheral neuropathy and ischemia
from peripheral vascular disease, and subsequent infection
are underlying factors that contribute to unhealed chronic
wounds in diabetic foot ulcers [8].

One aspect of diabetic healing that has recently received
considerable attention is the enhanced and prolonged expres-
sion of TNF-𝛼𝛼, a potent proin�ammatory cytokine [9].is
review focuses on factors that are affected by diabetes-
enhanced in�ammation, particularly elevated or prolonged
expression of TNF-𝛼𝛼.

2. Cells Affected by Diabetes inWoundHealing

e in�ammatory stage of wound repair occurs shortly aer
tissue damage. Aer acute injury, platelets and neutrophils
are released passively from disrupted blood vessels. e
formation of a �brin clot provides a temporary scaffold
for in�ltration of in�ammatory cells. A large number of
growth factors are important in stimulating and coordinating
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F 1: Mechanisms of impaired diabetic wound healing. e normal wound-healing process is initiated by the integration of multiple
intercellular signals (cytokines and chemokines) released by keratinocytes, �broblasts, endothelial cells, macrophages, platelets, etc. In
diabetes, in�ammatory cytokines and chemokines are elevated, such as TNF-𝛼𝛼, IL-1, IL-6, CCL2, CCL3, CCL4, CXCL1, CXCL5, and CXCL8.
Cellular processes a�ected by diabetes include abnormal keratinocyte and �broblast migration, proliferation, and enhanced apoptosis�
abnormal macrophage polarization (increased proin�ammatory M1 macrophages and decreased anti-in�ammatory M2 macrophages)�
impaired recruitment of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), and decreased vascularization.

cellular events that occur during normal wound healing
[10]. Among them, cytokines and chemokines are especially
noted because of their roles in promoting in�ammation,
angiogenesis, leukocyte recruitment, recruitment of stem
cells, and epithelialization. Proin�ammatory cytokines that
are elevated shortly aer wounding both in human wounds,
and animal wound models include IL-1𝛼𝛼, IL-1𝛽𝛽, IL-6, IL-
12, and TNF-𝛼𝛼 [11, 12]. Some proin�ammatory cytokines
and chemokines are essential for normal skin wound-healing
process. Delayed wound healing is observed in IL-6-de�cient
mice [13]. It has been shown that deletion of IL-1 receptor
signaling impairs oral wound healing due to its importance in
upregulating an antibacterial defense but has relatively little
impact on dermal healing [14]. e lack of ICAM-1 in mice
results in prolonged wound healing because of the decreased
recruitment of macrophages and other leukocytes [15, 16].

e CXC chemokine family of chemotactic cytokines
CXCL1, CXCL5, and CXCL8 is expressed in keratinocytes
and upregulated in wounding by stimulation of proin�am-
matory cytokines such as IL-1 andTNF-𝛼𝛼, bacterial products,
and hypoxia [17]. e induced expression of chemokines
stimulates recruitment of leukocytes and monocytes, neu-
trophils, and macrophages to the wound site to remove
foreign material, bacteria, dead cells, and damaged matrix
[3]. Chemokine CX3CL1 and its receptor CX3CR1 were both
highly induced at wound sites mediating recruitment of bone
marrow-derived monocytes/macrophages in a mouse model

of excisional skin wound healing [18]. CXCR3 chemokine
receptor and its ligands CXCL11, CXCL10, and CXCL4 are
also crucial for dermal maturation. Disruption of CXCR3
signaling in mice results in delayed reepithelialization [19].
Chemokines also induce recruitment of stem cells to sites of
injury and include epithelial stem cells from hair follicles or
sweat glands, endothelial progenitor cells, and mesenchymal
stem cells [20–22].

Impaired wound healing in diabetic patients is accom-
panied by decreased early in�ammatory cell in�ltration but
increased numbers of neutrophils and macrophages in late
stages.ese changes in in�ammatory cell recruitment occur
in conjunctionwith alterations in chemokine and growth fac-
tor expression [23]. An increase in in�ammatory cytokines
is observed in wounds of type-1 diabetic patients includ-
ing CD40, IL-1𝛼𝛼, IL-2, IL-4, IL-5, granulocyte-macrophage
colony-stimulating factor (GM-CSF), CCL3, and CCL4 [24].
In diabetic models, increased levels of the proin�ammatory
cytokines such as TNF-𝛼𝛼 and IL-6 and decreased levels of
anti-in�ammatory IL-10 are observed in diabetic wound
tissue compared to nondiabetic healing wound [25, 26]. is
leads to sustained expression of chemokines CXCL2 and
CCL2 that cause prolonged in�ltration of leukocytes during
impaired healing in diabetic mice [27].

2.1. Macrophages. Wound-site macrophages represent a key
player that drives wound in�ammation. Macrophages are
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important in clearance of dead cells and debris within the
wound. Depletion of macrophages during the in�ammatory
phase results in signi�cant delay of wound repair in a mouse
model [28]. Diabetes is known to compromise macrophage
function including phagocytosis activity [29]. Macrophages
isolated from wounds of diabetic mice and diabetic patients
showed signi�cant impairment in efferocytosis, leading to a
higher burden of apoptotic cells in wound tissue as well as
increased proin�ammatory cytokine expression [25].

High glucose levels stimulate macrophages to enhance
the production of proin�ammatory cytokines such as IL-1𝛽𝛽,
IL-6, IL-12, IL-18, TNF-𝛼𝛼, and IFN-𝛾𝛾 both in vivo and in
vitro [12]. Macrophages may polarize along two lines that
have functional differences, proin�ammatory macrophages
(M1), and anti-in�ammatory macrophages (M2), which can
be further subdivided in M2a (aer exposure to IL-4 or
IL-13), M2b (immune complexes in combination with IL-
1𝛽𝛽 or LPS), and M2c (IL-10, TGF-𝛽𝛽 or glucocorticoids)
[30]. M1 macrophages are polarized by the stimulation of
IFN-𝛾𝛾, GM-CSF and in the presence of bacterial products
such as LPS [30]. M1 macrophages have a proin�amma-
tory phenotype exhibiting increased phagocytic activity and
secretion of proin�ammatory cytokines that aid in the
removal of pathogens and damaged tissues [31, 32]. M2
macrophages have a polar opposite phenotype exhibiting
high levels of anti-in�ammatory cytokines and �brogenic
and angiogenic factors that serve to resolve in�ammation
and promote wound healing [30, 32]. Recently, an additional
M2 subtype (M2d) which involves “switching” from an
in�ammatory M1 into an angiogenic M2 phenotype was
discovered [33]. M2d macrophages express high levels of
IL-10 and VEGF and low levels of TNF-𝛼𝛼 and IL-12 [33].
Macrophage polarization may play an important role in
the pathogenesis of obesity-induced insulin resistance and
type 2 diabetes mellitus [34]. Macrophages isolated from
diabetic mice exhibit greater in�ltration by in�ammatoryM1
macrophages andmay contribute to impaired diabetic wound
healing [35].

Wound macrophages in the early stage of repair are
moreM1-like when the generation of in�ammatory signals is
important whileM2macrophages predominate in later stages
of repair in response to the need for new tissue formation
[36]. In the normal wounds, the M1 macrophage phase is
relatively short and the phase withM2macrophages is longer
[37]. M2 macrophages are a prominent source of TGF-𝛽𝛽,
which promotes many aspects of wound repair including
chemotaxis, wound contraction, angiogenesis, reepithelial-
ization, and connective tissue regeneration [5]. Diabetes
may prolong the phase of M1 macrophage polarization. In
addition infection in chronic wounds leads to prolonged
M1 macrophage activation, which in turn can delay healing
[38, 39].

2.2. Mesenchymal Stem Cells. Adult mesenchymal stem cells
(MSCs) have the capacity for self-renewal and differentiating
into a variety of mesenchymal cell lineages such as �brob-
lasts, osteoblasts, adipocytes, and chondrocytes. Increasing
evidence shows that MSCs participate in the regeneration

of skin in cutaneous wounds [40]. Hypoxia-inducible factor-
1𝛼𝛼 (HIF-1𝛼𝛼) and chemokines such as CCL2 facilitate MSC
mobilization into the peripheral blood and to sites of wound
healing [41, 42]. In addition to forming �broblasts and
myo�broblasts, MSCs also enhance wound healing through
the secretion of mediators such as VEGF-𝛼𝛼, IGF-1, EGF,
keratinocyte growth factor, angiopoietin-1, stromal-derived
factor-1, CCL3, CCL4, and erythropoietin [43, 44]. MSCs
also play an important role in immunomodulation and are
anti-in�ammatory. MSCs inhibit the proliferation and acti-
vation of effector T cells, natural killer (NK) cells, dendritic
cells (DCs), and macrophages by promoting the formation
of anti-in�ammatory regulatory T cells [45]. us there are
multiple mechanisms through which MSCs can promote
wound healing.

Diabetes has detrimental effects onMSCs. Bonemarrow-
derived MSCs from diabetic rats have reduced proliferation
and reducedmyogenic differentiation [46].e application of
autologous MSCs improves healing of chronic diabetic foot
ulcers [47]. Local application of MSCs to the wound sites
improves wound healing in normal and diabetic mice, with
increased reepithelialization, cellularity, and angiogenesis
[43]. MSCs enhance diabetic wound healing by reducing
in�ammation, upregulating the expression of growth factors,
and promoting the proliferation of �broblasts and basal
keratinocytes in diabetic rats [48].

2.3. Keratinocytes. Wound healing requires the transition
of basal and suprabasal keratinocytes from a sedentary
phenotype to a migratory and hyperproliferative phenotype.
e reepithelialization process involves local keratinocytes at
the wound edges and epithelial stem cells from hair follicles
or sweat glands [49, 50]. Keratinocytes are a major source of
growth factors such as TGF-𝛽𝛽, VEGF, EGF, KGF, and TGF-
𝛼𝛼 that stimulate �brogenesis and angiogenesis in adjacent
tissue [4, 51, 52]. Although there is no direct evidence that the
proliferative activity of keratinocytes is affected in diabetes,
migration is impaired [53, 54]. Keratinocytes at the chronic
ulcer edge from diabetic patients have a reduced expression
of migration markers [53, 55]. In vitro keratinocytes have
reduced migration and proliferation capacities in high-
glucose conditions [56].

2.�. �i�ro�lasts an� Myo��ro�lasts. Fibroblasts are the pri-
mary source of extracellular matrix proteins such as col-
lagen and �bronectin [57]. In diabetic oral and dermal
wounds �broblasts have decreased migration, prolifera-
tion, and increased apoptosis [58–60]. e proliferation and
migration of diabetic rat �broblasts are suppressed when the
cells are cultured in high-glucose containing media [60, 61].
Myo�broblasts are specialized �broblasts that contribute to
wound healing by producing extracellular matrix and by
generating a contractile force to bring the edges of a wound
together. e transition from �broblasts to myo�broblasts is
in�uenced by mechanical stress, endothelin-1, TGF-𝛽𝛽, and
cellular �bronectin (ED-A splice variant) [62, 63]. During
acute wound healing in nondiabetic mice, mRNA levels for
both TGF-𝛽𝛽 RI and TGF-𝛽𝛽 RII in wound tissue are elevated
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[64]. TGF-𝛽𝛽 receptor elevation is reduced in chronic diabetic
ulcers [65]. Diabetics have reduced levels of TGF-𝛽𝛽 and
reduced formation of myo�broblasts which may contribute
to impaired wound contraction [66].

2.5. Endothelial Cells. Angiogenesis is a complex cascade
of cellular, humoral, and molecular events, which initiates
at the binding of growth factors to their receptors on the
endothelial cells of existing vessels, such as VEGF. e
stimulated endothelial cells proliferate and migrate into
the wounded tissue to form small tubular canals which
then mature [3]. Impaired angiogenesis is considered a
major contributing factor to nonhealing wounds. Wound-
induced hypoxia stimulates vascular regeneration by activat-
ing hypoxia-inducible transcription factors (HIF-1𝛼𝛼), which
increase the production of angiogenic growth factors such
as VEGF and expression of the chemokine receptor CXCR4
[67]. e number and function of endothelial progenitors
are reduced in diabetes mellitus [68, 69]. e importance
of angiogenesis in contributing to impaired diabetic healing
is demonstrated by improvement when diabetic wounds are
treated with endothelial progenitors or VEGF. Injection of
CD 34+ endothelial cell progenitors to the wounds of diabetic
mice accelerates vascularization and healing of diabetic
mouse skin wounds [70]. Topical application of VEGF also
improves diabetic wound healing by locally upregulating
growth factors PDGFandFGF-2 andpromoting angiogenesis
[71].

2.6. MMPs/TIMPs Imbalance in Diabetes. e balance
between matrix metalloproteinases (MMPs) and tissue
inhibitors of metalloproteinases (TIMPs) is crucial for nor-
mal wound healing processes. A low MMP/TIMP ratio is a
good predictor of successful wound-healing in diabetic foot
ulcers [72]. Diabetes creates an unfavorable ratio. It increases
the activity and expression of MMP-9, MMP-2, and MMP-
8 while reducing TIMP-2 [73, 74]. e abnormally elevated
level of MMPs may impair cell migration and result in
sustained in�ammationwith net increased tissue destruction.
In the chronic diabetic foot lesions, local administration of
protease inhibitors reduces the ratio of MMP/TIMP and
improves wound healing [68].

3. Role of TNF-𝛼𝛼 in DiabeticWounds

In normal wound healing the highest levels of TNF-𝛼𝛼 are seen
from 12 to 24 h aer wounding [75]. Aer the completion of
the proliferative phase of wound healing, TNF-𝛼𝛼 returns to
basal levels. During the early phase of wound repair, it is pre-
dominantly expressed in polymorphonuclear leukocytes, and
later bymacrophages. It is also expressed in the hyperprolifer-
ative epithelium at the wound edge. TNF-𝛼𝛼 contributes to the
stimulation of �broblasts and keratinocytes the expression
of growth factors and upregulation of antimicrobial defenses
[76]. TNF-𝛼𝛼 levels are elevated in diabetes in part through
increased oxidative stress that promotes in�ammation [77].
Other factors may contribute to this elevation including the
downregulation of CD33 that inhibits cytokine production

[78]. TNF-𝛼𝛼 is found threefold higher in diabetic mouse
wounds than wounds in normal mice [59] and threefold
higher found in wound �uid from nonhealing venous leg
ulcers than in healing ulcers [79]. Chronic gastric ulcers are
also associated with increased TNF-𝛼𝛼 [80].

3.1. Cellular Events Affected by TNF-𝛼𝛼. In diabetic wound
healing impaired �broblast proliferation has been linked
to increased levels of TNF-𝛼𝛼 [81]. Inhibiting TNF in vivo
signi�cantly increases the number of proliferating �broblasts
but it has a little effect on �broblast proliferation in normo-
glycemic mice [59]. Apoptosis of �broblasts in diabetic mice
is signi�cantly higher than in normoglycemic counterparts
[59, 82], and apoptosis is high in skin biopsies from diabetic
foot ulcers [83, 84]. TNF stimulates apoptosis of �broblasts,
keratinocytes, and endothelial cells in vitro [85, 86]. A cause-
and-effect relationship has been established between the
treatment of TNF blocker and reduced apoptosis which was
elevated in diabetic healing [59]. Diabetes also impairs the
migration of �broblasts and keratinocytes [55, 87]. High
levels of TNF-𝛼𝛼 inhibit cell migration [88]. is may occur
by increasing the level of Smad 7 [89] and inhibiting the
activation of the Smad 2/3 [90] (Figure 2).

e neutralization of TNF in the diabetic wounds
improves wound angiogenesis and closure. Blocking TNF
reduces the overproduction of small noncoding RNAs such
as miR-200b in the diabetic wounds, which improves the
expression of globin transcription factor-binding protein 2
(GATA2) and vascular endothelial growth factor receptor 2
(VEGFR2), both of which promote angiogenesis [91].

e ability of cells at the wound site to respond to
insulin is reduced in diabetic wounds. Insulin insensitivity
occurs when the response to insulin is reduced. Long-term
treatment of cells with TNF-𝛼𝛼 contributes to reduced insulin
sensitivity [92]. Insulin receptor expression in proliferating
keratinocytes at the woundmargins and in granulation tissue
is reduced in diabetic mice but enhanced with anti-TNF-𝛼𝛼
antibody treatment [93]. e effect of neutralization of TNF-
𝛼𝛼 on insulin sensitivity may be involved in inhibiting the
effects of TNF-𝛼𝛼 on the downregulation of GLUT4 genes that
are required for normal insulin action, the downregulation
of PPAR𝛾𝛾 which is an important insulin-sensitizing nuclear
receptor, and the upregulation of Ser phosphorylation of IRS-
1 that results in a net decrease in insulin receptor-mediated
signaling [94]. us, an important component of impaired
diabetic wound healing may be due to the reduced sensitivity
of cells that participate in the wound healing process to
insulin stimulation, which is mediated in part by high levels
of TNF.

3.2. Effect of TNF-Induced FOXO1 on Diabetic Wound Heal-
ing. Some of the negative effects of diabetes-enhanced TNF
on wound healing may be due to the impact of the FOXO1
transcription factor [77, 95]. FOXO1 activity is increased
in a number of different diabetic conditions and may be
detrimental because it induces cell cycle arrest and apoptosis
and increases the production of proin�ammatory cytokines
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TNF-𝛼𝛼 also induces NF-𝜅𝜅B activation to enhance in�ammatory responses.

[77]. TNF-𝛼𝛼-induced apoptosis of endothelial cells and per-
icytes is FOXO1 dependent in vivo and in vitro [96, 97]. In
vivo, FOXO1 DNA activity is increased twofold in diabetic
wounds, and the increase is driven by diabetes-enhanced
TNF levels [59]. FOXO1 activity is also increased in vivo in
fracture healing and linked to greater in�ammation [98, 99].
In normal wound healing FOXO1 may play a positive role in
endothelial migration and tube formation [95].

3.3. Advanced Glycation Endproducts. AGEs are proteins
or lipids that become glycated aer exposure to sugars.
Enhanced formation and accumulation of advanced gly-
cation end-products (AGEs) and receptors for AGEs have
been reported to occur in diabetes mellitus [100–102]. e
activation of one of the AGE receptors, (receptor for AGEs),
RAGE causes the upregulation of the transcription factor
nuclear factor-kappaB (NF-kappaB) and its target genes such
as intercellular adhesion molecule-1 (ICAM-1), VEGF, IL-
1𝛼𝛼, IL-6, andTNF-𝛼𝛼.Mice fedwith high levels of AGEdisplay
impaired wound closure [103]. Blockade of RAGE restores
effective wound healing in diabetic mice by accelerating
reepitheliali�ation and angiogenesis, limiting in�ammatory
cell in�ltration, and reducing the expression of TNF-𝛼𝛼, IL-
6, MMP-2, -3, and -9 [100]. AGEs cause the production of
reactive oxygen species at least in part, through the activation
of NADPH oxidase [77, 104]. In mononuclear phagocytes,
AGEs increases the generation of cytokines such as TNF-𝛼𝛼,

IL-1, and IL-6 and enhanced the production of O2− [101, 105,
106].

4. Conclusion

e impaired diabetic wound healing and diabetic ulcer
impair the quality of life of millions of people and burden the
healthcare systems globally. e etiological factors involve
a high level of TNF-𝛼𝛼, which inhibits angiogenesis and
cell proliferation and migration in diabetic wounds and
increases apoptosis levels. TNF inhibition attenuates the
impact of diabetes-enhanced TNF-𝛼𝛼, which offers potentially
new therapeutic avenue for treatment of abnormally diabetic
wounds healing.
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