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Abstract: Three new sterols, (24R)-5,28-stigmastadiene-3β,24-diol-7-one (1), (24S)-5,28-stigmastadiene-
3β,24-diol-7-one (2), and 24R and 24S-vinylcholesta-3β,5α,6β,24-tetraol (3), together with
three known sterols (4–6) were isolated from the green alga Ulva australis. The structures of
the new compounds (1–3) were elucidated through 1D and 2D nuclear magnetic resonance
spectroscopy as well as mass spectrometry. Compounds 4–6 were identified as isofucoterol (4),
24R,28S and 24S,28R-epoxy-24-ethylcholesterol (5), and (24S)-stigmastadiene-3β,24-diol (6) on
the basis of spectroscopic data analyses and comparison with those reported in the literature.
Compounds 4–6 were isolated from U. australis for the first time. These compounds, together
with the previously isolated secondary metabolites of this alga, were investigated for their
inhibitory effects on human recombinant aldose reductase in vitro. Of the compounds, 24R,28S
and 24S,28R-epoxy-24-ethylcholesterol (5), 1-O-palmitoyl-3-O-(6′-sulfo-α-D-quinovopyranosyl)
glycerol, (2S)-1-O-palmitoyl-3-O-[α-D-galactopyranosyl(1→2)β-D-galactopyranosyl] glycerol,
4-hydroxybenzoic acid, 4-hydroxyphenylacetic acid, and 8-hydroxy-(6E)-octenoic acid weakly
inhibited the enzyme, while the three new sterols, 1–3, were almost inactive.

Keywords: Chlorophyta; Ulva australis; 5,28-stigmastadiene-3β,24-diol-7-one epimers; 24-vinylcholesta-
3β,5α,6β,24-tetraol

1. Introduction

Marine organisms have recently received much attention in the search for structurally interesting
compounds with a wide range of pharmacological activities to develop new medicines or health
foods [1–5]. Approximately 8000 species of marine algae have been identified and grouped into
different classes, including brown algae (Phaeophyta), red algae (Rhodophyta), and green algae
(Chlorophyta). Ulva australis Areschoug is a green alga belonging to the family Ulvaceae and is widely
distributed along the coasts of the Yellow Sea and the Bo Sea of China. As an edible seaweed, it
contains high nutritional value minerals, vitamins, and noncaloric dietary fibers [6]. Ulva australis is
consumed by local inhabitants of Asia [7] and has been authorized for human utilization by French
authorities [8]. In addition to edibility, the decoction of this alga has been accepted as a natural
traditional medicine for hyperlipidemia, sunstroke, and urinary diseases [9]. The chemical and
pharmacological studies of U. australis available in the literature are mostly concerned with the algal
polysaccharides. These sulfated polysaccharides have been described to possess diverse biological
activities, such as antihyperlipidemic [10], antioxidant [11], antiviral [12], immunomodulatory [13],
and anti-radiation activities [14]. However, small-molecule chemical components of U. australis and
structure identification have only received limited attention [15–17]. It has been recently reported that
3-hydroxy-4,7-megastigmadien-9-one, isolated from this alga, attenuates lipopolysaccharide-induced
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and TLR9-mediated inflammatory responses by downregulating mitogen-activated protein kinase
and NF-κB pathways [7,18]. In our search for aldose reductase inhibitors from marine algae, we
found that bromophenols isolated from the red alga Symphyocladia latiuscula exhibited significant
human recombinant aldose reductase inhibitory activity [19]. The extract from U. australis exhibited
weak human recombinant aldose reductase inhibitory activity, which is in agreement with the
previous report [20]. Our continued interest in discovering new secondary metabolites from
marine algae led us to isolate three new sterols, (24R)-5,28-stigmastadiene-3β,24-diol-7-one (1),
(24S)-5,28-stigmastadiene-3β,24-diol-7-one (2), and 24R and 24S-vinylcholesta-3β,5α,6β,24-tetraol (3),
together with three known sterols, isofucoterol (4), 24R,28S and 24S,28R-epoxy-24-ethylcholesterol (5),
and (24S)-5,28-stigmastadiene-3β,24-diol (6), from the green alga U. australis (Figure 1). The structures
of these compounds were identified by NMR spectroscopy, mass spectrometry, and compared with
those reported in the literature. The configurations of compounds 1 and 2 were determined on the
basis of the chemical shift differences between H-27 and H-26 and between H-27 and H-21. Herein, we
also report on the evaluation of the human recombinant aldose reductase inhibitory activities of the
compounds isolated by us from this alga.
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Figure 1. Structures of compounds 1–6. 

2. Results and Discussion 

Compound 1 was isolated as a white amorphous solid. The molecular formula was determined 
to be C29H46O3 by HR-EI-MS at m/z 442.3445 (calcd. for C29H46O3 442.3447). The sterol nature of this 
compound was deduced from a combination of 13C NMR (Table 1) and distortionless enhancement 
by polarization transfer spectra. The 13C NMR spectrum of compound 1 showed 29 resonances, 
which were assigned to five methyl groups (δC 11.9 (C-18), 16.4 (C-26), 17.3 (C-19), 17.5 (C-27), and 
18.9 (C-21)), nine sp3 methylene carbons (δC 21.2 (C-11), 26.2 (C-15), 29.0 (C-22), 29.6 (C-16), 31.1 
(C-2), 34.8 (C-23), 36.3 (C-1), 38.6 (C-12), and 41.7 (C-4)), one sp2 methylene carbon (δC 112.7 (C-29)), 
six sp3 methine carbons (δC 35.8 (C-25), 36.0 (C-20), 45.3 (C-8), 49.8 (C-14), 49.8 (C-9), and 54.4 (C-17)), 
one oxygenated sp3 methine carbons (δC 70.4 (C-3)), two sp2 methine carbons (δC 125.8 (C-6) and 
142.1 (C-28)), two sp3 quaternary carbons (δC 38.2 (C-10) and 43.0 (C-13)), one oxygenated sp3 
quaternary carbon (δC 77.5 (C-24)), one sp2 quaternary carbon (δC 164.6 (s, C-5)), and one ketone 
carbonyl carbon (δC 201.6 (C-7)). The 1H NMR spectrum of compound 1 had resonances 
corresponding to two tertiary methyl groups (δH 0.68 (s, H-18) and 1.20 (s, H-19)), three secondary 
methyl groups (δH 0.87 (d, J = 7.2 Hz, H-26), 0.89 (d, J = 8.0 Hz, H-27), and 0.93 (3H, d, J = 6.4 Hz, 
H-21)), an oxymethine proton (δH 3.67 (m, H-3)), and an olefinic proton (δH 5.69 (d, J = 1.6 Hz, H-6)). 
The 1H NMR spectrum exhibited an ABX system at δH 5.14 (1H, dd, J = 10.8, 1.6 Hz, H-29), 5.20 (1H, 
dd, J = 17.6, 1.6 Hz, H-29), and 5.81 (1H, dd, J = 17.6, 10.8, H-28), due to the presence of a vinyl group 
attached to a tertiary carbon. These data, along with mass fragments at m/z 424 [M − H2O]+, 399 [M − 
C3H7]+, 381 [M − C3H7 − H2O]+, 329 [M − C7H13O]+, and 285 [M − C10H19O − 2H]+ (Figure 2) suggested 
that compound 1 possessed a 24-hydroxy-24-vinyl side chain [21,22]. The above data thus 
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2. Results and Discussion

Compound 1 was isolated as a white amorphous solid. The molecular formula was determined
to be C29H46O3 by HR-EI-MS at m/z 442.3445 (calcd. for C29H46O3 442.3447). The sterol nature of this
compound was deduced from a combination of 13C NMR (Table 1) and distortionless enhancement by
polarization transfer spectra. The 13C NMR spectrum of compound 1 showed 29 resonances, which
were assigned to five methyl groups (δC 11.9 (C-18), 16.4 (C-26), 17.3 (C-19), 17.5 (C-27), and 18.9
(C-21)), nine sp3 methylene carbons (δC 21.2 (C-11), 26.2 (C-15), 29.0 (C-22), 29.6 (C-16), 31.1 (C-2),
34.8 (C-23), 36.3 (C-1), 38.6 (C-12), and 41.7 (C-4)), one sp2 methylene carbon (δC 112.7 (C-29)), six sp3

methine carbons (δC 35.8 (C-25), 36.0 (C-20), 45.3 (C-8), 49.8 (C-14), 49.8 (C-9), and 54.4 (C-17)), one
oxygenated sp3 methine carbons (δC 70.4 (C-3)), two sp2 methine carbons (δC 125.8 (C-6) and 142.1
(C-28)), two sp3 quaternary carbons (δC 38.2 (C-10) and 43.0 (C-13)), one oxygenated sp3 quaternary
carbon (δC 77.5 (C-24)), one sp2 quaternary carbon (δC 164.6 (s, C-5)), and one ketone carbonyl carbon
(δC 201.6 (C-7)). The 1H NMR spectrum of compound 1 had resonances corresponding to two tertiary
methyl groups (δH 0.68 (s, H-18) and 1.20 (s, H-19)), three secondary methyl groups (δH 0.87 (d,
J = 7.2 Hz, H-26), 0.89 (d, J = 8.0 Hz, H-27), and 0.93 (3H, d, J = 6.4 Hz, H-21)), an oxymethine proton
(δH 3.67 (m, H-3)), and an olefinic proton (δH 5.69 (d, J = 1.6 Hz, H-6)). The 1H NMR spectrum
exhibited an ABX system at δH 5.14 (1H, dd, J = 10.8, 1.6 Hz, H-29), 5.20 (1H, dd, J = 17.6, 1.6 Hz,
H-29), and 5.81 (1H, dd, J = 17.6, 10.8, H-28), due to the presence of a vinyl group attached to a
tertiary carbon. These data, along with mass fragments at m/z 424 [M − H2O]+, 399 [M − C3H7]+,
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381 [M− C3H7 −H2O]+, 329 [M− C7H13O]+, and 285 [M− C10H19O− 2H]+ (Figure 2) suggested that
compound 1 possessed a 24-hydroxy-24-vinyl side chain [21,22]. The above data thus demonstrated
that compound 1 was a ∆5-3β-hydroxyl 7-oxysterol derivative, similar to the ring system of decortinone
(Table 1), a known sterol previously obtained from the green alga Codium decorticatum [23], and the
side chain of 5,28-stigmastadiene-3β,24-diol (Table 1), a known sterol previously isolated from the
brown alga Sargassum fusiforme [24]. The stereochemistry of compound 1 at C-24 was established to be
R, since the signals attributed to H-27 at δ 0.890 (3H, d, J = 8.0 Hz) were close to those of H-26 at δ 0.871
(3H, d, J = 7.2 Hz) in the 1H NMR spectrum of compound 1. The chemical shift difference between
H-27 and H-26 of compound 1 was 0.019 ppm, whereas the chemical shift difference between H-27
and H-21 of compound 1 was 0.041 ppm, which was in accordance with those of 24R-saringosterol.
The chemical shift difference between H-27 and H-26 of 24R-saringosterol was 0.020 or 0.020 ppm,
whereas the chemical shift difference between H-27 and H-21 24R-saringosterol was 0.032 or 0.033
ppm in the previous reports [21,22]. Thus, compound 1 was elucidated with the structure as shown in
Figure 1, and named (24R)-5,28-stigmastadiene-3β,24-diol-7-one.

Table 1. 13C-NMR spectral data of compound 1–3 (100 MHz, CDCl3, δ in ppm).

Position 1 2 3 a 1 b 2 c 3 d 4

1 36.3 36.3 30.8 36.3 37.3 37.3 30.2
2 31.1 31.2 32.3 31.1 32.0 32.0 33.3
3 70.4 70.5 67.5 70.4 71.8 71.8 66.8
4 41.7 41.8 40.7 41.7 42.4 42.4 39.7
5 164.6 164.8 75.9 164.9 140.7 140.7 75.0
6 125.8 126.0 75.9 126.1 121.6 121.6 75.4
7 201.6 201.9 34.5 202.5 31.7 31.7 35.4
8 45.3 45.4 30.1 45.3 32.0 32.0 30.0
9 49.8 49.9 45.8 49.9 50.2 50.2 45.0

10 38.2 38.2 38.2 38.6 36.6 36.6 37.7
11 21.2 21.2 21.2 21.1 21.2 21.1 20.8
12 38.6 38.6 39.8 38.6 39.8 39.8 39.1
13 43.0 43.1 42.7 43.0 42.4 42.3 42.3
14 49.8 49.9 55.8 49.8 56.8 56.8 55.9
15 26.2 26.2 24.0 26.2 24.3 24.3 22.2
16 29.6 29.7 28.14/28.09 29.3 28.2 28.3 27.6
17 54.4 54.5 55.8 54.6 55.9 55.9 55.6
18 11.9 12.0 12.1 11.6 11.9 11.9 11.6
19 17.3 17.3 16.8 17.2 19.5 19.4 16.1
20 36.0 36.0 36.0 35.4 36.0 36.0 35.8
21 18.9 18.9 18.7 18.7 18.9 18.8 18.2
22 29.0 29.1 29.0 33.3 29.1 29.2 33.6
23 34.8 34.8 34.8/34.6 29.6 34.8 34.6 23.7
24 77.5 77.6 77.5 49.4 77.7 77.7 45.0
25 35.8 35.8 35.9 17.8 36.1 36.2 27.8
26 16.4 16.4 16.4 147.5 16.5 16.5 18.3
27 17.5 17.5 17.5 111.3 17.6 17.6 18.3
28 142.1 142.3 142.2/142.1 26.4 142.4 142.5 22.0
29 112.7 112.8 112.7/112.6 11.9 112.9 112.8 11.8

1 a, Decortinone, data from [23]; 2 b, (24R)-5,28-stigmastadiene-3β,24-diol, data from [24]; 3 c, (24S)-5,28-
stigmastadiene-3β,24-diol, data from [24]; 4 d, (24S)-24-ethylcholesta-3β,5α,6β-triol, data from [25].

Compound 2 was isolated as a white amorphous solid. The 13C NMR spectrum of compound 2
displayed 29 signals (Table 1), including five quaternary carbons (one ketone carbonyl carbon, one
olefinic carbon, and one oxygen-bearing carbon), nine methine carbons (two olefinic carbons and
one oxygen-bearing carbon), 10 methylene carbons (one olefinic carbon), and five methyl groups.
The molecular formula was established as C29H46O3 using HR-EI-MS (m/z 442.3439 [M]+, calcd.
for C29H46O3 442.3447). Comparison of the 1H and 13C NMR data of compound 2 with those of
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compound 1 showed that both compounds shared the same sterol skeleton nucleus and side chain,
the only difference being that the signal of H-27 in compound 2 appeared at δH 0.91 (d, J = 7.2 Hz),
whereas the signal of H-27 in compound 1 displayed at δH 0.89 (d, J = 8.0 Hz). Stereochemistry at
C-24 of compound 2 was established to be S, since the signal attributed to H-27 at δH 0.909 (3H, d,
J = 7.2 Hz) was very close to that of H-21 at δH 0.931 (3H, d, J = 6.8 Hz) in the 1H NMR spectrum of
compound 2. The chemical shift difference between H-27 and H-21 of compound 2 was 0.022 ppm,
whereas the chemical shift difference between H-27 and H-26 of compound 2 was 0.038 ppm, which
was in accordance with those of 24S-saringosterol. The chemical shift difference between H-27 and
H-21 of 24S-saringosterol was 0.019 or 0.020 ppm, whereas the chemical shift difference between H-27
and H-26 24S-saringosterol was 0.027 or 0.027 ppm in the previous reports [21,22]. Thus, compound 2
structure was established, and named (24S)-5,28-stigmastadiene-3β,24-diol-7-one.
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Compound 3 was isolated as a white amorphous solid and its molecular formula was assigned
as C29H50O4 based on a pseudo-molecular ion peak at m/z 461.3625 [M − H]− (calcd. for C29H49O4

461.3631) in the negative HR-FAB-MS spectrum. The presence of four hydroxyl groups in compound 3
was indicated by the EI-MS spectrum, absence of the molecular ion peak, which exhibited mass ions for
stepwise H2O loss at m/z 444 [M−H2O]+, 426 [M− 2H2O]+, 408 [M− 3H2O]+, and 390 [M− 4H2O]+.
Additional prominent fragment peaks were present at m/z 401 [M − C3H7 − H2O]+, 383 [M − C3H7

− 2H2O]+, 365 [M − C3H7 − 3H2O]+, 347 [M − C3H7 − 4H2O]+, 305 [M − C10H19O − 2H]+,
289 [M − C10H19O − H2O]+, 271 [M − C10H19O − 2H2O]+, and 253 [M − C10H19O − 3H2O]+

(Figure 3). The 13C NMR spectrum of compound 3 also exhibited 29 signals (Table 1), which included
five methyl groups (δC 12.1 (C-18), 16.4 (C-26), 16.8 (C-19), 17.5 (C-27), and 18.7 (C-21)), a sp2 methylene
carbon (δC 112.7/112.6 (C-29)), two oxygenated sp3 methine carbons (δC 67.5 (d, C-3) and 75.9 (d,
C-6)), a sp2 methine carbon (δC 142.2/142.1 (C-28)), two oxygenated sp3 quaternary carbons (δC 75.9
(C-5) and 77.5 (C-24)). The 1H NMR spectrum of compound 3 showed tertiary methyl groups at δ 0.67
(3H, s, H-18) and 1.18 (3H, s, H-19), and three secondary methyl groups at δ 0.87 (3H, d, J = 7.2 Hz,
H-26), 0. 90 (d, J = 6.8 Hz, H-27)/0.89 (d, J = 8.0 Hz, H-27), and 0.914 (d, J = 6.4 Hz, H-21)/0.908
(d, J = 7.2 Hz, H-21). The 3β, 5α, 6β-trihydroxyl sterol nature was characterized by a multiplet at
δ 4.10 (1H, H-3), a double doublet at δ 2.08 (1H, J = 12.5, 12.5 Hz, H-4), a multiplet at δ 1.60 (1H,
overlap, H-4), and a broad singlet at δ 3.49 (1H, H-6), while the angular methyl groups at C-19 and
C-18 resonated at δ 1.18 (s) and 0.67 (s), respectively [26]. The signal for H-6α appeared at δ 3.49 (br s),
whereas the signal of H-6β resonated at about δ 3.74 (dd, J = 11.5, 4.5 Hz); coupling constants of H-6α
in compound 3 indicated the proton to be equatorial. A singlet for H-19 was observed at δ 1.17 (s),
which was shifted downfield with respect to the corresponding signal in the 6α-hydroxyl nature that
resonated at δ 1.05 (s). The assignments were support by the 13C NMR spectral data of compound 3
and comparison with reference compounds. Up-field shifts were exhibited by C-5 at δ 75.9 and C-7
at δ 34.5, whereas the signal of C-5 and C-7 in 6α-hydroxyl nature resonated at about δ 77.0 and 38.1,
respectively; downfield shifts were exhibited by δ C-6 at 75.9 and C-19 at δ 16.8, whereas the signals of
C-6 and C-19 in the 6α-hydroxyl nature resonated at about δ 67.0 and 15.4, respectively [25,27]. The
above data thus demonstrate that compound 3 was a 3β,5α,6β-trihydroxyl sterol derivative, similar to
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the ring system of (24S)-24-ethylcholesta-3β,5α,6β-triol, a known sterol previously isolated from the
marine sponge Spirastrella inconstans [25]. The 1H NMR spectrum further exhibited an ABX system
at δ 5.81 (dd, J = 17.2, 10.8, H-28)/5.79 (dd, J = 17.6, 10.8, H-28), 5.19 (dd, J = 17.6, 1.6 Hz, H-29)/5.18
(dd, J = 17.2, 2.4 Hz, H-29), and 5.14 (dd, J = 10.8, 2.4 Hz, H-29)/5.13 (dd, J = 10.8, 1.6 Hz, H-29),
due to the presence of a vinyl group attached to a tertiary carbon. These data, in combination with
the mass fragments, suggested that compound 3 possessed a 24-hydroxy-24-vinyl side chain and
indicated that compound 3 probably consisted of epimers with the ratio of 1:1. In the HMBC spectrum
of compound 3, long-range correlations belonging to rings A and B were observed for H3-19 with
C-1, C-5, C-9, and C-10, H-4 with C-2, C-3, C-5, C-6, and C-10, H-6 with C-4, C-5, C-9, and C-10,
long-range correlations belonging to rings C and D were observed for H3-18 with C-12, C-13, C-14,
and C-17, long-range corrections belonging to the side chain were observed for H3-21 with C-17, C-20,
and C-22, H3-26 with C-24, C-25, and C-27, H3-27 with C-24, C-25, and C-26, H-28 with C-24, H2-29
with C-24 and C-28. Thus, the structure of compound 3 was determined, and it was named 24R and
24S-vinylcholesta-3β,5α,6β,24-tetraol.
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Compounds 4–6 were identified by comparing the 1H- and 13C-NMR, as well as the MS spectra
with those reported in the literature. They were identified as isofucoterol (4) [28], 24R,28S and
24S,28R-epoxy-24-ethylcholesterol (5) [29], and (24S)-5,28-stigmastadiene-3β,24-diol (6) [24].

Aldose reductase, an enzyme of the aldoketo reductase super-family that catalyzes the conversion
of glucose to sorbitol in the polyol pathway of glucose metabolism, has been proved as the
molecular target for major complications of diabetes, such as cataract, neuropathy, retinopathy,
and nephropathy [30]. In this context, aldose reductase inhibitors have received much attention
worldwide. In this study, compounds 1–6 and 15 previously isolated compounds were evaluated for
human recombinant aldose reductase inhibitory activity. Quercetin, a well-known aldose reductase
inhibitor [31–33], was used as a positive control. At the concentration of 3 µg/mL (Table 2), 24R,28S
and 24S,28R-epoxy-24-ethylcholesterol (5), 1-O-palmitoyl-3-O-(6′-sulfo-α-D-quinovopyranosyl)
glycerol, (2S)-1-O-palmitoyl-3-O-[α-D-galactopyranosyl(1→2)β-D-galactopyranosyl] glycerol,
4-hydroxybenzoic acid, 4-hydroxyphenylacetic acid, and 8-hydroxy-(6E)-octenoic acid showed
weakly inhibitory activities, with inhibition values of 31.28 ± 1.04%, 27.41 ± 1.11%, 33. 89 ± 1.03%,
27.80 ± 0.79%, 33.05 ± 1.32%, and 28.92 ± 0.53%, respectively, which compared with the positive
control (71.66 ± 0.52%). In addition, three new sterols 1–3 were almost inactive.
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Table 2. Human recombinant aldose reductase inhibitory activities of the isolated compounds.

Compounds Inhibitory Ratio (%)

1 3.31 ± 0.85
2 4.08 ± 0.39
3 2.87 ± 0.62
4 8.13 ± 1.76
5 31.28 ± 1.04
6 N.I. 1

Isophitol 21.86 ± 1.21
Indole-3-carboxylic acid 10.74 ± 0.92

1-O-Palmitoyl-3-O-(6′-sulfo-α-D-quinovopyranosyl) glycerol 27.41 ± 1.11
(2S)-1-O-Palmitoyl-3-O-[α-D-galactopyranosyl(1→2)β-D-galactopyranosyl] glycerol 33. 89 ± 1.03

3-Methylsulfoxypropionic acid 12.42 ± 0.63
Tyrosol 15.81 ± 1.16

4-Hydroxybenzoic acid 27.80 ± 0.79
4-Hydroxyphenylacetic acid 33.05 ± 1.32

Loliolide 8.46 ± 1.15
Annuionone D 18.74 ± 0.92

Azelaic acid 13.38 ± 0.59
Succinic acid 15.98 ± 0.87

8-Hydroxy-(6E)-octenoic acid 28.92 ± 0.53
n-Butyl β-D-fructopyranoside 6.41 ± 0.88

n-Butyl pyroglutamate 16.38 ± 1.87
Quercetin 71.66 ± 0.52

1 N.I. = inactive at 3 µg/mL.

3. Materials and Methods

3.1. General Experimental Procedures

EIMS and FABMS were obtained using a JEOL JMS-700 mass spectrometer. NMR spectra
were measured on JEOL AL-400 spectrometer (Japan Electronic Optics Laboratory Co. Ltd., Tokyo,
Japan). All chemical shifts (δ) were given in ppm and the samples were solubilized in CDCl3
(Cambridge Isotope Laboratories, Inc., Andover, MA, USA). Optical rotations were measured by
using a JASCO P-1020 automatic digital polarimeter (JASCO Corporation, Tokyo, Japan). HPLC
was performed on an NPL-500 pump (Nihon Seimitsu Kagaku Co., Ltd., Tokyo, Japan) and a
RI-102 detector (Showa Denko Co., Ltd., Tokyo, Japan) using a COSMOSIL Silica 5SL-II Waters
column (20 mm × 250 mm, Nacalai Tesque, Inc., Kyoto, Japan) and a Senshu Pak DOCOSIL column
(10 mm × 250 mm, Senshu Scientific Co. Ltd., Tokyo, Japan). Open column chromatography
was performed with silica gel 60 N (100–210 µm, Kanto chemical Co., Inc., Tokyo, Japan), RP-18
reverse-phase silica gel (PEGASIL PREP ODS-5015-12A, Senshu Scientific Co. Ltd., Tokyo, Japan),
and Sephadex LH-20 (Pharmacia, New Orleans, LA, USA). TLC was carried out on pre-coated TLC
plates with silica gel 60 F254 and silica gel RP-18 60 F254 (0.25 mm, Merck, Darmstadt, Germany).
Detection was achieved by spraying with 10% H2SO4 in MeOH and heating at 110 ◦C. Aldose
reductase recombinant from human muscle cell purchased from Wako Pure Chemical Industries,
Ltd. (Osaka, Japan). β-Nicotinamide adenine dinucleotide phosphate tetrasodium salt (NADPH),
DL-glyceraldehyde, sodium dihydrogenphosphate dihydrate, disodium hydrogenphosphate 12-water,
and dimethyl sulfoxide (DMSO) were bought from Nacalai Tesque, Inc. (Kyoto, Japan). Compounds
isophitol [34], indole-3-carboxylic acid [35], 1-O-palmitoyl-3-O-(6′-sulfo-α-D-quinovopyranosyl)
glycerol [36], (2S)-1-O-palmitoyl-3-O-[α-D-galactopyranosyl(1→2)β-D-galactopyranosyl] glycerol [37],
3-methylsulfoxypropionic acid [38], tyrosol [39], 4-hydroxybenzoic acid [40], loliolide [41],
annuionone D [42], azelaic acid [43], succinic acid [44], 8-hydroxy-(6E)-octenoic acid [45], n-butyl
β-D-fructopyranoside [46], and n-butyl pyroglutamate [47] were isolated and identified from this alga
in our laboratory.
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3.2. Algal Material

The wild green alga Ulva australis was collected at the coast of Dalian, China, in October 2002 and
identified by Professor Zi’ang Yao (School of Life Science and Technology, Dalian University, Dalian,
China). A voucher specimen (20021001) was deposited at the Department of Natural Medicine and
Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China.

3.3. Extraction and Isolation

Air-dried U. australis (27 kg) was powered and reflux extracted twice with 95% EtOH for 4 h.
Evaporation of the solvent under reduced pressure gave the EtOH extract (1.8 kg). The EtOH extract
(1.2 kg) was suspended in water and successively partitioned with hexane, EtOAc, and n-BuOH to
give the hexane soluble part (137.9 g), EtOAc soluble part (25.7 g), and n-BuOH soluble part (20.2 g),
respectively. The hexane soluble part was chromatographed on a silica gel column eluting with a
gradient of hexane-EtOAc (20:1, 10:1, 5:1; 1:1, 1:3, v/v), EtOAc, a gradient of EtOAc-MeOH (5:1,
1:1, v/v), and MeOH to give 24 fractions (Fr. 1–Fr. 24) on the basic of TLC analyses. Fr. 10 was
purified by normal-phase preparative HPLC using hexane:EtOAc (3:1, v/v) as the mobile phase and
reversed-phase preparative HPLC using MeOH as the mobile phase at a flow rate of 2.0 mL/min
resulting in the isolation of compounds 4 (132 mg), 5 (40.2 mg), and 6 (3.0 mg). Fr. 13 was subjected
to column chromatography on Sephadex LH-20 using MeOH as an eluent, yielding sub-fractions (Fr.
13-1–Fr. 13-3). Fr. 13-2 was further separated by RP-18 silica gel column chromatography eluting with
MeOH to finish sub-fractions, which were purified by reversed-phase preparative HPLC employing
MeOH:H2O (85:15, v/v) as the mobile phase at a flow rate of 2.0 mL/min to give compound 1 (4.3 mg).
Fr. 14 was isolated by Sephadex LH-20 column chromatography eluting with MeOH, RP-18 silica
gel column chromatography eluting with MeOH:H2O (80:20, v/v), reverse-phase preparative HPLC
eluting with MeOH:H2O (85:15, v/v) at a flow rate of 2.0 mL/min, and normal-phase preparative
HPLC eluting with hexane: EtOAc (2:3, v/v) at a flow rate of 2.0 mL/min to yield compound 2 (5.5 mg).
Fr. 16 was chromatographed on a RP-18 silica gel column and eluted using MeOH, and reverse-phase
preparative HPLC (MeOH-H2O, 85:15, v/v, 2.0 mL/min) to obtain compound 3 (2.4 mg).

Compound 1: white amorphous solid; [α]D
25 −21.8 (0.02, CHCl3), HR-EI-MS m/z 442.3445 (calcd. for

C29H48O3, 442.3447); EI-MS m/z 442 [M]+ (32), 424 (11), 399 (92), 381 (100), 344 (70), 329 (21), 285 (92);
1H NMR (CDCl3, 400 MHz) δ 5.81 (1H, dd, J = 17.6, 10.8, H-28), 5.69 (1H, d, J = 1.6 Hz, H-6), 5.20 (1H,
dd, J = 17.6, 1.6 Hz, H-29), 5.14 (1H, dd, J = 10.8, 1.6 Hz, H-29), 3.67 (1H, m, H-3), 1.20 (3H, s, H-19),
0.931 (d, J = 6.4 Hz, H-21), 0.890 (3H, d, J = 8.0 Hz, H-27), 0.871 (3H, d, J = 7.2 Hz, H-26), 0.68 (3H, s,
H-18); 13C NMR (CDCl3, 100 MHz) spectra data, see Table 1.

Compound 2: white amorphous solid; [α]D
25 −42.6 (0.01, CHCl3), HR-EI-MS m/z 442.3439 (calcd. for

C29H46O3 442.3447); EI-MS m/z 442 [M]+ (35), 424 (16), 399 (20), 381 (25), 344 (18), 329 (9), 285 (100);
1H NMR (CDCl3, 400 MHz) δ 5.81 (1H, dd, J = 17.6, 10.8, H-28), 5.69 (1H, d, J = 1.6 Hz, H-6), 5.19 (1H,
dd, J = 17.6, 1.6 Hz, H-29), 5.14 (1H, dd, J = 10.8, 1.6 Hz, H-29), 3.67 (1H, m, H-3), 1.20 (3H, s, H-19),
0.931 (d, J = 6.8 Hz, H-21), 0.909 (3H, d, J = 7.2 Hz, H-27), 0.871 (3H, d, J = 7.2 Hz, H-26), 0.68 (3H, s,
H-18); 13C NMR (CDCl3, 100 MHz) spectra data, see Table 1.

Compound 3 (a mixture of 24R and 24S): white amorphous solid; negative HR-FAB-MS m/z 461.3625
(calcd. for C29H49O4 461.3631); EI-MS m/z 444 (11), 426 (26), 408 (8), 401 (73), 390 (2), 383 (100), 365
(68), 347 (23), 305 (83), 289 (52), 271 (70), 253 (27); 1H NMR (CDCl3, 400 MHz) δ 5.81 (dd, J = 17.2,
10.8, H-28)/5.79 (dd, J = 17.6, 10.8, H-28), 5.19 (dd, J = 17.6, 1.6 Hz, H-29)/5.18 (dd, J = 17.2, 2.4 Hz,
H-29), 5.14 (dd, J = 10.8, 2.4 Hz, H-29)/5.13 (dd, J = 10.8, 1.6 Hz, H-29), 4.10 (1H, m, H-3), 3.49 (1H, br s,
H-6), 2.08 (1H, J = 12.5, 12.5 Hz, H-4), 1.60 (1H, overlap, H-4), 1.18 (3H, s, H-19), 0.914 (d, J = 6.4 Hz,
H-21)/0.908 (d, J = 7.2 Hz, H-21), 0.90 (d, J = 6.8, H-27)/0.89 (d, J = 8.0 Hz), 0.87 (3H, d, J = 7.2 Hz,
H-26), 0.67 (3H, s, H-18); 13C NMR (CDCl3, 100 MHz) spectra data, see Table 1.
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3.4. Human Recombinant Aldose Reductase Inhibitory Activity Assay

The human recombinant aldose reductase inhibition assays were performed according to the
method modified by our group [19]. The assay was performed at 25 ◦C in a 200 mM sodium
phosphate buffer solution (pH 6.2) (700 µL), containing 1.5 mM NADPH solution (100 µL), 100 mM
DL-glyceraldehyde solution (100 µL), and 3 × 10−2 unit/mL human recombinant aldose reductase
solution (100 µL), in the total volume of 1.0 mL. The effects of each sample on the enzyme activity were
determined by adding 3 µL of test sample solution (final concentration 3 µg/mL dissolved in 100%
DMSO) to the reaction mixture. An appropriate blank control mixture and positive control mixture
were prepared. The reaction was initiated by the addition of DL-glyceraldehyde solution and the rate
of NADPH oxidation was followed by recording the decrease in the absorbance at 340 nm on a UV
spectrophotometer (SHIMADZU UV 1600, Kyoto, Japan). Inhibition percentage (%) was calculated as
[1 − (∆As − ∆Ab)/(∆Ac − ∆Ab)] × 100, where As is the decreased absorbance of the sample, Ac and
Ab are the decreased absorbances without a sample as a positive control and without a sample and
enzyme as a blank control, respectively. An overview about the effects of these substances on human
recombinant aldose reductase inhibitory activity is given in Table 2.

4. Conclusions

Phytochemistry investigation of the green alga U. australis led to the isolation of three
new sterols and three known sterols. These compounds, together with the previously
isolated secondary metabolites of this alga, were investigated for their inhibitory effects on
aldose reductase in vitro. Of the compounds, 24R,28S and 24S,28R-epoxy-24-ethylcholesterol
(5), 1-O-palmitoyl-3-O-(6′-sulfo-α-D-quinovopyranosyl) glycerol, (2S)-1-O-palmitoyl-3-O-[α-D-
galactopyranosyl(1→2)β-D-galactopyranosyl] glycerol, 4-hydroxybenzoic acid, 4-hydroxyphenylacetic
acid, and 8-hydroxy-(6E)-octenoic acid weakly inhibited the enzyme. The obtained results are beneficial
to subsequent research on this alga.
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