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Abstract

Background: Accurate evaluation of glomerular filtration rates (GFRs) is of critical importance in clinical practice. A previous
study showed that models based on artificial neural networks (ANNs) could achieve a better performance than traditional
equations. However, large-sample cross-sectional surveys have not resolved questions about ANN performance.

Methods: A total of 1,180 patients that had chronic kidney disease (CKD) were enrolled in the development data set, the
internal validation data set and the external validation data set. Additional 222 patients that were admitted to two
independent institutions were externally validated. Several ANNs were constructed and finally a Back Propagation network
optimized by a genetic algorithm (GABP network) was chosen as a superior model, which included six input variables; i.e.,
serum creatinine, serum urea nitrogen, age, height, weight and gender, and estimated GFR as the one output variable.
Performance was then compared with the Cockcroft-Gault equation, the MDRD equations and the CKD-EPI equation.

Results: In the external validation data set, Bland-Altman analysis demonstrated that the precision of the six-variable GABP
network was the highest among all of the estimation models; i.e., 46.7 ml/min/1.73 m2 vs. a range from 71.3 to 101.7 ml/
min/1.73 m2, allowing improvement in accuracy (15% accuracy, 49.0%; 30% accuracy, 75.1%; 50% accuracy, 90.5% [P,0.001
for all]) and CKD stage classification (misclassification rate of CKD stage, 32.4% vs. a range from 47.3% to 53.3% [P,0.001 for
all]). Furthermore, in the additional external validation data set, precision and accuracy were improved by the six-variable
GABP network.

Conclusions: A new ANN model (the six-variable GABP network) for CKD patients was developed that could provide a
simple, more accurate and reliable means for the estimation of GFR and stage of CKD than traditional equations. Further
validations are needed to assess the ability of the ANN model in diverse populations.
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Introduction

Chronic kidney disease (CKD) is a major public health problem

worldwide [1]. The Center for Disease Control in the USA

declared that the prevalence of CKD was 26 million in the United

States [2] and the number of patients with CKD in China was

estimated to be about 119.5 million [3]. CKD is a serious threat to

health and quality of life [4]. The number of patients that accepted

maintenance renal replacement therapy in the United States

increased from 281,000 in 2000 to 547,000 in 2010 to 571,000 in

2011 [5]. Currently, over 270,000 chronic hemodialysis patients

were registered in the Chinese Renal Data System [6].

Accurate evaluation of glomerular filtration rates (GFRs) is of

critical importance in clinical practice and research [7]. Although

inulin clearance and renal radionuclide excretion rates are the

gold standards to determine GFRs, they cannot be used widely

because of inconvenience and high cost. Therefore, serum

creatinine (SC)-based estimating equations for GFR were devel-

oped. The National Kidney Foundation - Kidney Disease
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Outcomes Quality Initiative Working Group recommended that

the Cockcroft-Gault equation [8] and the Modification of Diet in

Renal Disease (MDRD) equations [9] could be used to calculate

the GFRs of adults [10]. In order to improve the accuracy of

estimation, the MDRD researchers in 2006 used a more accurate

isotope dilution mass spectrometry to measure the SC level, and

they developed re-expressed MDRD formulas [11]. Furthermore,

the studies were extended to 8,254 cases. The newly estimated

GFR (eGFR) formula of the Chronic Kidney Disease Epidemi-

ology Collaboration (CKD-EPI) equation was revised [12].

However, the correct CKD stage classification rates of the

Cockcroft-Gault and MDRD formulas were only 64% and 62%,

suggesting that the traditional SC-based equations remain

relatively imprecise in the estimation of GFR [13] due to SC

and the non-GFR determinants introducing significant errors

when calculating the GFR [14]. Such imprecision can potentially

result in misclassification of the CKD stage, which leads to both

incorrect diagnosis and treatment for individuals and bias in

estimating the prevalence of CKD in the general population [15].

Finding a more accurate method for estimating GFR is an urgent

problem that needs to be solved.

Recently, Inker et al. developed a new estimating equation

based on cystatin C in combination with creatinine and found that

the combined equation performed better than equations based on

either marker alone [13]. These results indicated that the

combination of novel filtration markers, such as cystatin C and

SC, into the GFR estimating formula may be a key factor for

improving the accuracy of estimation. However, the incremental

cost of introducing the new marker should be considered.

The traditional GFR estimation equations were all developed

by the linear regression method. A large number of samples, a

priori knowledge, and specific limits such as absence of multi-

collinearity between independent variables were necessary during

the development of the equations. With the development of

modern mathematics and information technology, artificial neural

networks (ANNs) are one of the methods of mathematical

modeling that has been widely applied in the field of engineering

prediction. An ANN has been applied in the field of medicine and

biology as well, such as cardiac output [16] and in other

physiological measurements [17–18]. A specifically trained three-

layer ANN can infinitely approximate any linear or nonlinear

function with precision [19-20]. Traditionally, the Back Propaga-

tion (BP) networks are widely used, though they have inherent

defects [21]. More complicated ANN models have been recently

published with greater descriptions of the construction of the

models and software sharing [22–23]. A genetic algorithm, a

random search algorithm enlightened from biological natural

selection and genetic mechanisms, can be applied to optimize BP

networks [24] for better performance.

In a previous study, we found that the Radial Basis Function

network was superior to the traditional equations at estimating

GFR [25]. In the large-sample cross-sectional survey reported

here, we assessed the performance of a BP network optimized by a

genetic algorithm (GABP network) for the estimation of GFR,

which had similar features to the Radial Basis Function network.

Methods

Patients
Chronic kidney disease was defined and staged according to the

National Kidney Foundation - Kidney Disease Outcomes Quality

Initiative clinical practice guidelines [10]. Patients with acute

kidney function deterioration, clinical edema, skeletal muscle

atrophy, pleural effusion or ascites, malnutrition, amputation,

heart failure or ketoacidosis were excluded from the study. Patients

that were younger than 18 years were excluded. Patients that were

taking cimetidine or trimethoprim were excluded as well. No

subject was being treated with dialysis at the time of the study.

Measurement
The GFR was measured by the method of technetium-99 m

diethylenetriaminepentaacetic acid (99 mTc-DTPA) renal dynamic

imaging (modified Gate’s method) was used as the standard GFR

(sGFR) [24-25]. A Millennium TMMPR SPECT with a General

Electric Medical System was used to measure 99 mTc-DTPA renal

dynamic imaging as previously described [26]. There was good

agreement between 99 mTc-DTPA renal imaging and plasma

clearance of 51 chromium ethylenediamine tetraacetic acid [27].

An enzymatic method was used to measure SC. Values of SC in

the development data set, the internal validation data set and the

external validation data set were all traceable to the National

Institute of Standards and Technology creatinine standard

reference material (SRM 967). Data on gender, age, height, and

weight were recorded at the same time.

Study design
From January 2005 through December 2009, 831 patients with

CKD in the third affiliated hospital of Sun Yat-sen University,

China, were enrolled, of which 562 patients were randomly

selected as the development data set and the remaining 269

patients constituted the internal validation data set. From January

2010 through December 2010, 349 patients in the same hospital

were included in the external validation data set. An additional

222 patients were admitted to two independent institutions in

other Chinese cities for external validation (Table 1 and Table S1).

Stages 1 and 2, as well as stages 4 and 5 were combined for

convenience. The study protocol was approved by the institutional

review board at the Third Affiliated Hospital of Sun Yat-sen

University and written informed consent was obtained before the

study.

Independent variables taken into account included albumin

(Alb), serum urea nitrogen (SUN), SC, age, height, weight and

gender, and the only dependent variable was estimated GFR.

Gender as a binary variable was transformed with dumb variable

encoding; e.g., male equaled 1 and female equaled 0. As the range

of each variable from the raw data was not the same, and it would

affect construction of the ANN, each variable was normalized into

the same range. The maximum and minimum values of

normalization are shown in Table S2, and all minimum values

were set to be not less than 0 considering the practical significance

of the data.

Modeling with the ANN
A three-layer BP network was constructed using commercial

software (Matlab software version 2011b, The Mathworks, Boston

MA, USA). The neurons of the input layer included all

independent variables as the input variables of the network, and

the neuron of the output layer was the dependent variable; i.e.,

eGFR, as the output variable of the network. Each neuron of the

hidden layer took the S function as an exciting function, and

several networks were constructed with different numbers of

neurons in the hidden layer (1 to 13). Each BP network was

initialized randomly and then trained by learning the rule of back

propagation with the development data set, and was validated with

the internal validation data set to achieve a superior topology.

Performance was defined as mean square error of the internal

validation data set. A set of thresholds and weights could be

specified after training, and then the output of the network was
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calculated by the weighted summation of each neuron to

approximate sGFR.

To achieve better performance of the ANN, initialization of the

weights and thresholds of the BP network was optimized by the

Genetic algorithm (GABP network). All weights and thresholds of

one network were encoded as a chromosome, and then evolved

from one generation to another, including the progression of

mutation and crossing. When a network could achieve better

performance in the internal validation data set, the initial weights

and thresholds were selected for the next generation. Finally,

superior initial weights and thresholds were achieved, and then

applied in the initialization of the network.

To facilitate clinical use, we used a mean impact value analysis

[28] to select variables from the seven input variables of the GABP

network gradually and, in turn, excluded Alb, gender, height,

SUN, weight and age. We then established the appropriate GABP

network with different input variables. The six-variable (including

SC, age, weight, SUN, height and gender) GABP network with a

topology of 6-2-1 (named the GABP6 network) was the optimal

model in the internal validation data set. Explanations of the

network are listed in Tables S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13, S14, S15 and Figure S1. Detailed performances in the

internal validation data set are presented in Tables S16 and S17,

and Figures S2 and S3.

Calculations
The GFR was estimated by using the following equations:

1) Cockcroft-Gault-equation (CG) [8]:

CG{GFR

~½(140{Age)|Weight(Kg)�7SC772

|½0:85 if patient is female�|1:737BSA

2) Six-variable MDRD equation (MDRD1) [9]:

MDRD1{GFR

~170|SC{0:999|Age{0:176|SUN{0:170|Alb0:318

|½0:762 if patient is female�

|½1:180 if patient is black�

Table 1. Patient characteristic.

Characteristic
Development and Internal
Validation (N = 831) External Validation (n = 349)

Additional External Validation
(n = 222)

Causes of CKD, N (%)

Primary glomerular disease 255(30.7) 71(20.3) 71(32.0)

Diabetic nephropathy 205(24.0) 147(42.1) 48(21.6)

Hypertension 115(13.8) 44(12.6) 45(20.3)

Chronic tubulointerstitial disease 81(9.7) 30(8.6) 16(7.2)

Polycystic kidney disease 27(3.2) 8(2.3) 2(0.9)

Lupus nephritis 13(1.6) 5(1.4) 5(2.3)

Other causes or causes unknown 135(16.2) 44(12.6) 35(15.8)

Distribution of CKD stages, N (%) { *

CKD 1 62(7.5) 32(9.2) 39(17.6)

CKD 2 167(20.1) 75(21.5) 63(28.4)

CKD 3 310(37.3) 140(40.1) 73(32.9)

CKD 4 195(23.5) 80(22.9) 32(14.4)

CKD 5 97(11.7) 22(6.3) 15(6.8)

Age, mean (s.d.) in years 53(17) 58(15)* 57(17){

Male / Female (%) 63.4/36.6 60.2/39.8 54.1/45.9{

Weight, mean (s.d.), kg 61(11) 62(12) 62(10)

Height, mean (s.d.), cm 163(8) 162(8) 164(7)

BMI, mean (s.d.), kg/m2 23(3) 23(4){ 23(3)

BSA, mean (s.d.), m2 1.65(0.17) 1.66(0.18) 1.67(0.15)

Serum albumin, mean (s.d.), g/dL 3.8(0.7) 3.8(0.6) 3.9(0.7){

Serum urea nitrogen, mean (s.d.), mg/dL 37(24) 36(26) 30(23)*

Serum creatinine, mean (s.d.), mg/dL 3.0(2.7) 2.5(2.3){ 2.8(3.4)

sGFR, mean (s.d.), ml/min/1.73 m2 45 (27) 49 (27){ 60(32)*

*:P,0.001 compared with the combined development and internal validation data sets.
{:P,0.01 compared with the combined development and internal validation data sets.
{:P,0.05 compared with the combined development and internal validation data sets.
Abbreviations: CKD, chronic kidney disease; BMI, body mass index; BSA, body-surface area; sGFR, standard glomerular filtration rate.
doi:10.1371/journal.pone.0058242.t001
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3) Four-variable MDRD equation (MDRD4) [9]:

MDRD4{GFR

~186|SC{1:154|Age{0:203

|½0:742 if patient is female�

|½1:210 if patient is black�

4) CKD-EPI equation (CKD-EPI) [12]:

a) k= 0.7(Female)or 0.9(Male);

b) a = 20 .32 9 (Fema le and S C#0 .7 m g/d l ) ,

a= 21.209(Female and SC.0.7 mg/dl);

c) a = 2 0 . 4 1 1 ( M a l e a n d S C # 0 . 9 m g / d l ) ,

a= 21.209(Male and SC.0.9 mg/dl)

Statistical analysis
Quantitative data were expressed as mean 6 SD or as median.

The difference between eGFR and standard GFR (sGFR) was

defined as eGFR minus sGFR. Accuracy was defined as the

percentage of estimated GFR not deviating more than 15, 30, and

50% from the sGFR. The precision was defined as the width

between the 95% limits of agreement. A prior acceptable tolerance

for the precision was defined 60 ml/min/1.73 m2 [29]. The

difference between eGFR and sGFR was regressed against the

Figure 1. Bland–Altman plot of eGFR and sGFR (ml/min/1.73 m2) in the external validation data set. Solid blue line represents the mean
of difference between methods; dashed brown lines represent 95% limits of agreement of the mean of difference between methods; solid red line
represents the regression line of difference between methods against average of methods; dotted green lines represent 95% confidence intervals for
the regression line, and dashed purple lines represent 95% limits of agreement of the regression line. A, B, C, D and E represent for the results of GFR
estimated by the Cockcroft-Gault equation, the six variable MDRD equation, the four variable MDRD equation, the CKD-EPI equation and the six
variable GABP network, respectively. Abbreviations: eGFR, estimated glomerular filtration rate; sGFR, standard glomerular filtration; CG, Cockcroft-
Gault equation; MDRD: Modification of Diet in Renal Disease; CKD-EPI: Chronic Kidney Disease Epidemiology Collaboration; GABP: BP network with
genetic algorithm.
doi:10.1371/journal.pone.0058242.g001
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average of eGFR and sGFR. The bias for eGFR was expressed as

the slope of the regression line against the X-axis. The trend of

accuracy for eGFR was expressed as the intercept of the regression

line against the Y-axis. Independent samples t-test was used to

compare the quantitative variables between two data sets.

Wilcoxon Mann-Whitney test and Pearson’s chi-squared test were

used to compare the difference and accuracy between two data

sets. Wilcoxon signed rank test and McNemar test were used to

compare the difference and accuracy within data set. ANCOVA

tests were used to compare first the slopes, and then the intercepts

of the regression line. All statistics were performed using SPSS

software (version 11.0 SPSS, Chicago IL, USA) and Medcalc for

Windows (version 9.3.9.0 Medcalc software, Mariekerke, Bel-

gium).

Results

Patients
The clinical characteristics of the development data set

(n = 562), internal validation data set (n = 269) external validation

data set (n = 349) and the additional external validation data set

(n = 222) are shown in Table 1 and Table S1. In the development

data set, the mean sGFR was 46.1 ml/min/1.73 m2 (SD, 27.0 ml/

min/1.73 m2) and ranged from 3.3 ml/min/1.73 m2 to 130.1 ml/

min/1.73 m2. The external validation data set had a similar mean

sGFR, gender, weight, height, body surface area (BSA) and mean

SUN level with the development and internal validation data sets

but differed in the distribution of CKD stages, age, body mass

index (BMI), and mean Alb and SC levels.

Performance of the estimation models in the external
validation data set

Bland-Altman analysis demonstrated that the precision of the

six-variable GABP network was the highest among all of the

estimation models (46.7 ml/min/1.73 m2 vs. a range from 71.3

ml/min/1.73 m2 to 101.7 ml/min/1.73 m2). Therefore, we chose

eGFR calculated by the six-variable GABP network as the

reference against which all comparisons between estimation

models were made. Both the slope and the intercept of the

regression line of the six-variable GABP network were improved

(slope, 20.15 ml/min/1.73 m2 vs. a range from 0.34 ml/min/

1.73 m2 to 0.53 [P,0.001 for all]; intercept, 5.88 vs. a range from

214.79 to 221.54 [P,0.01 for all]; Table 2, Figure 1). The

accuracies within 15%, 30% and 50% of the six-variable GABP

network were all the greatest (P,0.001 for all), and the median

percent of the absolute difference was least (15.61 ml/min/1.73

m2 vs. a range from 26.00 ml/min/1.73 m2 to 36.21 ml/min/1.73

m2, P,0.001 for all; Table 3).

Table 2. Overall performance of agreement between eGFR and sGFR in the external validation data set.

Precision
(ml/min/1.73 m2)

Slope of regression line with
the X-axisa (95% CI)

Intercepts of regression line with
the Y-axisa (95% CI)

CG equation 92.8 0.46(0.40,0.52)* 219.83(223.40,216.26){

MDRD1 equation 90.3 0.46(0.40,0.51)* 219.44(222.85,216.02)*

MDRD4 equation 101.7 0.53(0.47,0.59)* 221.54(225.11,217.64)*

CKD-EPI equation 71.3 0.34(0.29,0.39)* 214.79(217.78,211.80){

GABP6 network 46.7 20.15(20.20,20.10) 5.88(3.20,8.55)

Abbreviations: eGFR, estimated glomerular filtration rate; sGFR, standard glomerular filtration; CG, Cockcroft-Gault; MDRD, Modification of Diet in Renal Disease; CKD-
EPI, Chronic Kidney Disease Epidemiology Collaboration; GABP, BP network with genetic algorithm
a:The difference between eGFR and sGFR was regressed against the average of eGFR and sGFR. X-axis represented the average of eGFR and sGFR. Y-axis represented the
difference between eGFR and sGFR. eGFR, estimated glomerular filtration rate; sGFR, standard glomerular filtration rate.
*:P,0.001 compared with GABP6 network-GFR.
{:P,0.01 compared with GABP6 network-GFR.
{:P,0.05 compared with GABP6 network-GFR.
doi:10.1371/journal.pone.0058242.t002

Table 3. Overall performance of difference and accuracy between eGFR and sGFR in the external validation data set.

Median of difference (25%, 75%
Percentile)

Median % Absolute difference
(25%, 75% Percentile) Accuracy within

15% 30% 50%

CG equation 21.23(9.96,12.25) 26.00(13.03,47.55)* 29.2* 55.0* 77.6*

MDRD1 equation 20.70(210.16,15.22) 31.71(13.75,52.25)* 26.3* 46.7* 72.2*

MDRD4 equation 1.18(29.48,16.38){ 32.21(14.08,54.45)* 26.9* 46.1* 70.7*

CKD-EPI equation 20.12(29.95,13.51){ 30.74(12.57,50.90)* 26.9* 49.6* 73.9*

GABP6 network 20.26(28.54,5.73) 15.61(8.44,29.87) 49.0 75.1 90.5

*:P,0.001 compared with GABP6 network-GFR.
{:P,0.01 compared with GABP6 network-GFR.
{:P,0.05 compared with GABP6 network-GFR.
Abbreviations: eGFR, estimated glomerular filtration rate; sGFR, standard glomerular filtration; CG: Cockcroft-Gault; MDRD: Modification of Diet in Renal Disease; CKD-
EPI: Chronic Kidney Disease Epidemiology Collaboration; GABP: BP network with genetic algorithm
doi:10.1371/journal.pone.0058242.t003

Improved GFR Estimation by ANN

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e58242



The performance of the six-variable GABP network in various

stages of CKD was analyzed. The median of the difference of the

six-variable GABP network was less than the traditional equations

in CKD stages 1–2 and CKD stages 4–5 (P,0.001 for all), as was

the absolute difference in CKD stages 1–2 and CKD stage 3

(P,0.001 for all). Accuracy within 30% and 50% of the six-

variable GABP network in CKD stages 1–2 and CKD stage 3

were the greatest (P,0.001 for all). There was also improvement

in accuracy within 15% of the six-variable GABP network in CKD

stages 1–2 (P,0.001 for all). All estimation models showed the

same variation trend for performances from CKD stage 1 to CKD

stage 5; that is, performance of one specific CKD stage became

worse with the progression of CKD stage. This is due to sGFR

becoming smaller during the progression of CKD stages, and

therefore the relative error becoming greater. Detailed perfor-

mances are listed in Table S18. We also evaluated misclassification

of CKD by various estimation models. Misclassification for the

diagnosis of moderate renal failure (GFR ,60 ml/min/1.73 m2)

as well as severe renal failure (GFR ,15 ml/min/1.73 m2) were

improved (P,0.01 for all) by the means of the six-variable GABP

network (8.2% and 7.4%), as compared with those of the

traditional equations (ranging from 12.6% to 13.2% and from

12.6% to 17.5%; Table 4). The six-variable GABP network

improved the CKD stage misclassification rate (32.4% vs. a range

from 47.3% to 53.3%, P,0.001 for all). In CKD stage 1 classified

by various estimation models, the correct classification ratio of

CKD stage 1 of the six-variable GABP network was significantly

higher than for all traditional equations (90.9% vs. a range from

36.2% to 42.4%, P,0.01 for all). There were also some

improvements in the correct classification ratios of the six-variable

GABP network in CKD stage 2, CKD stage 4 as well as CKD

stage 5, but without statistical significance (Table S19).

Performance of the estimation models in the additional
external validation data set

Bland-Altman analysis demonstrated that the precision of the

six-variable GABP network was the highest among all of the

estimation models (62.4 ml/min/1.73 m2 vs. a range from

68.0 ml/min/1.73 m2 to 73.5 ml/min/1.73 m2). The intercept

of the regression line of the six-variable GABP network was

improved (4.91 vs. a range from 216.07 to 218.05, P,0.01 for

all). However, the slope of the regression line of the six-variable

GABP network was the worst (20.27 vs. a range from 0.18 to

0.24, P,0.001 for all; Table 5 and Figure S4), as was bias (median

difference, 28.84 ml/min/1.73 m2vs. a range from 24.60 ml/

min/1.73 m2 to 26.56 ml/min/1.73 m2; P,0.05 for all). The

accuracies within 30% and 50% of the six-variable GABP network

were all the greatest, and the median percent of the absolute

difference was the least (20.75 ml/min/1.73 m2 vs. a range from

21.52 ml/min/1.73 m2 to 23.57 ml/min/1.73 m2, P,0.05 for

Table 4. CKD Misclassification in the external validation data set.

Misclassification rate for the diagnosis of CKD stage misclassification rate

sGFR ,60 ml/min/1.73 m2 sGFR ,15 ml/min/1.73 m2

CG equation 12.6{ 12.6{ 47.3*

MDRD1 equation 12.6{ 17.2* 52.4*

MDRD4 equation 13.2{ 17.5* 51.9*

CKD-EPI equation 12.9{ 17.5* 53.3*

GABP6 network 8.3 7.4 32.4

*:P,0.001 compared with GABP6 network-GFR.
{:P,0.01 compared with GABP6 network-GFR.
{:P,0.05 compared with GABP6 network-GFR.
Abbreviations: sGFR, standard glomerular filtration rate; CG, Cockcroft-Gault; MDRD, Modification of Diet in Renal Disease; CKD-EPI, Chronic Kidney Disease
Epidemiology Collaboration; GABP, BP network with genetic algorithm; CKD, chronic kidney disease
doi:10.1371/journal.pone.0058242.t004

Table 5. Overall performance of agreement between eGFR and sGFR in the additional external validation data set.

Precision
(ml/min/1.73 m2)

Slope of regression line
with the X-axisa (95% CI)

Intercepts of regression line with
the Y-axisa (95% CI)

CG equation 72.5 0.21(0.15,0.28)* 217.99(222.29,213.69){

MDRD1 equation 68.0 0.20(0.14,0.26)* 216.16(220.23,212.09)*

MDRD4 equation 73.5 0.24(0.18,0.30)* 218.05(222.28,213.83)*

CKD-EPI equation 68.4 0.18(0.12,0.25)* 216.07(220.24,211.91){

GABP6 network 62.4 20.27(20.34,20.20) 4.91(0.76,9.06)

Abbreviations: eGFR, estimated glomerular filtration rate; sGFR, standard glomerular filtration rate; CG, Cockcroft-Gault; MDRD, Modification of Diet in Renal Disease;
CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; GABP, BP network with genetic algorithm
a:The difference between eGFR and sGFR was regressed against the average of eGFR and sGFR. X-axis represented the average of eGFR and sGFR. Y-axis represented the
difference between eGFR and sGFR.
*:P,0.001 compared with GABP6 network-GFR.
{:P,0.01 compared with GABP6 network-GFR.
{:P,0.05 compared with GABP6 network-GFR.
doi:10.1371/journal.pone.0058242.t005
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all; Table 6). The misclassification rate for the diagnosis of severe

renal failure (GFR ,15 ml/min/1.73 m2) was also improved

(11.3% vs. a range from 16.7% to 17.1%, P,0.01 for all) with the

six-variable GABP network (Table 7).

According to the comprehensive information from the internal

validation data set and both external validation data sets, the six-

variable GABP network was selected as the optimal estimation

model for patients with CKD. In order to show the model and

facilitate external validations, a table based on the Excel software

(File S1) was developed for convenience.

Discussion

The GFR is defined as the number of milliliters of plasma per

unit time from kidney filtration and is a direct indicator of

glomerular filtration function. GFR is the basis of CKD definition

and staging and it affects evaluation of evolution, prognosis and

follow-up [7]. With a worsening baseline of renal function, patients

seem to have a greater probability of progressing to a worse CKD

stage in the next year [30]. Early detection and diagnosis are

important means of effective prevention and treatment of CKD

and its associated complications. Accurate evaluation of GFR is

essential for CKD patients. Using this new ANN model (the six-

variable GABP network, with a topology of 6-2-1), better precision

and accuracy were achieved, which resulted in more accurate

classification of severe renal failure (GFR ,15 ml/min/1.73 m2).

This will be of great help to physicians in making proper decisions

for patients with CKD, thereby avoiding unnecessary diagnostic

and therapeutic interventions. The previous finding [25] that the

ANN was superior to the traditional equation in GFR estimation

was supported as well by data. In conjunction with other studies

[31–34], it indicated that the method of ANN may have an

advantage in solving clinical problems.

In the field of medical data processing, the traditional statistical

regression method takes the ‘law of large numbers’ as the

theoretical basis, with some assumptions and prior knowledge.

An equation is developed by collecting large amounts of data to fit

the general law of the population. This equation is very dependent

on the samples collected, which are supposed to have the same

distribution as the population, so a decline in accuracy would

happen when applied to the other population. In addition, the

regression methods can only fit limited functional forms. Multi-

collinearity and interactions between independent variables also

limit the application of regression methods. However, ANN, as a

common method of machine learning, is widely applied in the

fields of not only science and engineering but also medicine with its

own advantages such as nonlinear mapping and robustness. This

method does not require any a priori knowledge of the data.

Multicollinearity and interaction is no longer a limitation of the

application of this method. Even if the sample size is small, the law

of population can still be learned from the sample with limited

accuracy.

Table 6. Overall performance of difference and accuracy between eGFR and sGFR in the additional external validation data set.

Median of difference
(25%, 75% Percentile)

Median % Absolute difference
(25%, 75% Percentile) Accuracy within

15% 30% 50%

CG equation 26.56(216.85,3.42){ 23.57(10.49,43.11){ 34.6 61.2 80.8{

MDRD1 equation 24.60(215.38,5.14)* 21.52(9.78,44.38){ 39.2 63.3 78.3*

MDRD4 equation 24.92(215.02,5.10)* 23.26(8.94,46.84){ 34.2 60.4 76.7*

CKD-EPI equation 25.71(216.47,4.48)* 23.52(8.82,47.21){ 35.8 60.0* 77.1*

GABP6 network 28.44(219.57,0.22) 20.75(11.19,34.18) 34.6 67.5 88.8

Abbreviations: eGFR, estimated glomerular filtration rate; sGFR, standard glomerular filtration; CG: Cockcroft-Gault; MDRD: Modification of Diet in Renal Disease; CKD-
EPI: Chronic Kidney Disease Epidemiology Collaboration; GABP: BP network with genetic algorithm
*:P,0.001 compared with GABP6 network-GFR.
{:P,0.01 compared with GABP6 network-GFR.
{:P,0.05 compared with GABP6 network-GFR.
doi:10.1371/journal.pone.0058242.t006

Table 7. CKD Misclassification in the additional external validation data set.

Misclassification rate for the diagnosis of CKD stage misclassification rate

sGFR ,60 ml/min/1.73 m2 sGFR ,15 ml/min/1.73 m2

CG equation 9.0 16.7{ 47.7

MDRD1 equation 10.4 16.7{ 49.5

MDRD4 equation 10.4 17.1* 51.4{

CKD-EPI equation 10.4 17.1* 53.6{

GABP6 network 9.5 11.3 42.3

Abbreviations: CG, Cockcroft-Gault; MDRD, Modification of Diet in Renal Disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration; GABP, BP network with
genetic algorithm; CKD, chronic kidney disease
*:P,0.001 compared with GABP6 network-GFR.
{:P,0.01 compared with GABP6 network-GFR.
{:P,0.05 compared with GABP6 network-GFR.
doi:10.1371/journal.pone.0058242.t007
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There were limitations in this study. First, SC in the MDRD

equations [9] was measured by using the picric acid method. In

the CKD-EPI equation [12] and the development data set, the

internal validation data set and the external validation data set of

our models, SC was determined by the enzymatic method

traceable to isotope dilution-mass spectrometry. In the additional

external validation data set of our models, SC levels were

measured by the enzymatic method. The Cockcroft-Gault-

equation [8] was developed long ago, and the methods of SC

measurement are not available now. The difference in calibration

of SC assays introduces error in the comparison between different

GFR estimation models and subgroups [35]. Second, different

estimation models used different ways to measure sGFR, which

was also a source of system bias. Both the MDRD equations [9]

and the CKD-EPI equation [12] used urinary clearances of 125I-

iothalamate as the sGFR. In the Cockcroft-Gault equation [8], the

method of sGFR measurement used the means of two 24-hour

urine creatinine clearances. In this study, according to other

studies [29,36], sGFR was measured by the 99mTc-DTPA renal

dynamic imaging method. It is likely that differences in the results

of our study and others were partly due to the use of different

methods. Third, the sample contained only Chinese CKD

patients. Further validations in separate studies with different

races/ethnicities of CKD patients are needed to confirm the

advantages of this ANN. Fourth, an ANN model is a ‘black box’,

and cannot be expressed by a single mathematical equation. As a

result, physicians are reluctant to accept the ANN’s interpretation

of data. In order to facilitate the application on a daily bedside

basis, a simple table based on Excel software (File S1) was

developed.

Conclusions

A new ANN model (the six-variable GABP network) for CKD

patients was developed and can provide a simple, more accurate

and reliable means for the estimation of GFR and stage of CKD

than traditional equations. Further validations are needed to assess

the ability of ANN model in diverse populations.
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Figure S2 Bland–Altman plot of eGFR and sGFR (ml/
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dashed brown lines represent 95% limits of agreement of the mean

of difference between methods; solid red line represents the
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methods; dotted green lines represent 95% confidence intervals for

the regression line, and dashed purple lines represent 95% limits of

agreement of the regression line. G represent for the results of

GFR estimated by GABP-1 network.
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Figure S4 Bland–Altman plot of eGFR and sGFR (ml/
min/1.73 m2) in the additional external validation data
set. Dotted blue line represents the mean of difference between

methods; dashed brown lines represent 95% limits of agreement of

the mean of difference between methods; solid red line represents

the regression line of difference between methods against average

of methods. A, B, C, D and E represent for the results of GFR

estimated by the Cockcroft-Gault-equation, the six variable

MDRD equation, the four variable MDRD equation, the CKD-

EPI equation and the six variable GABP network, respectively.

(DOC)
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zation of raw data.
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Table S3 Performance of GABP network with different
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Table S4 MIV analysis based on GABP network with a
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(DOC)
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