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Abstract

Objective: To identify Parkinson’s disease (PD)-associated deregulated pathways and genes, to

further elucidate the pathogenesis of PD.

Methods: Dataset GSE100054 was downloaded from the Gene Expression Omnibus, and dif-

ferentially expressed genes (DEGs) in PD samples were identified. Functional enrichment analyses

were conducted for the DEGs. The top 10 hub genes in the protein–protein interaction (PPI)

network were screened out and used to construct a support vector machine (SVM) model. The

expression of the top 10 genes was then validated in another dataset, GSE46129, and a clinical

patient cohort.

Results: A total of 333 DEGs were identified. The DEGs were clustered into two gene sets that

were significantly enriched in 12 pathways, of which 8 were significantly deregulated in PD,

including cytokine–cytokine receptor interaction, gap junction, and actin cytoskeleton regulation.

The signature of the top 10 hub genes in the PPI network was used to construct the SVM model,

which had high performance for predicting PD. Of the 10 genes, GP1BA, GP6, ITGB5, and P2RY12

were independent risk factors of PD.

1Department of Neurology, The First Affiliated Hospital of

Soochow University, Suzhou, Jiangsu Province, China
2Department of Neurology, The Affiliated Huai’an

Hospital of Xuzhou Medical University and The Second

People’s Hospital of Huai’an, Huai’an, Jiangsu Province,

China
3Department of Neurology, Hongze Huai’an District

People’s Hospital, Huai’an, Jiangsu Province, China
4Department of Neurology, Changshu No. 2 People’s

Hospital (The 5th Clinical Medical College of Yangzhou

University), Changshu, Jiangsu Province, China

5Department of Neurology, Huai’an First People’s

Hospital, The Affiliated Huai’an No. 1 People’s Hospital of

Nanjing Medical University, Huai’an, Jiangsu Province,

China

*These authors contributed equally to this work.

Corresponding author:

Shou-Ru Xue, Department of Neurology, The First

Affiliated Hospital of Soochow University, 188 Shizi Road,

Suzhou, Jiangsu Province 215006, China.

Email: xueshouru@suda.edu.cn

Journal of International Medical Research

48(10) 1–13

! The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0300060520957197

journals.sagepub.com/home/imr

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative

Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits

non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed

as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0001-9178-0433
mailto:xueshouru@suda.edu.cn
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/0300060520957197
journals.sagepub.com/home/imr


Conclusion: Genes such as GP1BA, GP6, P2RY12, and ITGB5 play critical roles in PD pathology

through pathways including cytokine�cytokine receptor interaction, gap junctions, and actin

cytoskeleton regulation.
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Introduction

Parkinson’s disease (PD) is a common neu-
rodegenerative disorder that primarily
involves motor impairments that worsen
over time. This disease is estimated to

occur in 4% of the population aged over
80 years and 1% of the population aged
over 65 years.1 The main pathological
changes in PD are the progressive degener-

ation of dopaminergic neurons in the sub-
stantia nigra and the accumulation of
intraneuronal inclusions that contain a-syn-
uclein.2 During the disease progression, PD

patients usually experience nonmotor
symptoms such as sleep disturbances, anos-
mia, constipation, anxiety, depression, and
cognitive decline. The motor symptoms of

PD can be initially treated with dopaminer-
gic therapies, but the disease continues to
progress despite the use of these therapies.3

Unfortunately, the pathogenesis of PD
remains unclear. There is an urgent need

for more drug targets or diagnostic markers
that may slow or even halt the progression
of symptoms.For many years, PD was con-
sidered a nongenetic disorder caused by

synergistic environmental factors.4

However, more recent evidence has
revealed the complex and extensive genetic
basis of PD.5–7 Six risk genes, including the

genes encoding a-synuclein, leucine-rich
repeat kinase 2, the VPS35 retromer com-
plex component parkin, PTEN-induced
putative kinase 1, and DJ-1, have been

definitively associated with an autosomal

recessive or dominant mode of PD inheri-

tance.8 Additionally, family-based studies

have also successfully identified genes relat-

ed to PD, including those that encode

F-box protein 7, phospholipase A2 group

6, and ATPase type 13A2.9 Although

many genes have been demonstrated to be

involved in PD progression, the identifica-

tion of these genes is far from enough to

understand the pathology of PD. The iden-

tification of additional PD-associated genes

will enable the further elucidation of its

pathogenesis, and may aid in the develop-

ment of disease-modifying therapeutic

strategies.
In the current study, the circulating

mRNA expression profiling dataset

GSE100054 was used to identify the func-

tional association gene set associated with

PD. This was then combined with a super-

vised classification algorithm to build a

potential diagnostic model. Finally, the sig-

nificantly correlated gene markers were

screened out as characteristic genes, which

may serve as potential drug targets or diag-

nostic markers in PD.

Data and methods

The database part of this study neither

enrolled human participants nor involved

animal experiments; therefore, ethics

approval was not required.
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Data collection

The mRNA expression profiling dataset

GSE100054 was downloaded from the

Gene Expression Omnibus database

(https://www.ncbi.nlm.nih.gov/).10 The

chip platform was GPL23126

(Clariom_D_Human) Affymetrix Human

Clariom D Assay (transcript (gene) ver-

sion). This dataset came from samples of

peripheral blood mononuclear cells

(PBMCs) from both normal controls and

patients with PD.

Data preprocessing

The original CEL data files were down-

loaded and preprocessed using the Robust

Multichip Average method in the oligo

package (version 1.42.0, http://www.biocon

ductor.org/packages/release/bioc/html/olig

o.html) in R.11 Based on the platform anno-

tation file, the probes were mapped to gene

symbols. The probes that did not corre-

spond to any gene symbol were removed.

For different probes mapping to the same

gene symbol, the mean value was

calculated.

Differentially expressed gene (DEG)

selection

The limma package (version 3.34.9, http://

bioconductor.org/packages/release/bioc/ht

ml/limma.html)12 in R was used for select-

ing DEGs. Differences in the mean expres-

sion levels of genes between the two sample

comparison groups were compared using

the t-test. Genes with P< 0.05 and log

fold change (FC)> 0.585 were considered

as DEGs.

Hierarchical clustering

To further explore the differences in genes

between diseased and normal states, all

samples were used to perform sample hier-

archical clustering based on the expression

profiles of DEGs. The hierarchical cluster-

ing of samples was conducted using the

gplots package (version 2.14.1, https://

cran.r-project.org/web/packages/gplots/) in

R. The ConsensusClusterPlus algorithm13

was applied to cluster the genes based

on the expression values of all DEGs in

the two sample groups. The reasonable

clustering number and corresponding

gene sets were identified by the cumulative

distribution function (CDF). These gene

sets were considered to be characteristic

genes.

Functional enrichment analysis

Using the common enrichment analysis tool

DAVID (version 6.8, https://david.ncifcrf.

gov/),14 the Gene Ontology (GO)15 biolog-

ical processes and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways16

for gene sets in each cluster were analyzed.

The significance level (P-value) of each

function and pathway was calculated, and

the criteria for significance screening were

P< 0.05 and count>5.

Pathway deregulation analysis

The differentially expressed pathways

between the PD and control groups were

identified using the Pathifier17 algorithm,

to analyze the effect of the expression level

of a specific gene set on KEGG pathways.

This method scores the deregulation degree

of each sample in a specific pathway by cal-

culating the specific gene expression values

in normal and diseased samples. The result-

ing score is called the pathway deregulation

score. This analysis converts gene-level

information into pathway-level informa-

tion, and can be used to identify the

different pathways between normal and dis-

eased samples. The pathogenic mechanisms

of PD were illustrated according to this

analysis.
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Protein–protein interaction (PPI) network
analysis

Protein network visualization plays an
important role in analyzing protein interac-
tion characteristics. The interactions among
DEGs involved in the deregulated path-
ways were identified using the STRING
database (version 10.5, https://string-db.
org).18 The PPI score was set as 0.4
(medium confidence), and the interacted
nodes needed to be DEGs. The PPI
network was visualized using Cytoscape
(version 3.6.1, http://www.cytoscape.org/).19

By analyzing the network topological prop-
erties, the interaction degree of each node
was calculated, and the hub genes (the top
10) in the network were identified.

Support vector machine (SVM) model
prediction

The expression values of characteristic
genes in all samples were used as the char-
acteristic values to predict the SVM model,
using the e1071 package SVM classifier20

with the default parameters (kernel func-
tion: sigmoid kernel; cross: 10-fold cross
validation). The analysis data were ran-
domly sorted and 60% of the samples
were taken as the training set, with the
remaining 40% of samples as the validation
set. The classification and prediction effi-
ciency of the model was evaluated using
receiver operating characteristic (ROC)
curves.

Validation of the expression of hub genes

The expression profiles and FC of hub
genes from the SVM model were validated
using a second dataset (GSE49126 in the
Gene Expression Omnibus database) and
a patient cohort collected from our hospi-
tal. The GSE49126 dataset consisted of
samples of PBMCs from normal controls
and patients with PD. The expression
values of DEGs in GSE49126 were

identified using GEO2R (http://www.ncbi.
nlm.nih.gov/geo/geo2r/) with log2 transfor-
mation and Benjamini–Hochberg
adjustment.

Patient collection

The validation patient samples were collect-
ed at the Department of Neurology, the
First Affiliated Hospital of Soochow
University, Suzhou, China, between
January 2020 and May 2020. Blood samples
were collected from 103 outpatients with
PD after obtaining approval from the
ethics committee of the hospital. Blood
samples from 31 sex- and age-matched
healthy individuals were used as controls.
Written informed consent was obtained
from all participants.

Real-time polymerase chain reaction
(PCR) analysis

PBMCs were isolated from the blood sam-
ples, and total RNA was extracted using
Trizol (Invitrogen, Shanghai, China). The
RNA was reverse transcribed into cDNA
and used for PCR analysis. The specific
PCR primer pairs were purchased from
Sangon (Shanghai, China). PCR amplifica-
tion was performed on an Applied
Biosystems 7500 Fast Real Time PCR
System instrument (Foster City, CA,
USA). Human glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as the
internal reference. The relative expression
level was calculated using the 2–DDCt method.

Statistical analysis

Statistical analyses were performed using
SPSS for Windows, version 22.0 (SPSS
Inc., Chicago, IL, USA). Differences in var-
iables between the PD and control groups
were analyzed using the Mann–Whitney
U test or v2 test. Differences in gene expres-
sion levels between the two groups were
analyzed using the Mann–Whitney U test.
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Logistic regression was performed to iden-

tify correlations between gene expression

and PD diagnosis. Spearman’s correlation

analysis was used to identify correlations

between disease status and gene expression.

Odds ratios (ORs) and 95% confidential

intervals (CIs) were calculated. For all anal-

yses, P< 0.05 was considered statistically

significant.

Results

Data preprocessing and DEG analysis

The GSE100054 dataset consisted of 19

samples (9 normal controls and 10 patients

with PD). There were 24,233 genes in this

dataset after processing. A total of 333

DEGs were identified, of which 293 genes

were significantly upregulated and 40 were

significantly downregulated (Figure 1a).

These 333 DEGs were used for all further

analyses. The hierarchical clustering

analysis of the 19 samples based on DEG

expression profiles is shown in Figure 1b.

One PD sample was clustered into

the normal group and three control sam-

ples were clustered into the PD group.

After removing the four misclassified

samples, the clustering of the other sam-

ples remained unchanged (data not

shown).

Figure 1. Statistical analysis and clustering of differentially expressed genes (DEGs) in Parkinson’s disease
(PD). (a) Volcano plot of the DEGs. (b) Sample hierarchical clustering based on the expression of the DEGs.
(c) Consensus cumulative distribution function (CDF) under different clustering numbers of DEGs. A larger
CDF indicates a better gene clustering effect. When k¼ 2, the clustering result was the best. (d) The area
difference value (delta area) between two CDF curves and the horizontal axis. k¼ 3 was the largest k with
an appreciable increase in consensus. (e) Distribution of the clustering results shown by an item tracking
plot. When k¼ 2, the number of mixed elements was the smallest.

Shen et al. 5



Clustering analysis of DEGs

The clustering analysis of the DEGs based

on the CDF revealed that the clustering

result was the best when k¼ 2. As shown
in Figure 1c and d, the increase rate of

CDF significantly decreased and tended to

reach consensus when the clustering

number was >2. The largest k value with
an appreciable increase in consensus was

k¼ 3. Moreover, when k¼ 2, the number

of mixed elements was the smallest
(Figure 1e). Accordingly, the 333 DEGs

were categorized into two clusters: cluster

1 genes (170 DEGs) and cluster 2 genes

(163 DEGs).

Functions and pathway of gene sets

The cluster 1 genes were significantly

enriched in one pathway, hsa04145:

Phagosome, and in seven biological pro-

cesses that related to innate immune and
inflammatory responses. The cluster 2

genes were involved in 11 pathways, includ-

ing hsa04510:Focal adhesion, hsa04060:

Cytokine�cytokine receptor interaction,
hsa04062:Chemokine signaling pathway,

and hsa04512:ECM-receptor interaction

(Figure 2a). They were also involved in 11

biological processes, including platelet
degranulation, blood coagulation, cell

adhesion, and inflammatory response

(Figure 2b).

Pathway deregulation analysis

The significant P-values of the aforemen-

tioned 12 pathways involving genes from

the two clusters are shown in Table 1.

Eight pathways were significantly different

between the PD and control groups. These

were hsa04060:Cytokine–cytokine receptor

interaction, hsa04062:Chemokine signaling

pathway, hsa04145:Phagosome, hsa04810:

Regulation of actin cytoskeleton, hsa

04144:Endocytosis, hsa04540:Gap junction,

hsa04510:Focal adhesion, and hsa04611:

Platelet activation. Thirty-nine genes

involved in these pathways were obtained,

and are listed in Table 2.

PPI network construction

The 39 genes involved in the eight signifi-

cant pathways were extracted, and 85 inter-

actions between 33 products were predicted.

The PPI network included 33 nodes, and

85 edges were constructed accordingly

(Figure 3a). The top 10 nodes with the high-

est degrees were considered as hub nodes,

and were as follows: integrin subunit alpha

2b (ITGA2B, degree¼ 14), integrin subunit

beta 3 (ITGB3, degree¼ 11), purinergic

Figure 2. Gene enrichment results of cluster 1 genes (a) and cluster 2 genes (b). The horizontal axis shows
the number of genes. The gray solid line represents –lg(P-value).
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receptor P2Y12 (P2RY12, degree¼ 10),
CD36 molecule (CD36, degree¼ 10), plate-
let factor 4 (PF4, degree¼ 10), glycoprotein
IX platelet (GP9, degree¼ 10), glycoprotein
Ib platelet subunit alpha (GP1BA,
degree¼ 9), glycoprotein VI (GP6, also

known as GPVI, degree¼ 7), integrin sub-
unit beta 3 (ITGB5, degree¼ 7), and vincu-

lin (VCL, degree¼ 7).

Prediction and validation of the SVM

model

The expression values of the top 10 genes in

the 19 samples were regarded as the charac-

teristic values, and the SVM model was
constructed accordingly. Next, 60% of

samples (n¼ 11) were taken as the training
set, and the other 40% of samples (n¼ 8)

were taken as the validation set and were
used to validate the model. As shown in

the ROC curves, the model fitting effect
was the best in the training set, with an

accuracy of 92%. The accuracy in the vali-

dation set was 75% (Figure 3b). Together,
these results indicated that the SVM

model was an independent predictive
factor for PD.

Validation of hub genes

The GSE49126 dataset consisted of
50 samples from 20 normal controls and

30 patients with PD. The expression

profiles of the 10 hub genes are shown in

Table 1. Significantly deregulated pathways
between Parkinson’s disease and control samples.

Pathway P-value

hsa04060:Cytokine–cytokine

receptor interaction

0.025838

hsa04062:Chemokine signaling

pathway

0.02773

hsa04145:Phagosome 0.032876

hsa04810:Regulation of actin

cytoskeleton

0.03367

hsa04144:Endocytosis 0.03721

hsa04540:Gap junction 0.038855

hsa04510:Focal adhesion 0.042322

hsa04611:Platelet activation 0.049717

hsa04640:Hematopoietic cell

lineage

0.053322

hsa04022:cGMP–PKG signaling

pathway

0.054027

hsa04512:ECM–receptor

interaction

0.058062

hsa00230:Purine metabolism 0.059821

Table 2. The 39 differentially expressed genes in the eight significantly deregulated pathways between
Parkinson’s disease patients and controls.

Gene logFC Gene logFC Gene logFC

MSR1 0.746 PRKG1 0.688 DNAJC6 0.856

CD36 0.706 MYLK �0.195 RAB11A 0.690

FCAR 0.588 GP9 0.631 EHD3 0.589

NCF2 0.622 ITGA2B 1.284 TNFSF4 1.162

TLR4 0.600 PDGFA 0.922 PPBP 0.885

CD14 0.754 ITGB5 0.827 CXCL5 1.417

P2RY12 1.720 PARVB 0.808 IL1B 1.232

GP6 0.752 MYL9 1.253 PF4 1.185

PTGS1 1.234 VCL 0.680 MPL 1.529

GUCY1A3 1.020 DNM3 1.454 PF4V1 1.108

GUCY1B3 1.096 DAB2 1.059 TUBA8 0.980

GP1BA 1.435 PARD3 0.766 TUBB1 1.531

ITGB3 1.430 PSD3 1.008 GNG11 1.554

FC, fold change.
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Figure 3c and d. In this validation dataset,
9 of the 10 genes were upregulated in
the PD group compared with the control
group, while CD36 was downregulated
(log2FC> 0; Figure 3c). The expression
levels of the 10 genes were also validated
in a patient cohort consisting of 103
patients with PD (67.10� 11.2 years old)
and 31 healthy controls (65.51� 8.77 years
old). There was no difference in age or the
sex ratio between the two groups (Table 3).
The PD patients had an average disease
duration of 6.93� 2.23 years (range: 0.5–
12 years) and an average Hoehn and Yahr
stage of 2.61� 0.64 (range: 1–4; Table 3).
Real-time PCR analysis revealed that 2 of
the 10 hub genes (GP1BA and GP6) were

upregulated in PD samples compared with

controls in this validation patient cohort

(n¼ 134; P< 0.01 in the Mann–Whitney U

test; Figure 3d).

Screening of independent risk factors in

PD patients

Logistic regression analysis revealed that

the expression levels of GP1BA, GP6,

ITGB5, and P2RY12 were independent pre-

dictors of PD in both the GSE100054 data-

set and the validation cohort (Table 4).

Spearman’s correlation analysis revealed

that none of the 10 hub genes were associ-

ated with the Hoehn and Yahr stage of PD

(data not shown).

Figure 3. The protein–protein interaction (PPI) network and analysis of the 10 hub genes. (a) PPI network
of the genes enriched in the significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Pink
nodes represent the 10 hub genes. A larger node size indicates a higher degree of interaction. (b) Receiver
operating characteristic (ROC) curve analysis of the SVM model for predicting disease status in the
GSE100054 dataset. (c) The log2(fold change) value of the 10 hub genes in the validation dataset (GSE49126)
and study dataset (GSE100054). (d) Relative expression levels of the 10 genes in Parkinson’s disease (PD)
and controls in the patient cohort.

8 Journal of International Medical Research



Discussion

A previous study by Miki et al.21 identified
that the downregulation of six core regula-
tors of autophagy and proteins upstream of
autophagy may play crucial roles in PD,
and are associated with increased a-synu-
clein levels in PBMCs. In the present
study, using different analytical methods
and criteria for selecting DEGs, we identi-
fied 333 circulating DEGs in the PBMCs of
PD patients. These genes were clustered
into two gene sets and were significantly
enriched in 12 pathways, of which 8 were
significantly different between the PD and
control groups, including hsa04060:

Cytokine–cytokine receptor interaction,

hsa04062:Chemokine signaling pathway,

hsa04810:Regulation of actin cytoskeleton,

and hsa04540:Gap junction. These results

are in line with a previous study by Liu

et al.,22 who reported that DEGs in the

GSE100054 dataset are mainly enriched in

KEGG pathways, including gap junctions

and platelet activation. Furthermore, 10

hub nodes in the PPI network, including

GP1BA, ITGB3, GP6, and ITGB5, were

used to construct the SVM model, which

had high accuracy in predicting PD in the

present study. Among the 10 hub genes, 4

(GP1BA, ITGB3, GP6, and P2RY12) were

Table 4. Association between genes and Parkinson’s disease status in the GSE100054 dataset and validation
cohort.

Variable

GSE100054 (n¼ 19) Validation cohort (n¼ 134)

b OR 95% CI P-value b OR 95% CI P-value

CD36 2.191 12.075 1.159–125.786 0.037 0.175 2.574 0.286–2.470 0.752

GP1BA 1.325 3.761 1.106–12.793 0.034 2.568 6.526 2.885–13.455 0.019

GP6 2.608 13.576 1.040–177.137 0.047 2.365 8.636 1.630–15.676 <0.0001
GP9 1.740 5.699 0.966–33.618 0.055 0.366 1.998 0.354–2.809 0.996

ITGA2B 0.815 2.260 0.982–5.199 0.055 0.533 1.704 0.581–5.002 0.332

ITGB3 0.719 2.051 0.968–4.346 0.061 0.063 1.725 0.873–40.162 0.435

ITGB5 1.926 6.862 1.173–40.162 0.033 1.260 3.526 1.249–9.957 0.017

P2RY12 1.341 3.822 1.260–11.592 0.018 2.612 13.628 4.343–42.758 <0.0001
PF4 1.182 3.260 1.051–10.108 0.041 0.645 1.907 0.635–5.727 0.250

VCL 2.185 8.888 1.054–74.996 0.045 1.208 3.449 0.805–2.874 0.371

OR, odds ratio; CI, confidence interval.

Significant difference (p< 0.05) is highlighted by bold.

Table 3. The demographic characteristics of the Parkinson’s disease patients and controls.

Variables Parkinson’s disease Control P-value

GSE100054 (n¼ 10) (n¼ 9)

Age (years) 67.00� 8.89 62.33� 7.50 0.211b

Sex ratio (male/female) 5/4 5/5 1.000a

Validation cohort n¼ 103 n¼ 31

Age (years) 67.10� 11.20 65.51� 8.77 0.463b

Sex ratio (male/female) 54/49 16/15 1.000a

Duration (years) 6.93� 2.23 0

Hoehn and Yahr stage 2.61� 0.64 (range 1–4) 0

av2 test; bMann–Whitney U test.
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independent risk factors of PD. However,
none of these genes were associated with
Hoehn and Yahr scores. PD is a relatively
common neurological disorder character-
ized by the degeneration of motor and cog-
nitive functions, and is caused by a loss of
neurons in the central nervous system.
Inflammation is a key part of the immune
response that protects the human body
against injury.23 Inflammatory compo-
nents, such as cytokines and chemokines,
are related to neuroinflammation in the cen-
tral nervous system. Notably, studies have
demonstrated the important role of neuro-
inflammation in PD pathology.24 For
example, Mutez et al.25 used PBMC tran-
scriptome profiles to show that the deregu-
lation of eukaryotic initiation factor 2
(EIF2) signaling, endocytosis, and the
immune system are the main transcriptome
features of sporadic or hereditary PD. Pro-
inflammatory cytokines not only contribute
to neuronal death, but also influence neuro-
degenerative pathways such as tau phos-
phorylation and amyloid precursor protein
processing.24 In the present study, pathways
including hsa04060:Cytokine–cytokine
receptor interaction and hsa04062:
Chemokine signaling pathway were signifi-
cantly deregulated, and were enriched in
PF4, which is crucial for platelet death
and activation as well as for monocyte
migration.26–28 Other upregulated genes,
including P2RY12, GP9, GP6, and
GP1BA, were also enriched in these path-
ways. These findings indicate the critical
roles of these genes in PD pathology via
inflammation-related pathways.

The three upregulated platelet glycopro-
teins (GP9, GP6, and GP1BA) are physio-
logical collagen receptors that activate the
collagen receptor a2b1 to bind collagen.29–31

GP6 is a major platelet receptor, and its
clustering or aggregation plays crucial
roles in promoting platelet activation,
thrombus growth, and atherosclerosis by

interacting with exposed collagen on
injury vessel walls.31,32 Interestingly, PD is
associated with increased deep vein throm-
bosis.33 The purinergic G-protein coupled
receptor P2RY12 is a therapeutic target of
the clinically approved anti-thrombotic
drugs cangrelor and clopidogrel.34 Kloss
et al.34 demonstrated that P2RY12 activa-
tion triggers the migration of macrophages
to necrotic tumor areas and modulates che-
motaxis and the chemokine secretion of
macrophages. Our research revealed that
the genes for all four of these proteins
(P2RY12, GP6, GP9, and GP1BA) were
upregulated in PD samples in the
GSE49126 and GSE100054 datasets,
although only GP1BA and GP6 were upre-
gulated in our clinical cohort of PD
patients. However, all four of these genes
(P2RY12, GP6, GP9, and GP1BA) were
independent risk factors of PD. These find-
ings highlight the roles of macrophage
migration and platelet activation in the
pathology of PD. Furthermore, they sug-
gest that P2RY12 might be a therapeutic
target in PD.

As described earlier in this article, the
loss of nigrostriatal dopaminergic neurons
and the formation of a-synuclein-rich inclu-
sions (Lewy bodies) are the neuropatholog-
ical hallmarks of PD.35 The present study
indicates that abnormal stabilization of the
actin cytoskeleton plays a key role in medi-
ating a-synuclein neurotoxicity, and that
modifiers exert their effects by modulating
the actin cytoskeleton.36 Genetic modifica-
tion of the actin cytoskeleton may control
both a-synuclein and tau neurotoxicity.37

Moreover, GP6 clustering depends on a
dynamic actin cytoskeleton,31 and platelet
activation is also actin-dependent.38,39 In
addition, some studies have reported that
b3 integrins play a dominant role in
plasma fibronectin fibrillogenesis via b3
integrin–cytoskeleton interaction-mediated
fibronectin unfolding and assembly.40
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Interestingly, our results showed that the
hsa04810:Regulation of actin cytoskeleton
pathway, which contained enriched hub
genes such as upregulated ITGB5, ITGB3,
and ITGA2B, was significantly deregulated
in the blood samples from PD patients com-
pared with controls. The association of
ITGB5 with the diagnosis of PD in our
study highlights the role of the actin cyto-
skeleton as well as integrin–cytoskeleton
interactions in the pathology of PD.

Moreover, the hsa04540:Gap junction
pathway was also significantly deregulated
in the present study, with enriched protein
kinase CGMP-dependent 1 (PRKG1). Gap
junctions contribute to the formation of
intercellular channels that connect the cyto-
plasmic compartments of neighboring
cells.41 It has been reported that glial gap
junctions play critical roles in maintaining
homeostasis in the central nervous system
under physiological conditions. These
structures also contribute to the onset and
progression of pathological conditions.42

Importantly, a recent study demonstrated
that neurotoxic activated microglia secrete
glutamate through gap junction hemichan-
nels.43 Thus, glial and neuronal communi-
cation via gap junctions might amplify
neuroinflammation and neurodegenera-
tion.43 Understanding the pathological
roles of gap junctions may therefore con-
tribute to new therapeutic strategies against
neurodegenerative diseases, including PD.

In conclusion, our results suggest that
inflammation-associated pathways, includ-
ing cytokine�cytokine receptor interaction
and chemokine signaling pathways, as well
as pathways regulating the actin cytoskele-
ton and gap junctions, play critical roles in
PD pathology. The hub genes, including
GP1BA, GP6, P2RY12, and ITGB5, that
were enriched in these pathways may serve
as potential diagnostic markers of PD.
However, these findings need to be further
validated in clinical studies.
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