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Abstract

There is considerable interest in analyzing the complexity of electroencephalography (EEG)

signals. However, some traditional complexity measure algorithms only quantify the com-

plexities of signals, but cannot discriminate different signals very well. To analyze the com-

plexity of epileptic EEG signals better, a new multiscale permutation Rényi entropy (MPEr)

algorithm is proposed. In this algorithm, the coarse-grained procedure is introduced by

using weighting-averaging method, and the weighted factors are determined by analyzing

nonlinear signals. We apply the new algorithm to analyze epileptic EEG signals. The experi-

mental results show that MPEr algorithm has good performance for discriminating different

EEG signals. Compared with permutation Rényi entropy (PEr) and multiscale permutation

entropy (MPE), MPEr distinguishes different EEG signals successfully. The proposed MPEr

algorithm is effective and has good applications prospects in EEG signals analysis.

Introduction

Electroencephalography (EEG) is an electrophysiological monitoring method to measure the

voltage fluctuations resulting from ionic current within the neurons of the brain. EEG signals

can reflect the electrical activities of the neurons directly, and are closely related to health [1–

3]. Some approaches about EEG classification are proposed, such as neural networks methods

[4, 5], complex networks based on phase lag index (PLI) [6] and some entropy-based measures

[7, 8], such as approximate entropy (ApEn) [9]. However, an EEG signal may be mixed with

electromyography (EMG) signal and electrooculogram (EOG) signal, and it is difficult for peo-

ple to extract the diagnostic features from the interfered signal. So people put forward some

new EEG signal processing algorithms [10, 11]. At present, extracting useful information

from EEG signals by using complexity methods becomes a hot topic [12–15]. So far, several

entropy-based algorithms have been proposed, such as Lempel-Ziv algorithm [16], approxi-

mate entropy (ApEn) [17], fuzzy entropy (FuzzyEn) [18], sample entropy (SampEn) [19].

However, some of them cannot measure the complexity of EEG signals reliably [20–22]. In

2013, Zhao et al. used Rényi permutation entropy [23] to analyze time series, and soon Nadia

Mammone et al. proposed permutation Rényi entropy (PEr) [24] based on permutation

entropy (PE) [25], and it was applied to analyze childhood absence epilepsy EEG signals
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successfully [26]. It achieved favorable discriminating effectiveness between interictal states

and ictal states [27, 28] in absence seizure EEG signals, but it only can discriminate two kinds

of EEG signals. To analyze the EEG signals better, some modified methods are proposed,

including multiscale entropy (MSE) [29], multivariate permutation entropy (MvPE) [30] and

modified multiscale sample entropy (MMSE) [31]. The main modifications of those algo-

rithms lie in the coarse-grained procedure, including average method or moving-averaging

method. For average method, the data size is reduced after the original series is divided by the

scale factor [32], and it leads to some information loss and inaccurate measurement [33–36].

Moving-averaging method can almost get the same data size, which keeps more complete

information, but it has some defects in extracting effective signals and filtering interference

signals. Apart from the coarse-grained methods mentioned above, some novel multiscale

entropy are proposed to analyze time series. For example, Zunino et al. [37] utilized multiscale

symbolic information-theory approach to characterize multiscaled time series, and Zunino

et al. [38] identified the hidden temporal correlations in time series by using permutation min-

entropy. So it is an interesting and challenging task to design a complexity measure algorithm

to distinguish different EEG signals further.

In this paper, we proposed a new complexity measure algorithm, named multiscale permu-

tation Rényi entropy (MPEr), and applied it to analyze epileptic EEG signals. The rest of this

paper is organized as follows. Firstly, MPEr is proposed, and its performance is analyzed and

compared with PEr and MPE. Then, MPEr is applied to analyze the complexity of different

epileptic EEG signals and the statistical analysis is conducted. Performance comparisons with

other complexity measure algorithms are carried out. Finally, we summarize the results and

indicate the future work.

Materials and methods

Different coarse-grained methods

1. Average method.

For a given discrete time series x1, x2, . . ., xN, the average method is described as [29]

yðkÞj ¼
1

k

Xjk

i¼ðj� 1Þkþ1

xi; 1 � j � N=k; ð1Þ

where k is the scale factor, and it determines the length of the reconstructed time series. yðkÞj

is the coarse-grained time series, which is the same as the original time series when k = 1.

The length of each coarse-grained time series is reduced to 1/k of the original series, so

some useful information of the original time series may be lost.

2. Moving-averaging method.

The moving-averaging method is defined by [39]

yðkÞj ¼
1

k

Xjþk� 1

i¼j

xi; 1 � j � N � kþ 1; ð2Þ

where k is the scale factor. yðkÞj is the coarse-grained time series, which is the same as the

original time series when k = 1. According to Eq (2), the length of the coarse-grained series

is N − k + 1, which is a little shorter than that of the original series. The moving-averaging

method makes more full use of the information compared with the average method. How-

ever, it is difficult to filter interference signals.
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3. Weighting-averaging method.

Here, we introduce the weighted factors wn(n = 1, 2, . . ., k), and a new coarse-grained

method named weighting-averaging method is defined by

yðkÞj ¼

Xk

n¼1

Xjþk� 1

i¼j

wnxi

Xk

n¼1

wn

; 1 � j � N � kþ 1; ð3Þ

where wn is the weighted factor, and yðkÞj is the coarse-grained time series. k is the scale fac-

tor, which is equal to the number of the weighted factors. yðkÞj is the same as the original

time series when k = 1. The larger weighted factors mean emphasis on the corresponding

data. This method emphasizes the central information by lager central weighted factor.

That is to say, for a given time series, the weighted factors increase first, and then decrease.

It is the same with the moving-averaging method when wn = 1, n = 1, 2, . . ., k. The different

reconstructed series calculated by average, moving-averaging and weighting-averaging

methods are visualized as shown in Fig 1.

Fig 1. The reconstructed series yj computed by different coarse-grained approaches (average, moving-averaging and weighting-

averaging method). Note that k = 3 for each method.

https://doi.org/10.1371/journal.pone.0202558.g001
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Multiscale permutation Rényi entropy

For a given finite time series xn, n = 1, 2, . . ., N, a restructuring matrix Xr(i, m) is obtained by

Xrði;mÞ ¼

xð1Þ xð1þ tÞ � � � xð1þ ðm � 1ÞtÞ

xð2Þ xð2þ tÞ � � � xð2þ ðm � 1ÞtÞ

..

. ..
. ..

.

xðlÞ xðl þ tÞ � � � xðl þ ðm � 1ÞtÞ

..

. ..
. ..

.

xðiÞ xðiþ tÞ � � � xðiþ ðm � 1ÞtÞ

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

; ð4Þ

where l = 1, 2, . . ., i. m is the embedding dimension and varies from 3 to 7. τ is the time lag,

here, τ = 1 [24]. i = N − (m − 1)τ. For each row vector Xl of the restructuring matrix, we sort

them in an ascending order π = (r0, r1, . . ., rm−1) to get the new row vectors Xrl
. The values of

the new row vectors are described as

xlþr0
� xlþr1

� � � � � xlþrm� 1
: ð5Þ

There are m! possible patterns. Assuming that πj = j, j = 1, 2, . . ., m!, the arrangement pat-

terns sequence s(i), i = 1, 2, . . ., N −m + 1 is obtained. According to the Bandt-Pompe proba-

bility distribution [25], the probability of each possible π is defined by

p pj

� �
¼

# fsji � N � mþ 1; s ¼ jg
N � mþ 1

; ð6Þ

where the symbol # denotes the number of the arrangement patterns.

According to Shannon entropy, the permutation Rényi entropy is defined by [23, 24]

PEr x;m; að Þ ¼
1

1 � a
log
Xm!

i¼1

pðpjÞ
a
; ð7Þ

where α is a new parameter and it varies from 2 to 7.

To improve the performance of PEr further, the weighting-averaging method is introduced.

For a given finite time series {xn, n = 1, 2, . . ., N}, the coarse-grained series yðkÞj is calculated

according to Eq (3). Then we reconstruct yðkÞj with the embedding dimension m and the time

lag τ, and acquire the probability of the arrangement patterns. So, the multiscale permutation

Rényi entropy (MPEr) is defined by

MPEr x;m; a;wnð Þ ¼
1

1 � a
log
Xm!

i¼1

pwn
ðpjÞ

a
; ð8Þ

where wn is the weighted factor, and pwn
is the probability of arrangement patterns of the

coarse-grained series. For MPEr, there are 3 parameters (m, α, wn). Once they are determined,

they are suitable for different groups of subjects. Next, we will describe how to determine these

parameters.

Complexity analysis of the chaotic signals

Some medical signals have the similar dynamic characteristics as chaotic signals, so, we use

chaotic signals to analyze the influence of parameters on the algorithm. Here, the two-
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dimensional (2D) SF-SIMM (sinusoidal feedback Sine ICMIC (iterative chaotic map with infi-

nite collapse) modulation map) is considered [40, 41]

xðnþ 1Þ ¼ m sin ½oyðnÞ� sin ½c=xðnÞ�;

yðnþ 1Þ ¼ m sin ½oxðnþ 1Þ� sin ½c=yðnÞ�:

(

ð9Þ

Setting initial value (x0, y0) = (0.3, 0.4), iteration times N = 1000, system parameter b = 3

and μ varying from 1 to 4 with the step size of 0.01, the bifurcation diagram and Lyapunov

exponent spectrum of the 2D SF-SIMM are shown in Fig 2. Obviously, the system is chaotic

when μ 2 (1.00, 1.65] [ (1.80, 2.64], and its complexity values are large. The system has two

periodic windows at μ 2 (1.65, 1.80] [ (2.64, 2.88], and its complexity values are relatively low.

We choose the parameters by observing the variation of complexities with the dynamic

characteristics of chaotic signals. The MPEr complexities with different parameters are shown

in Fig 3. When k decreases, the differences of MPEr values between chaotic state and the peri-

odic state are larger as shown in Fig 3(a). The same treads are detected when α decreases, and

m increases as shown in Fig 3(c) and 3(d) respectively. Thus, we set k = 3, α = 2 and m = 7.

To analyze the weighted factors, we introduce a parameter d, and it is the distance between

neighbor weighted factors (d = |wn − wn−1|). Setting the first weighted factor w1 = 1 (In fact,

no matter what the first item is, the effect is the same when d is determined according to our

numerical simulations), we obtain that the MPEr values with lager d are more sensitive to the

differences of MPEr values between chaotic state and the periodic state as shown in Fig 3(b).

Although the complexity value will be a little larger, when the parameter d increases, consider-

ing to balance the performance of the algorithm and the calculation time, d = 2 is the suitable

choice. The weighting-averaging method emphasizes the central information (Here, k = 3,

so there are 3 weighted factors, w1, w2, w3. w2 is used to emphasizes the central information).

It means the weighted factors increase first, and then decrease. So, w1 = 1, w2 = w1 + d = 3,

w3 = w2 − d = 1. Theoretically, the new parameters would lead to increase of the computational

complexity of the algorithm. However, during numerical simulations, the difference of average

calculation time between PEr and MPEr is less than one second. So far, all the parameters of

the MPEr are determined by numerical simulation analysis. Once the parameters are deter-

mined, MPEr can be used to measure different EEG data according to our experiments results.

So it is reasonable for practical applications.

Fig 2. Dynamics of the 2D SF-SIMM by setting initial value (0.3, 0.4), iteration times N = 1000, system parameter b = 3 and μ
varying from 1 to 4 with the step size of 0.01. (a) Bifurcation diagram. (b) Lyapunov exponent spectrum.

https://doi.org/10.1371/journal.pone.0202558.g002
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To show the performance of MPEr algorithm, the complexities of 2D SF-SIMM are ana-

lyzed by MPEr, PEr and MPE algorithms, respectively. We choose optimal parameters for the

three algorithms by numerical simulations. As shown in Fig 4, MPEr and PEr can distinguish

different dynamic states better. Furthermore, the MPEr values are larger than the values of PE

with average and moving-averaging method when the system is chaotic. Thus the performance

of MPEr is the best among that of these complexity measure algorithms, and the MPEr algo-

rithm is applied to analyze EEG signals in next section.

Results and discussion

EEG data descriptions

We examine 5-group (denoted with A-E) EEG recordings downloaded from the public data-

base [42]. Each group of EEG recordings contain 100 single segments. The descriptions of

EEG data are summarized in Table 1. Segments of groups A and B are taken from the depicted

electrodes of healthy volunteers. Segments of groups C, D and E are taken from the depicted

electrodes of epileptogenic zone of patients. All the EEG signals were recorded by the same

128-channel amplifier system. After 12-bit analog-to-digital conversion, the data were written

continuously onto the disk of a data acquisition computer system at a sampling rate of 173.61

Hz. The duration of each segment is about 23.6 seconds and contains 4096 samples. The band

Fig 3. MPEr complexities with different parameters. (a) with different k. (b) with different d. (c) with different α. (d) with different

m.

https://doi.org/10.1371/journal.pone.0202558.g003
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width of the band-pass filter is 0.53-40 Hz. We plotted the time-domain waveforms of the

5-group EEG signals as shown in Fig 5.

Complexity analysis of the EEG signals

According to the procedure described above, the optimal parameter configurations for MPEr

are determined. Now, we applied MPEr to the EEG signals by using sliding window method.

The basic idea of sliding window is to create a W-width sliding window and count the sample

points within the sliding window. Here, the width of the window W is 2000, and the sliding

step size is 1. To show the performance of MPEr, we randomly choose 4 segments (004, 008,

028, 029) of every group of EEG signals and calculate the MPEr complexities as shown in

Fig 4. Complexities of MPEr (m = 7, α = 2, w1 = 1, w2 = 3, w3 = 1), PEr (m = 7, α = 2), PE with average method (m = 4, s = 4) and

PE with moving-averaging method (m = 4, s = 4).

https://doi.org/10.1371/journal.pone.0202558.g004

Table 1. The EEG data.

Groups Recordings

A Healthy volunteers in an awake state with eyes open

B Healthy volunteers in an awake state with eyes closed

C Patients during seizure free intervals (the hemisphere of epileptogenic zone)

D Patients during seizure free intervals (the opposite hemisphere of the epileptogenic zone)

E Patients during seizure activity

https://doi.org/10.1371/journal.pone.0202558.t001
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Fig 6. Obviously, the MPEr complexity value of the healthy EEG signal is higher than that of

the epileptic EEG signal. It is consistent with the results that the complexity of healthy EEG

signal is higher than that of pathologic EEG signal [43, 44]. Moreover, the MPEr values

decrease gradually from group A to group E. In fact, we have analyzed most of the 100 seg-

ments and the similar results are obtained. Thus, the MPEr algorithm has good discrimination

performance.

Boxplot analysis for the complexity of the EEG signals

Boxplot is a method for graphically depicting groups of numerical data through their quartiles

in statistics. The bottom and top of the box are the first and third quartiles, and the line inside

the box is the median. The individual points are outliers. Boxplot is non-parametric and it can

reflect dispersion of data and identify outliers [45]. The median in the box is shown by the

bold line, which extends from 25% to 75%. The plus sign represents the outlier. To illustrate

the discrimination performance better, all EEG segments in the database are analyzed and the

boxplots of MPEr, PEr, MPE (average) and MPE (moving-averaging) are plotted as shown in

Fig 7. MPEr complexities are higher than that of PEr and MPE (average and moving-averag-

ing). MPEr has different mean values for all 5 groups, and the mean values are gradually

decreased from group A to group E. While PEr results overlap with each other, and the mean

values are not decreased gradually. Furthermore, there are more outliers in PEr than that in

MPEr, which indicates that MPEr is more effective than PEr. For MPE (averaging), the mean

values are gradually decreased from group A to group D, but the mean value of group E is

greater than that of group D. For MPE (moving-averaging), the mean values of group A and

group B are greater than those of group C, group D, and group E. However, the mean values of

group A and group B almost overlap, so do that of group C, group D, and group E. So, MPEr

can discriminate the EEG signals of healthy activity, epileptic seizure free intervals, and epilep-

tic seizures intervals correctly.

Fig 5. The time-domain waveforms of the 5-group EEG signals.

https://doi.org/10.1371/journal.pone.0202558.g005
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ANOVA and Dunnett-T3 analysis for the complexity of EEG signals

To validate the effectiveness of the complexity measures, one-way analysis of variance

(ANOVA) is carried out. The essence of ANOVA is to judge whether there is a significant dif-

ference among all groups. In practice, ANOVA is used to estimate the significant influence of

various factors on a dependent variable. Here, the dependent variable is MPEr complexity val-

ues, and the factor is the ‘Group’. The null hypothesis is that the 5-group EEG signals have the

same MPEr complexity values. Setting p = 0.05 as the level of statistical significance for the test,

we employ ANOVA to analyze the complexities and the results are listed in Table 2. Obviously,

for MPEr, F(4,495) = 158.22, p = 0. The p value of ANOVA is less than 0.05, so the null hypoth-

esis is irrational. That means all the MPEr complexity values of 5-group EEG signals are statis-

tically significant.

To demonstrate the discrimination performance further, we carry out Dunnett-T3 test.

Taking p = 0.05 as the level of statistical significance, and we obtained the results as shown

in Table 3. p< 0.05 indicates significant differences and df means degree of freedom. For

MPEr of each two groups, p = 0, which is less than 0.05. It means the MPEr complexities of

different groups EEG signals are all statistically significant, so MPEr algorithm can discrimi-

nate 5-group EEG signals from each other.

To compare the performances of different complexity measure algorithms, ANOVA and

Dunnett-T3 analysis are conducted. The performance of the MPEr algorithm is compared with

PEr [24], MPE (averaging) [29], MPE (moving-averaging) [39] and weighted-permutation

Fig 6. The MPEr complexities with 2000-width sliding window for different segments. (a) for segment 004. (b) for segment 008.

(c) for segment 028. (d) for segment 029.

https://doi.org/10.1371/journal.pone.0202558.g006
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entropy (WPE) [46]. Taking p = 0.05 as the level of statistical significance for the tests. As

shown in Table 4, the differences of MPEr complexities among 5 groups are more significant

than that of PEr (MPEr (F(4,495) = 158.22, p< 0.05) > PEr (F(4,495) = 138.391, p< 0.05)).

Furthermore, from Table 5, p value of PEr between group A and group C is 1.000, which is

Fig 7. Boxplots of MPEr, PEr and MPE. (a) MPEr: α = 2, m = 7. (b) PEr: α = 2, m = 7. (c) MPE (average): s = 4, m = 4. (d) MPE

(moving-averaging): s = 4, m = 4.

https://doi.org/10.1371/journal.pone.0202558.g007

Table 2. ANOVA for MPEr.

Algorithm Sum of mean squares df Mean squares F p

MPEr Between Groups 122.438 4 30.610 158.822 0.000

MPEr Within Groups 95.401 495 0.193 - -

MPEr Total 217.839 499 - - -

https://doi.org/10.1371/journal.pone.0202558.t002

Table 3. p values of Dunnett-T3 for MPEr.

Groups A B C D E

A N 1.912 × 10−11 1.776 × 10−15 4.441 × 10−16 1.443 × 10−15

B 1.912 × 10−11 N 4.812 × 10−8 0.000 0.000

C 1.776 × 10−15 4.812 × 10−8 N 2.160 × 10−4 1.902 × 10−13

D 4.441 × 10−16 0.000 2.160 × 10−4 N 2.611 × 10−4

E 1.443 × 10−15 0.000 1.902 × 10−13 2.611 × 10−4 N

https://doi.org/10.1371/journal.pone.0202558.t003
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greater than 0.05. It means PEr complexities of these two groups are at the same level, so it fails

to discriminate healthy EEG group A and seizure free EEG group C. MPEr (F(4,495) = 158.22,

p< 0.05)> MPE(averaging) (F(4,495) = 92.299, p< 0.05). Moreover, Table 6 suggests that

p value of MPE (averaging) between group C and group E is 0.316, which means MPE (averag-

ing) complexities of these two groups are at the same level. So is that of group D and group E.

Although MPEr (F(4,495) = 158.22, p< 0.05)< MPE (moving-averaging) (F(4,495) = 218.483,

p< 0.05), the p value of MPE (moving-averaging) between group C and group E is 0.592,

which is greater than 0.05. So are that of group C and group D, group D and group E as shown

in Table 7. MPEr (F(4,495) = 158.22, p< 0.05)> WPE (F(4,495) = 50.167, p< 0.05) as shown

in Tables 4 and 8 shows that p value of WPE between group C and group D is 0.188, which is

greater than 0.05, so WPE fails to discriminate group C and group D.

Table 9 shows the comparison results of other methods by using statistical analysis. Here, p
values of all methods are less than 0.05, and the F values of different methods are different. The

F value of WPE is the smallest. For MPE (averaging), the F value is larger than that of WPE,

and it cannot discriminate seizure free EEG group C, group D and seizure EEG group E.

Table 4. ANOVA for PEr, MPE (averaging) and MPE (moving-averaging).

Algorithms Sum of mean squares df Mean squares F p

PEr [24] Between Groups 5.588 4 1.397 138.391 0.000

PEr Within Groups 4.997 495 0.010 - -

PEr Total 10.585 499 - - -

MPE [29] Between Groups 0.370 4 0.092 92.299 0.000

MPE Within Groups 0.496 495 0.001 - -

MPE Total 0.865 499 - - -

MPE [39] Between Groups 0.903 4 0.226 218.483 0.000

MPE Within Groups 0.511 495 0.001 - -

MPE Total 1.414 499 - - -

WPE [46] Between Groups 4.109 × 10−11 4 1.027 × 10−11 50.167 1.900 × 10−35

WPE Within Groups 1.014 × 10−10 495 2.408 × 10−13 - -

WPE Total 1.425 × 10−10 499 - - -

https://doi.org/10.1371/journal.pone.0202558.t004

Table 5. p values of Dunnett-T3 for PEr.

Groups A B C D E

A N 1.329 × 10−15 1.000 3.665 × 10−14 0.000

B 1.329 × 10−15 N 2.232 × 10−14 0.002 2.492 × 10−15

C 1.000 2.232 × 10−14 N 0.001 0.000

D 3.665 × 10−14 0.002 0.001 N 1.564 × 10−15

E 0.000 2.492 × 10−15 0.000 1.564 × 10−15 N

https://doi.org/10.1371/journal.pone.0202558.t005

Table 6. p values of Dunnett-T3 for MPE(averaging).

Groups A B C D E

A N 8.683 × 10−13 0.000 1.665 × 10−15 2.776 × 10−15

B 8.683 × 10−13 N 0.000 0.000 2.537 × 10−12

C 0.000 0.000 N 0.004 0.316

D 1.665 × 10−15 0.000 0.004 N 1.000

E 2.776 × 10−15 2.537 × 10−12 0.316 1.000 N

https://doi.org/10.1371/journal.pone.0202558.t006
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Although F value of MPE (moving-averaging) is the largest, it also fails to discriminate seizure

free EEG group C, group D and seizure EEG group E. PEr also cannot discriminate healthy

group A and seizure free group C. MPEr has higher F value and can discriminate 5-group EEG

signals successfully. The statistical analysis results are consistent with that of the boxplot analy-

sis. So, MPEr has better performance for analyzing epileptic EEG signals.

Conclusion

In this paper, a novel complexity measure algorithm, named multiscale permutation Rényi

entropy (MPEr), is proposed by introducing weighting-averaging method. The complexity

analysis of 2D SF-SIMM shows that MPEr has higher complexities than PEr and MPE, and it

indicates that MPEr can discriminate different dynamic states better than other complexity

measure algorithms. Furthermore, the suitable parameters are determined for MPEr by ana-

lyzing chaotic signals. We apply this new algorithm to analyze five groups of EEG recordings.

We found that the complexity values of the healthy EEG signals are higher, while that of the

epileptic EEG signals are lower. MPEr can distinguish different EEG signals effectively. The

statistical analysis also supports that MPEr algorithm has better performance than that of

other complexity measure algorithms. It provides prospect of further study in electrical activity

of brain and may apply for clinical medical application in the future.

Table 7. p values of Dunnett-T3 for MPE(moving-averaging).

Groups A B C D E

A N 0.010 5.995 × 10−15 0.000 0.000

B 0.010 N 0.000 4.552 × 10−15 1.109 × 10−15

C 5.995 × 10−15 0.000 N 0.065 0.592

D 0.000 4.552 × 10−15 0.065 N 0.999

E 0.000 1.109 × 10−15 0.592 0.999 N

https://doi.org/10.1371/journal.pone.0202558.t007

Table 8. p values of Dunnett-T3 for WPE.

Groups A B C D E

A N 1.110 × 10−16 9.766 × 10−7 5.590 × 10−4 0.000

B 1.110 × 10−16 N 1.364 × 10−11 8.689 × 10−13 0.000

C 9.766 × 10−7 1.364 × 10−11 N 0.188 1.051 × 10−13

D 5.590 × 10−4 8.689 × 10−13 0.188 N 8.882 × 10−16

E 0.000 0.000 1.051 × 10−13 8.882 × 10−16 N

https://doi.org/10.1371/journal.pone.0202558.t008

Table 9. Results by statistical analysis.

Algorithms F comparisons

PEr 138.391 Fail to discriminate group A and group C

MPE(averaging) 92.299 Fail to discriminate group C and group E,group D and group E

MPE(moving–

averaging)

218.483 Fail to discriminate group C and group D,group C and group E,group D and

group E

WPE 50.167 Fail to discriminate group C and group D

MPEr 158.822 Discriminate five groups successfully

https://doi.org/10.1371/journal.pone.0202558.t009
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