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Abstract
Community structure is considered one of the most interesting features in complex net-

works. Many real-world complex systems exhibit community structure, where individuals

with similar properties form a community. The identification of communities in a network is

important for understanding the structure of said network, in a specific perspective. Thus,

community detection in complex networks gained immense interest over the last decade. A

lot of community detection methods were proposed, and one of them is the label propaga-

tion algorithm (LPA). The simplicity and time efficiency of the LPA make it a popular commu-

nity detection method. However, the LPA suffers from instability detection due to

randomness that is induced in the algorithm. The focus of this paper is to improve the stabil-

ity and accuracy of the LPA, while retaining its simplicity. Our proposed algorithm will first

detect the main communities in a network by using the number of mutual neighbouring

nodes. Subsequently, nodes are added into communities by using a constrained LPA.

Those constraints are then gradually relaxed until all nodes are assigned into groups. In

order to refine the quality of the detected communities, nodes in communities can be

switched to another community or removed from their current communities at various

stages of the algorithm. We evaluated our algorithm on three types of benchmark networks,

namely the Lancichinetti-Fortunato-Radicchi (LFR), Relaxed Caveman (RC) and Girvan-

Newman (GN) benchmarks. We also apply the present algorithm to some real-world net-

works of various sizes. The current results show some promising potential, of the proposed

algorithm, in terms of detecting communities accurately. Furthermore, our constrained LPA

has a robustness and stability that are significantly better than the simple LPA as it is able to

yield deterministic results.

Introduction
Network analysis emerges as a versatile tool that can be applied in various research fields such
as sociology, bibliometric studies and transportation [1–3]. One of the most prominent proper-
ties in a network is its community structure. A community is defined as a group of nodes that
are densely connected amongst themselves, while having lesser connection with the rest of the
network [4]. Nodes that belong to a community indicate similar attributes among them. By
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studying the community structure of a network, one can get insight into the dominant features,
attributes or functions of the nodes in the network. Hence, community detection has become a
popular research topic over the decade. As a consequence, a large number of algorithms have
been proposed and developed for the analysis of community structure in networks [5].

The label propagation algorithm (LPA) is a simple and fast community detection algorithm,
that was originally proposed by Raghavan et al. [6]. The core idea of the LPA is to assign each
node in a network into a community, to which most of its neighbouring nodes belong. Due to
its simplicity, the LPA exhibits near linear complexity and it is a practical algorithm to detect
communities in large networks with millions of nodes. Despite the simplicity and time effi-
ciency of the LPA, it suffers from some instability detection due to its random update sequence
and random tie breaking. Over the last decade, various modifications have therefore been
implemented on the LPA in order to improve its stability and robustness. For example, Leung
et al. [7] proposed hop attenuation and preferential linkage to break ties and prevent the trivial
detection where all nodes are grouped in a single community. In addition, Barber and Clark [8]
implemented modularity in the LPA and proposed a modified LPA that maximized modular-
ity. Their method was improved upon by Liu and Murata [9], where they merged the commu-
nities to further maximize the modularity. Subsequently, Xie et al. [10] presented a LPA
variant that can detect overlapping communities. The proposed algorithm is a speaker-listener
based information propagation process (SLPA). In SLPA, a node can be either a speaker or a
listener. As a listener, a node receives information from its neighbors. On the other hand, a
node spreads the label with the highest frequency when it acts as a speaker. Apart from SLPA,
Xie and Szymanski [11] also proposed a modified LPA called LabalRank in order to stabilize
the LPA by incorporating a Marcov Cluster Algorithm into the LPA. Previously, they intro-
duced an update rule that can speed up the LPA by avoiding unnecessary updates [12]. Here,
they categorized the nodes in a network as being either passive or active. Passive nodes do not
change label after update, while active nodes do change their label. Note that the algorithm
stops when there is no active node. Zhang et al. [13] proposed a modified LPA with the capabil-
ity for prediction of a percolation transition (LPAp). The effect of the prediction part in the
LPAp will be to delay the formation of a monster size community. They also implemented an
incomplete update condition in order to further reduce the computation time of the LPAp. A
node influence based LPA (NIBLPA), which was proposed by Xing et al. [14], focuses in coping
with the randomness of the LPA. In their work, they defined the node influence as a measure-
ment for the importance of the nodes in a network. The node influence is used to decide the
update sequence. Similarly, a label influence is defined to handle the random tie breaking
dilemma in the LPA. In the recent work by Gaiteri et al. [15], they proposed a modified LPA
called “SpeakEasy” to detect communities in biological networks effectively. Not only can
“SpeakEasy” detect both overlapping and disjoint communities, it does not need any manual
tuning of parameters. Furthermore, their algorithm is unique in the sense that it combines the
usage of neighboring information (bottom-up approach) and the global information of a net-
work (top-down approach). The combination of top-down and bottom-up approach will
improve the accuracy of the detection. One of the latest modified LPA approach is the LINSIA
by Wu et al. [16]. The main feature of the LINSIA is its ability to control the propagation pro-
cess to uncover overlapping and hierarchical communities. This algorithm can also reveal the
hubs and outliers in a network. Nonetheless, improvement on the stability and robustness of
the LPA still remains an open question.

In this paper, we propose a few modifications to the LPA in order to tackle its instability
while improving its accuracy. Initially, the proposed algorithm detects the main communities
in a network by using the number of mutual neighbouring nodes. Nodes are now assigned into
detected communities by using a constrained LPA. Those constraints are gradually relaxed
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until all the nodes are assigned into groups. At various stages of the algorithm, the quality of
the detected communities is improved by switching nodes between communities or removing
them from their current communities. Fixed update sequences, based on the degree of the
nodes, are utilized to avoid the random label update problem. A parameter is also introduced
to handle tie breaking during the propagation. Detected communities can also be merged in
our approach if they fulfil certain conditions.

The performance of the proposed algorithm is compared to that for six other community
detection methods: LPA, GANXiS, NIBLPA, Infomap, RN and Blondel. Here, LPA is the afore-
mentioned simple label propagation algorithm of Raghavan et al. [6], while GANXiS (also
known as SLPA) is a LPA variant by Xie et al. [10, 17, 18]. Although SLPA is known for detect-
ing overlapping communities, GANXiS is capable of detecting both disjoint and overlapping
communities in a network. NIBLPA [14], on the other hand, is a node influence based LPA
variant. Infomap is a flow-based community detection method that optimizes the map equa-
tion [19]. The optimization of map equation requires the seeking of community structure in a
network while minimizing the description length of a random walker. Ronhovde and Nussinov
(RN) [20] proposed a method based on a multi-resolution spin-glass type Potts model, which
is not affected by a resolution-limit. One of the most prominent features of the method is the
ability to detect communities of heterogeneous sizes. Finally, Blondel et al. [21] devised a heu-
ristic method that detects communities by optimizing the modularity of a network. That
method is excellent in terms of it finding community structure with optimized modularity in a
relatively short computational time.

We tested the present algorithm on three types of benchmark networks, namely the Lanci-
chinetti-Fortunato-Radicchi (LFR) [22, 23], Relaxed Caveman (RC) [24, 25], and Girvan-New-
man (GN) [4] benchmarks. We also implemented the algorithm to study some real-world
networks of various sizes. We found that the present algorithm is capable of producing deter-
ministic and accurate results. Furthermore, the results show that our variant of the LPA is sub-
stantially more robust and stable than the original LPA.

Methods and Data

Related Work
Label Propagation Algorithm. Given a network with n nodes, where node x with label at

iteration t is denoted by Cx(t), the LPA is described as following:

1. Initially, each node in a network has a unique label. Thus, Cx(0) = x.

2. Set t = 1.

3. Obtain a list of updated labels for the nodes in a random order.

4. For each node in the list, let Cx(t) = f(Cx1(t),. . .,Cxm(t),Cxm+1
(t−1),. . .,Cxn(t−1)). Cx1(t),. . .,

Cxm(t) are the labels of neighbouring nodes that have been updated in the current iteration
while Cxm+1

(t − 1),. . .,Cxn(t − 1) are the label of neighbouring nodes that are not yet updated.
The function f returns the label which is adopted by most of its neighbouring nodes. Ties
are broken randomly. This updating process is asynchronous. For a synchronous updating
process, Cx(t) = f(Cx1(t − 1),. . .,Cxm(t − 1)). Although the synchronous update is more time
efficient than the asynchronous update, it encounters oscillations of the labels in the bipar-
tite structure subgraph.

5. Terminate the algorithm if every node has the same label as most of its neighbouring nodes.
Otherwise, set t = t + 1 and return to step (3).
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Algorithm
The proposed algorithm consists of 4 processes: mutual neighbour score and grouping, merg-
ing of detected communities, constrained LPA, and grouped nodes reallocation. Unlike the
original LPA, for which the labels of all the nodes are updated in every iteration, we propose an
update approach that handles the solo and grouped nodes separately. Solo nodes refer to nodes
without any community, as contrasted to the grouped nodes. The function and details of these
processes are explained in the following subsections.

Mutual neighbour score and grouping. Since a community is made out of densely con-
nected nodes, a pair of nodes is likely to be in the same community if they share a large number
of mutual neighbouring nodes. Based on this observation, a simple way of detecting the main
communities in a network, by using the number of mutual neighbouring nodes, is utilised. The
mutual neighbours score (MNS) of each node is calculated, where the MNS of a node is defined
as the number of mutual neighbouring nodes it has with another node in a network. Fig 1
depicts the idea of the MNS.

The calculated MNS is used to form communities among the nodes in a network. This pro-
cess consists of 2 parts. The first part is the highest to highest MNS grouping. Nodes that have
the highest MNS with each other will be assigned into a group. In the second part, a node will
simply adopt the label of a neighbour that shares the highest number of neighbours with it. In
the case of a tie, where a node has similarly high MNS with multiple nodes, the labels of those
nodes are observed. A node will adopt the label which is adopted by most of those nodes.
Nodes are updated asynchronously, starting from the nodes with the lowest degree.

Fig 2 shows a simple example describing the grouping of nodes based on the MNS. Node A
has the highest MNS of 8 with node B, while node B also has the highest MNS of 8 with node
A. Thus, nodes A and B will be assigned into a group. Node C has the highest MNS of 6 with
node D, but the highest MNS of node D is 7. Consequently, node C adopts the label of node D.

Fig 1. Example of a MNS calculation. Node 1 shares 4 neighbouring nodes (squares) with node 2. Since this is an undirected
network, the MNS of node 1 to node 2 is 4, and vice versa.

doi:10.1371/journal.pone.0155320.g001
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Node E has the highest MNS with multiple nodes (F and G). It happens that nodes F and G are
in the same group. Hence, node E will adopt the label of nodes F and G.

Communities merging. Groups are merged if the following condition is satisfied:

inter community links
no: of nodes in neighbouring community

> a� intra community links
no: of nodes in target community

ð1Þ

For example, given two groups, A and B, with 5 and 7 nodes, respectively. Group A has 10
intra community links and 16 inter community links with group B. Since 16

7
¼ 2:286 > 10

5
¼ 2,

group A will be merged with group B. The α is a threshold parameter ranging from 0 to 1,
which determines the difficulty of merging communities. As the value of α increases, the diffi-
culty of merging communities also increases.

Constrained LPA (CLPA). As mentioned earlier in this paper, the LPA suffers from insta-
bility that is caused by the randomness in the update sequencing, as well as the random tie
breaking between multiple equally frequent labels. The most direct way of resolving the ran-
dom update sequence is to use fixed update sequences. On the other hand, the solution for
breaking a tie is the implementation of conditions for a node to decide the community that it
belongs to. In this work, the capability of neighbouring nodes to accept new nodes into their
communities is considered for addressing tie breaking. The capacity of a node to accept a

Fig 2. Example of a MNS grouping.Nodes A to G are divided into 3 groups (diamond, square and circle). The numbers attached to the
edges are the MNS of a pair of nodes. Numbers in red indicates the highest MNS with another node. It must be noted that not all possible
related nodes and edges are depicted in this figure.

doi:10.1371/journal.pone.0155320.g002
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neighbouring node into its community is defined as:

capacity ¼ Number of inter community links
Degree

ð2Þ

An example illustrating this concept is given in Table 1. Node J has 4 neighbouring nodes (K,
L, M and N) that are distributed evenly among 2 communities, where K and L belong to C1
while M and N belong to C2.

The capability of C1 to accept node J into the community is the sum of the capacity of K
and L, which is 1.063. On the other hand, C2 has the capacity of 0.958. Since C1 has higher
capability in accepting new nodes, node J is assigned into C1.

In the original LPA, a node will adopt a label as long as that label is the most frequent label
amongst the neighbouring nodes. However, it does not always increase or retain the density of
communities. In fact, the density of a community may reduce drastically if it accepts nodes
without restriction. In our approach, in order to maximize the density of a community, a node
must fulfil certain conditions before it is assigned into a community. Those proposed indepen-
dent conditions are as follows:

Condition 1: The number of links of a node to the nodes in a community is higher than the
observed minimum number of intra community links in the community.

Condition 2: The number of links of a node to the nodes in a community is equal or higher
than the observed minimum number of intra community links in the community.

Condition 3: The number of links of a node to the nodes in a community is higher than a
threshold of observed minimum number of intra community links in the community. The
threshold used in this work is half of the observed minimum number of intra community
links in the community.

Condition 4: The number of links of a node to the nodes in a community is equal or higher than
a threshold of observed minimum number of intra community links in the community.

It can be observed that the level of restriction is gradually relaxed in going from Conditions
1 to 4. Based on these conditions, a total of 7 asynchronous constrained LPA (CLPA) are
designed to allocate solo nodes into detected communities. It must be noted that all the CLPA
are executed recursively until there is a convergence in the label of all the nodes.

Constrained LPA 1
Starting from the smallest community, the labels of neighbouring solo nodes, for all the nodes

in the community, are updated in a descending sequence, starting from the neighbouring node
with the highest degree. A solo node can be allocated into a community if it fulfils Condition 1.
The purpose of this CLPA, in prioritizing the small communities over the bigger ones, is to coun-
terbalance the rapid growth of the big communities. The growth of the small communities here
prevents them from being devoured by the big communities in later stages of the algorithm.

Table 1. Example of the capacity of a given node for accepting a neighbouring node into its
community.

Node Inter Comm. Links Degree Capacity

K 5 10 0.500

L 9 16 0.563

M 5 8 0.625

N 4 12 0.333

doi:10.1371/journal.pone.0155320.t001
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Constrained LPA 2
CLPA 2 is a less restrictive version of CLPA 1. A solo node can be allocated into a commu-

nity if it fulfils Condition 2.
Constrained LPA 3
Starting from the solo node with the highest degree, the labels of nodes are updated in a

descending sequence. A solo node is here allocated into the community, where most of its
neighbouring nodes reside, provided that it fulfils Condition 3. If there is a tie between multiple
communities, no action is taken by the solo node.

Constrained LPA 4
CLPA 4 is an extension of CLPA 3. In CLPA 4, a node that encounters a tie between multi-

ple communities will choose the community with the higher capability for accepting a new
node. Nonetheless, the node must still fulfil Condition 3 before it can be a member of the
community.

Constrained LPA 5
Generally, CLPA 5 is similar to CLPA 1 and 2. In CLPA 5, a solo node is allocated into the

community where most of its neighbouring nodes reside, provided it fulfils Condition 3. Fur-
thermore, the modularity after a node enters a community must be higher than the modularity
before it enters the community.

Constrained LPA 6
Starting with the grouped node with the highest number of neighbouring solo nodes, any

neighbouring solo node that has MNS>0 with the grouped node is eligible to be in the same
community as the grouped node. Nonetheless, it still needs to fulfil Condition 4 in order to be
a member of the community.

Constrained LPA 7
CLPA 7 is a less restrictive version of CLPA 4. A solo node can here be allocated into a com-

munity as long as it fulfils Condition 4.
Grouped nodes reallocation (GNR). GNR is implemented right after any CLPA for refin-

ing purposes. The function of GNR is the reallocation of a grouped node into another commu-
nity or the removal a grouped node from its current community. The 4 conditions, which are
introduced in CLPA, are also considered during the reallocation or removal of a grouped node.

Communities with only two nodes are unlikely to gain more nodes in the later stages of the
algorithm. Furthermore, it may disrupt detection by introducing an undesirable tie situation.
Hence, groups with only a couple of nodes are disbanded, where both grouped nodes become
solo nodes. This process will be known as “dual removal” in this paper.

Grouped nodes reallocation 1
GNR 1 consists of two parts. In the first part, the number of intra community links of each

node in a community is observed. A grouped node is removed from its current community if
the number of intra community links of the node is less than the first quartile of the set of
observed number of intra community links in a group. This process can only be executed once,
as running it recursively will eventually remove all the nodes from a community.

In the second part, a process similar to CLPA 4 is carried out. In this case, the labels of the
nodes are updated in an ascending sequence in terms of their degree. The labels of neighbour-
ing nodes in a grouped node are observed, and one of these situations is encountered:

1. A grouped node has a label which a majority of its neighbouring nodes adopted.

2. A grouped node has a label which is not adopted by the majority of its neighbouring nodes.

3. There are multiple labels which are equally frequent among the neighbouring nodes.

Detecting Community Structure by Using a Constrained Label Propagation Algorithm
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In situation 1, the grouped node retains its current label. In situation 2, if a grouped node satis-
fies Condition 1, it will adopt the label to which most of its neighbouring nodes have. Otherwise,
it is removed from its current community. In situation 3, if there are multiple communities shar-
ing the similar highest capacity, the grouped node will be removed from its current community.
If there is only one community with the highest capacity, a grouped node will switch to that com-
munity, provided it fulfils Condition 1. Otherwise, it is removed from its current community. All
available situations 1 and 2 are addressed first, before handling situation 3. This process, together
with the dual removal process, is executed recursively until convergence in the labels is achieved.

Grouped nodes reallocation 2
GNR 2 is basically GNR 1 without implementing the first part.
Grouped nodes reallocation 3
GNR 3 is exactly the same as GNR 2, except it implements Condition 3 instead of Condition 1.
Grouped nodes reallocation 4
GNR 4 is a reduced version of GNR 3, where there is no more node removal. Instead of

removing a grouped node from its current community, it remains in its current community if
it does not fulfil the relevant condition.

Grouped nodes reallocation 5
In this GNR, a grouped node that does not fulfil a condition will not be removed from its

current community, and the dual removal process is also not implemented. In other words,
communities with only two nodes are permitted to exist.

Constrained LPA with grouped nodes reallocation (CLPA-GNR). Our proposed algo-
rithm (CLP-GNR) consists of 6 main parts, which in turn are a combination of the aforemen-
tioned processes. The flowchart of this algorithm is depicted in Fig 3. Part 1 is the initial
labelling of all the nodes, where every node is given a unique label. In part 2, the MNS of each
node is calculated. Concurrently, the MNS is used to detect initial communities. The detected
communities are merged with the parameter α = 1. Afterwards, the grouped nodes undergo
GNR 1. At the end of part 2, the main communities in a network are detected.

In part 3, solo nodes are allocated into the detected communities by using a series of CLPA
(CLPA 1, CLPA 2 and CLPA 3). GNR 2 or GNR 3 is also implemented after each CLPA for
refinement of the communities. If there is no solo node left at the end of part 3, the algorithm
will execute part 6 directly, skipping parts 4 and 5.

If there exists at least 10 solo nodes after part 3, the remaining solo nodes and the corre-
sponding edges are extracted from the main graph to form a subgraph as in part 4 of the pro-
cess. Parts 1 to 3 are now executed on the subgraph and the result is exported into the main
graph. After the main graph has imported the result from the subgraph, it will undergo all the
processes in part 3 again. It must be noted that the GNR that is executed after CLPA 1 in part 3
is different pre- and post-part 4. GNR 2 is executed pre-part 4, while GNR 3 is executed post-
part 4. The CLPAs in part 5 then allocate all the remaining solo nodes into the detected groups.

In part 6, detected communities are merged with the parameter α variying from 0.1 to 1 in
descending order. Every time a group merging process with a particular α is executed, it is fol-
lowed by the Final GNR. As the value of α decreases, more groups are merged and the number
of final detected groups is consequently decreased. The group merging process continues until
there is a drop in the modularity, which indicates that further merging of communities will not
yield a better partition. The algorithm is then terminated.

Time Complexity
As depicted in Fig 3 the CLPA-GNR consists of multiple processes. Each of the processes runs
on a different time complexity. The time complexity of initialization for all nodes is O(n). Both
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Fig 3. The flowchart of CLPA-GNR.

doi:10.1371/journal.pone.0155320.g003
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the calculation of MNS and the detection of initial communities by using MNS have a time
complexity of O(m). On the other hand, the time complexity of the merging of communities is
O(tm m), where tm is the number of iterations that are needed for the convergence in the label
of all the nodes. The final group merging process has a time complexity of O(utm m), as the
parameter α is varying from 0.1 to 1. The term u is the number of times the group merging pro-
cess is executed, before α reaches its optimal value.

The CLPA-GNR splits the original propagation process into two parts, which are the CLPA
and GNR components. It is known that the time complexity of the original propagation pro-
cess is O(m) [6]. By splitting the process into two parts, the time complexity of the process will
also be divided. Hence, the time complexity of CLPA and GNR are O(tC mC) and O(tG mG),
respectively. The terms tC and tG are similar to tm, whilemC andmG refer to the number of
edges that are involved in the CLPA and GNR processes. Furthermore, it should be noted that
mC�m,mG �m andmC +mG =m. Even though the conditions (Conditions 1-4) are imple-
mented in the CLPA and GNR processes, they do not affect the time complexity of the pro-
cesses significantly.

The subgraph community detection process has the time complexity of the sum of the time
complexity of the processes 1 to 3, as shown in Fig 3. However, in most of the cases, the size of
the subgraph is relatively small (<10% of the main graph) so that the computation time for
this process can be omitted. In conclusion, the total time complexity of the CLPA-GNR algo-
rithm, excluding the subgraph communities detection process, is O(n)+O(m)+O(tm m)+10�O
(tc mC)+10�O(tG mG)+O(utm m)+O(utG m).

Data Sets
We tested the proposed algorithm on 3 different synthetic networks, namely the Lancichinetti-
Fortunato-Radicchi (LFR), Relaxed Caveman (RC) and Girvan Newman (GN) benchmarks.
We also selected 9 real-world networks of various sizes as our test subjects. All the synthetic
and real-world networks are undirected and unweighted, with disjoint ground truth
communities.

Lancichinetti-Fortunato-Radicchi (LFR). LFR benchmark networks are the most popular
synthetic networks in the study of community detection. They feature heterogeneity in both the
distribution of community sizes and the degree of the nodes. These properties are common in
real-world networks, thus making LFR networks outstanding benchmarks. The mixing parame-
ter, μ, refers to the average percentage of edges that link a couple of nodes from different com-
munities. As the value of μ increases, the community structure of a network will weaken.

Two main groups of LFR networks with different sizes are generated. “Big networks” (B) con-
sist of 5000 nodes while “small networks” (S) have 1000 nodes. Each main group has 4 subgroups
with different community sizes and average degree. “Small communities” (SC) and “large com-
munities” (LC) refer to networks with community sizes ranging from 10 to 50 and 20 to 100,
respectively. On the other hand, “small average degree” (SK) and “large average degree” (LK)
refer to networks with nodes of average degree of 10 and 20, respectively. Finally, each subgroup
contains 8 networks with μ ranging from 0.1 to 0.8. In conclusion, a total of 64 LFR networks are
generated. The parameters used when generating these networks are summarized in Table 2.

Relaxed Caveman (RC). The RC benchmark network consists of 512 nodes that are
divided into 16 communities of highly heterogeneous sizes. Initially, a RC network has 16 iso-
lated k-cliques. The community structure of the network is progressively weakened by remov-
ing a portion of edges from each clique and rewiring them to neighbouring cliques. The
portion is determined by a parameter called Degradation (D) [26]. In this paper, the value D is
varied from 10% to 80%.
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Girvan Newman (GN). The GN benchmark network consists of 128 nodes that are
divided equally into 4 communities of 32 nodes each. Let Pin and Pout represent the probabili-
ties of an edge being an intra community edge or inter community edge, that connects a couple
of nodes from the same community or different communities. It is necessary to maintain the
average degree of a node at around 16, when choosing the probabilities. GN benchmark net-
works can be generated by using a LFR benchmark networks generator as shown in Table 3.
Pin and Pout are represented by μ when generating GN networks using a LFR generator. Low μ
values indicate a high Pin and a low Pout.

Real-world networks. The real-world networks that are used in this work are summarized
in Table 4. These networks are often employed in the testing of community detection methods.

Table 2. Summary of the generated LFR networks.

Parameter Definition Values

N Number of nodes S = 1000; B = 5000

k Average degree SK = 10; LK = 20

maxk Maximum degree 50

minc Minimum community size SC = 10; LC = 20

maxc Maximum community size SC = 50; LC = 100

μ Mixing parameter 0.1–0.8

γ Exponent for the degree sequence 2

β Exponent for the community size distribution 1

doi:10.1371/journal.pone.0155320.t002

Table 3. Summary of generated GN networks.

Parameter Definition Values

N Number of nodes 128

k Average degree 16

maxk Maximum degree 16

minc Minimum community size 32

maxc Maximum community size 32

μ Mixing parameter 0.1–0.8

γ Exponent for the degree sequence 0

β Exponent for the community size distribution 0

doi:10.1371/journal.pone.0155320.t003

Table 4. Summary of the real-world networks.

Network Nodes Edges Ground Truth Reference

Karate 34 78 Yes [27]

Dolphins 62 159 Yes [28]

Pol-books 105 441 Yes [29]

Football 115 613 Yes [29]

Jazz 198 2742 No [30]

E. Coli 418 519 No [31]

Email 1133 5451 No [32]

Power 4941 6494 No [24]

Collaboration 8361 15751 No [33]

doi:10.1371/journal.pone.0155320.t004
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Evaluation Criteria
In this work, we use the normalized variation of information (NVI) [34, 35], normalized
mutual information (NMI) [36], modularity (Q) [29] and modularity density (Qds) [37] as the
criteria to evaluate the quality of the detected communities. Some of the real-world networks,
as well as all the synthetic networks such as the LFR, RC and GN networks, have ground truth
community structure. For networks with known community structure, NVI is used to measure
the quality of our results for community detection on the networks. However, most of the real-
world networks do not come with ground truth community structure. In those cases, we use Q
and to evaluate the quality of the detected communities.

Variation of information. The variation of information (VI) is defined as:

VIðX;YÞ ¼ HðXÞ þ HðYÞ � 2IðX;YÞ
¼ HðXjYÞ þ HðY jXÞ ð3Þ

where X and Y are partitions of the same network.H(X) andH(Y) represent the entropy of X
and Y, whileH(X|Y) and H(Y|X) are the conditional entropies. I(X, Y) is the mutual informa-
tion between X and Y. VI(X, Y) can also be written as:

VIðX;YÞ ¼ �
X

x2X;y2Y
Pðx; yÞlog Pðx; yÞ

PðyÞ �
X

x2X;y2Y
Pðx; yÞlog Pðx; yÞ

PðxÞ ð4Þ

where P(x) and P(y) are the probability of a node belonging to community x or y in partition X
or Y, respectively. P(x, y) represents the probability of a node that belongs to community x and
y in partition X and Y.

The maximum value of VI is log n. Hence, VI can be normalized by dividing it with log n,
provided that the comparison is done on networks with a similar size. The value of the normal-
ized VI (NVI) ranges from 0 to 1, where NVI is 0 if two partitions are identical.

Normalized Mutual Information. The normalized mutual information (NMI) is defined
as:

NMIðXjYÞ ¼
�2

PCX
i¼1

PCX
i¼1 Nij log

NijN

Ni:N:jPCX
i¼1 Ni: log

Ni:

N
þ
XCY

j¼1
N:j log

N:j

N

ð5Þ

where CX and CY denote the number of communities in partition X and Y. The matrix N has
rows and columns that correspond to communities in X and Y, respectively. The element of N,
Nij is the number of mutual nodes between communities i and j. The terms Ni. and N.j are the
sum over rows and columns.

The value of NMI ranges from 0 to 1, where NMI = 1 when partition X is identical to parti-
tion Y. If partition X is total independent of partition Y, then NMI = 0.

Modularity. The modularity (Q) is defined by:

Q ¼ 1

2m

X
i;j2V

Aij �
didj
2m

� �
� dðci; cjÞ ð6Þ

wherem represents the number of edges. Given a network with n nodes, Aij is an n × n adja-
cency matrix, where Aij = 1 if node i is linked to node j. Otherwise, Aij = 0. δ(ci, cj) is a piecewise
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function that is defined as:

dðci; cjÞ ¼
1 ci ¼ cj

0 ci 6¼ cj

8<
: ð7Þ

The value of Q ranges from 0 to 1, where networks with a strong community structure have a
higher Q value.

Modularity Density. Modularity density (Qds) is a modified modularity that resolves the
resolution limit problem [38] as well as the tendency of splitting large communities into
smaller communities. The Qds for undirected networks is defined as:

Qds ¼
X
ci2C

min
ci

m
dci �

2min
ci
þmout

ci

2m
dci

� �2

�
X
cj2C
cj 6¼ci

mci;cj

2m
dci;cj

2
664

3
775 ð8Þ

dci
¼ 2min

ci

nci
ðnci

� 1Þ ð9Þ

dci ;cj ¼
mci ;cj

nci
ncj

ð10Þ

wherem is the total number of edges,min
ci
is the number of intra community edges,min

ci
is the

number of inter community edges, andmci, cj is the number of edges between communities ci
and cj. The terms, nci and ncj, refer to the number of nodes in communities i and j. dci is the
internal density of community ci, while dci, cj is the pair-wise density between ci and cj.

Results and Discussion
In this section, the performance of the CLPA-GNR is compared with the other algorithms in
both the synthetic and real-world networks. It must be noted that all of the reported detections
are in the form of disjoint communities.

Analysis on the Synthetic Networks
The results of our NVI and NMI comparisons between the algorithms, on the various bench-
mark networks, are depicted in Figs 4 to 9. It must be noted that CLPA-GNR, LPA, GANXiS,
NIBLPA and Infomap tend to detect a single community that consists of all the nodes in a net-
work when μ or D is larger than certain values. Whenever an algorithm meets this condition,
the detection is trivial and the NVI or NMI of the algorithm at that particular μ or D is not plot-
ted in the graphs. Table 5 summarizes the values of μ and D for which the algorithms will
obtain trivial detection in a network.

Figs 4 to 6 depict the results of a comparison between the CLPA-GNR with the other LPA
based algorithms. Overall, CLPA-GNR outperforms the other LPA based algorithms in all the
LFR benchmark networks. The CLPA-GNR shows outstanding performance in S-LFR-LK-SC
and S-LFR-LK-LC cases (Fig 5). It obtains perfect detection (NMI = 1) at μ = 0.6 and μ = 0.5 in
S-LFR-LK-SC and S-LFR-LK-LC, when the NMI of the NIBLPA and GRANXiS are below 0.95.
The only disadvantage of the CLPA-GNR is the trivial detection, where it obtains trivial detec-
tion at lower μ values.
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At first glance, the result of the LPA is comparable to that for the CLPA-GNR when it does
not obtain trivial detection. However, it must be noted that the detection of LPA is non-deter-
ministic. In this study, the LPA is run for 1000 times and the results with highest modularity
are reported. Although the LPA can detect communities in linear computation time, the large
number of runs that are required, to get the best available results, causes it to lose its

Fig 4. TheNMI comparison on undirected and unweighted small LFR benchmark networks with small average degree. The size of the networks,
size of the communities and the average degree are n, C and k, respectively.

doi:10.1371/journal.pone.0155320.g004

Fig 5. TheNMI comparison on undirected and unweighted small LFR benchmark networks with large average degree. The legend is the same as in
Fig 4.

doi:10.1371/journal.pone.0155320.g005
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computation time advantage. Furthermore, it is not guaranteed that the LPA can always obtain
the best results in a fixed amount of runs.

The results for the CLPA-GNR algorithm is compared to the results from the other algo-
rithms (Infomap, RN and Blondel) in Figs 7, 8 and 9. It must be noted that GANXiS is included

Fig 6. TheNMI comparison on undirected and unweighted big LFR benchmark networks with small average degree. The legend is the same as in
Fig 4.

doi:10.1371/journal.pone.0155320.g006

Fig 7. TheNVI comparison on undirected and unweighted small LFR benchmark networks with large average degree.

doi:10.1371/journal.pone.0155320.g007
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in the GN and RC cases (Fig 9). Generally, the results depicted in these figures suggest that the
CLPA-GNR performs equally well as Infomap and RN in the LFR benchmark networks as long
as it does not get any trivial detection in the networks. CLPA-GNR can always detect commu-
nities that match perfectly with the ground truth communities of the LFR benchmark net-
works, regardless of the size of the networks and communities. We also find that CLPA-GNR

Fig 8. TheNVI comparison on undirected and unweighted big LFR benchmark networks with large average degree. The legend is the same as in
Fig 7.

doi:10.1371/journal.pone.0155320.g008

Fig 9. TheNVI comparison on undirected and unweighted GN and RC benchmark networks. The size of community for RC ranges from 2
to 157. The legend is the same as in Figs 4 and 7.

doi:10.1371/journal.pone.0155320.g009
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has a slightly better performance than Infomap in the GN benchmark networks, as it is able to
detect communities that agree completely with the ground truth communities when μ� 0.3
(Fig 9). On the other hand, CLPA-GNR is somewhat outperformed by Infomap in the
B-LFR-LK-LC (Fig 8) and RC (Fig 9) cases. For example in B-LFR-LK-LC, CLPA-GNR obtains
trivial detection while Infomap continues to give excellent detection even at μ = 0.7. Although
CLPA-GNR is capable of obtaining non-trivial detection at 30% degradation in the RC bench-
mark network, this detection is not as good as that with the Infomap.

The Blondel algorithm, which focuses on optimizing the modularity, performs satisfactorily
in all the benchmark networks. Even though it never gets a trivial detection, in any value of μ
or D, it cannot detect communities as accurately as the other algorithms in all the benchmark
networks. Similar to Blondel, RN can also always avoid trivial detection regardless of the values
of μ or D. However, the detection of RN is generally better than that for Blondel.

It should be noted that the NVI or NMI increases or decreases drastically beyond certain
values of μ or D. The sharp increment or decrement in the NVI or NMI indicates the ineffec-
tiveness of an algorithm in coping with networks that have certain level of weak community
structure. In spite of the fact that the detection may be non-trivial, the potentially large number
of errors in the detected communities renders the results impractical for analysis purposes.

Analysis on Real-World Networks
Table 6 depicts the NVI of 4 real-world networks with ground truth communities. CLPA-GNR
performs very well by having the best detection performance in both the Karate and the Foot-
ball networks. Although RN gives the best detection for the Pol-books network, the result of
the CLPA-GNR is equivalent to that for RN.

Table 5. The values of μ andDwhen CLPA-GNR, LPA, Infomap, GANXiS and NIBLPA obtain trivial detection.

Network CLPA-GNR LPA Infomap GANXiS NIBLPA

S-LFR-SK-SC μ � 0.7 μ � 0.7 N/A μ � 0.8 μ � 0.7

S-LFR-SK-LC μ � 0.5 μ � 0.6 N/A μ � 0.6 -

S-LFR-LK-SC μ � 0.7 μ � 0.7 μ � 0.7 μ � 0.7 μ � 0.7

S-LRF-LK-LC μ � 0.6 μ � 0.6 μ � 0.6 μ � 0.7 μ � 0.6

B-LFR-SK-SC μ � 0.8 μ � 0.7 N/A - -

B-LFR-SK-LC μ � 0.6 μ � 0.7 N/A μ � 0.8 -

B-LFR-LK-SC μ � 0.8 μ � 0.8 - N/A N/A

B-LFR-LK-LC μ � 0.7 μ � 0.7 - N/A N/A

GN μ � 0.5 μ � 0.6 μ � 0.4 μ � 0.6 N/A

RC D � 40% D � 70% D � 40% D � 70% N/A

A dash symbol shows that a method does not obtain any trivial solution up to μ = 0.8 in a particular benchmark network. N/A is shown when a method was

not performed in a particular network.

doi:10.1371/journal.pone.0155320.t005

Table 6. TheNVI of real-world networks with ground truth communities. Bold values are the best detection algorithm for each network.

Network CLPA-GNR GANXiS Infomap RN Blondel LPA

Karate 0.0639 0.2212 0.1438 0.2289 0.2212 0.2212

Dolphin 0.2382 0.1957 0.2503 0.0000 0.2258 0.1708

Pol-books 0.2021 0.2055 0.2237 0.2001 0.2159 0.2055

Football 0.0755 0.1394 0.0902 0.0784 0.1148 0.1095

doi:10.1371/journal.pone.0155320.t006
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Table 7 shows the Q for all the real-world networks studied in this paper. It is not surprising
to observe that the Blondel algorithm, which focuses on the optimization of the modularity,
obtains the highest Q in more than half of the listed networks. Nonetheless, the CLPA-GNR is
able to obtain results that are fairly close to the best Q values, except for the karate and jazz net-
works. The Qds, which is perhaps a better alternative to Q, for the networks are depicted in
Table 8. The performance of the CLPA-GNR is also acceptable under this measurement.
Although there are distinct differences between the detections of the CLPA-GNR and the best
algorithm results in some of the networks, the CLPA-GNR still exhibits satisfactory perfor-
mance when compared to the other results. For instance, except for the best detections, it out-
performs the other methods in the football and email networks. However, the detections of the
CLPA-GNR do not agree with those from the other algorithms in the karate and jazz networks.

In general, the performance of the CLPA-GNR is adequate under both of the Q and Qds

metrics. Although LPA and GANXiS seem to have better detections than the CLPA-GNR in
terms of Q and Qds, it must be noted that both of them are non-deterministic algorithms. In
order to obtain their results as shown in Tables 7 and 8 a total of 1000 runs are executed, and
the best detections that show the highest possible Q or Qds values are then selected from those
runs. As mentioned in the previous subsection, the non-deterministic nature of these methods
hinders their performances in term of computational time. On the other hand, the CLPA-GNR
is able to obtain deterministic detections that are comparable in quality to the detections of the
LPA and GANXiS.

The CLPA-GNR obtains low Q and Qds values in the karate and jazz networks because it
detects only 2 communities in those networks, while the other algorithms detect more than 2
communities. Despite having low Q and Qds for the karate network, the communities that are

Table 7. The modularity (Q) for all the real-world networks. Bold values are the best detection algorithm for each network.

Network CLPA-GNR GANXiS NIBLPA Infomap RN Blondel LPA

Karate 0.303 0.416 0.423 0.402 0.406 0.420 0.416

Dolphin 0.513 0.524 0.521 0.524 0.379 0.527 0.527

Pol-books 0.514 0.526 0.497 0.527 0.527 0.527 0.526

Football 0.601 0.604 0.582 0.603 0.601 0.604 0.605

Jazz 0.282 0.443 - 0.443 0.288 0.445 0.443

E. Coli 0.749 0.763 - 0.707 0.771 0.777 0.771

Email 0.520 0.548 0.427 0.536 0.008 0.570 0.558

Power 0.888 0.809 - 0.760 - 0.934 0.817

Collab. 0.796 - - 0.848 - 0.844 0.781

doi:10.1371/journal.pone.0155320.t007

Table 8. The modularity density (Qds) for all the real-world networks. Bold values are the best detection algorithm for each network.

Network CLPA-GNR GANXiS Infomap RN Blondel LPA

Karate 0.182 0.234 0.217 0.240 0.230 0.234

Dolphin 0.187 0.189 0.213 0.136 0.187 0.187

Pol-books 0.183 0.192 0.199 0.190 0.191 0.192

Football 0.489 0.417 0.474 0.491 0.450 0.449

Jazz 0.187 0.215 0.220 0.205 0.213 0.215

E. Coli 0.116 0.153 0.087 0.154 0.116 0.142

Email 0.057 0.056 0.088 0.015 0.041 0.054

Power 0.055 0.144 0.003 - 0.019 0.163

doi:10.1371/journal.pone.0155320.t008
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detected by the CLPA-GNR agrees very well with the ground truth communities of the net-
work. In fact, as shown in Tables 6, 7 and 8, the highest Q or Qds value does not always indicate
that the detected communities agree with the ground truth communities, which is a potentially
serious limitation.

Conclusions
In this paper, we addressed the non-deterministic nature of the LPA that is caused by its ran-
dom label update sequences and random tie breaking process. Despite its superior computation
time performance, the instability of the LPA reduces its robustness in detecting community. In
order to tackle that problem, we proposed a modified LPA (the CLPA-GNR) with fixed label
updated sequences. We also introduced a parameter to break a tie between communities. In
addition, some steps are taken in the CLPA-GNR to refine the accuracy of detection, such as
the update of labels in the CLPA-GNR is constrained by conditions which are gradually
relaxed, as well as the recursive reallocation of grouped nodes throughout the CLPA-GNR. By
implementing these modifications, we successfully improved the robustness and accuracy of
the LPA. Aside from yielding deterministic results in networks of various sizes, the quality of
community detection of the CLPA-GNR was proven to be satisfactory in this investigation.
The CLPA-GNR performed extremely well in the LFR and GN benchmarks, while doing quite
well in the RC benchmark. However, it suffers from trivial detection when the community
structure of a network is weakened to a certain extent. Nonetheless, the same phenomenon can
be observed in the original LPA as well as with Infomap, NIBLPA and GANXiS. The perfor-
mance of the CLPA-GNR in real-world networks is notable too. Although the CLPA-GNR did
not always obtain partition with the highest Q or Qds, the fact that it gave good agreement
between the detected communities, with the ground truth communities of some real-world
networks, should not be overlooked.

There is still room for improvement in the performance of the CLPA-GNR, such as the
extension of the CLPA-GNR into directed and weighted networks. As the LPA works in bipar-
tite networks [39], it is expected that the CLPA-GNR can also be implemented into bipartite
networks. The parallelization of the CLPA-GNR is a valid improvement too. Nevertheless, the
trivial detection in certain networks remains the most important issue with it at this stage. The
robustness of the CLPA-GNR will be improved greatly if that issue can be resolved in the
future.
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