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Background. Interpretation ofmicroarray data remains challenging because biologicalmeaning should be extracted from enormous
numeric matrices and be presented explicitly. Moreover, huge public repositories of microarray dataset are ready to be exploited
for comparative analysis. This study aimed to provide a platform where essential implication of a microarray experiment could be
visually expressed and various microarray datasets could be intuitively compared. Results. On the semantic space, gene sets from
Molecular Signature Database (MSigDB) were plotted as landmarks and their relative distances were calculated by Lin’s semantic
similarity measure. By formal concept analysis, a microarray dataset was transformed into a concept lattice with gene clusters as
objects andGeneOntology terms as attributes. Concepts of a lattice were located on the semantic space reflecting semantic distance
from landmarks and edges between concepts were drawn; consequently, a specific geographic pattern could be observed from a
microarray dataset. We termed a distinctive geography shared by microarray datasets of the same category as “semantic signature.”
Conclusions. “Semantic space,” a map of biological entities, could serve as a universal platform for comparative microarray analysis.
When microarray data were displayed on the semantic space as concept lattices, “semantic signature,” characteristic geography for
a microarray experiment, could be discovered.

1. Background

Microarray experiments provide high-throughput gene
expression profiles to address biological questions for a
specific condition. It has been challenging so far to extract
biological implication from huge matrices of numeric data
and to represent it in a concise and intuitive manner. Also, as
microarray datasets accumulate in public repositories, it has
become another important issue in microarray analysis how
to compare multiple datasets and integrate them [1].

As for the first issue (analysis of an individual microarray
experiment), semantic approach was suggested as one of
main strategies. For example, clusters of genes with similar
expression profiles could be assigned with Gene Ontol-
ogy (GO) terms or related pathways [2]. However, most

of clustering analyses with ontological annotation merely
provided long list of biological terms for clusters; they failed
to represent functional relationship between clusters and the
whole picture of microarray experiments could hardly be
grasped. Concept lattice analysis, or formal concept analysis,
was proposed as a way to summarize biological information
from clusters without annotation redundancy [3]. Concept
lattice analysis is a mathematical technique that recognizes
hierarchical structure from a relation matrix of objects
(clusters) and attributes (annotations) and represents it as a
graph (lattice). In this way, clusters are depicted as nodes and
set-inclusion relationships of their annotations are drawn as
edges in a concept lattice, which can be viewed as an executive
summary of the microarray data.
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The second issue (comparative microarray analysis) is
more elusive. External datasets of various conditions can be
compared to interpret one microarray experiment of interest
[4–9]. Ormultiple experiments can be gathered and analyzed
to deduce causality or association between genes [10–20].
Such comparative analyses can reduce noises that individual
experiments might contain and can help with arranging vast
datasets to reveal novel relationship between phenotypes
or gene expressions. However, comparisons are inevitably
dependent on reference data being compared and platforms
on which comparisons are made. In particular, scope of
reference datasets can be restricted if the platform of com-
parative analysis is not compatible with diverse microarray
experiments.

The current study was motivated to provide a universal,
not being influenced by formats of data and platform where
microarray data could be visually presented and compared.
Furthermore, we hoped it could convey biological impli-
cation of experiments. For that purpose, we constructed
“semantic space,” a map of biological entities. Just as a map
encompasses the whole territory of interest, the semantic
space employed gene sets of Molecular Signature Database
(MSigDB) as landmarks. MSigDB was a collection of gene
sets from various sources (positional, curated, motifs, com-
putational, and GO gene sets) and could be regarded as
a representation of the biological world at this time point
[6]. The coordinates of those landmarks were determined
by semantic distances between them based on a predefined
semantic similarity measure [21].

On the semantic space, microarray data were mapped as
a concept lattice. A concept lattices was produced by formal
concept analysis, with clusters of similar expression profiles
as objects and GO annotations as attributes. Each cluster

was located on the semantic space considering its semantic
distance from nearest landmarks and edges of the lattice
between clusters were also drawn.

A concept lattice described on the semantic space makes
a distinctive topography on the semantic space, termed
as a “semantic signature.” Semantic signature would give
information of how gene clusters of a microarray dataset
were related to biological landmarks at a glance. Further-
more, we compared various microarray datasets by simply
overlapping their semantic signatures on the semantic space.
And we tested whether data of similar experiment paradigm
resulted in similar semantic signatures and whether those of
different paradigm did different semantic signatures. Figure 1
illustrates the brief process for construction of semantic space
and plotting of semantic signature.

2. Methods

2.1. Construction of Semantic Space. Gene sets of MSigDB
(http://www.broad.mit.edu/gsea/msigdb) imported to gener-
ated landmarks of semantic space. MSigDB collected gene
sets from various sources and organized them into 5 cate-
gories: positional, curated, motifs, computational, and GO
gene sets [6]. In this study, we adopted all the gene sets from
mouse species, registered in GO biological process: 192 gene
sets in total.

Semantic distances among the gene sets were determined
as follows. First, we annotated the gene sets significant GO
terms; statistical significance was determined by hyperge-
ometric probability with Bonferroni correction [3]. Then,
distance (sim) between two gene sets (𝑃

𝑖
, 𝑃
𝑗
) was calculated

by best-match-average (bma) of term-to-term distances from
each gene set [34]:

sim
bma(𝑃𝑖 ,𝑃𝑗)

=
avg
𝑡1∈𝑃𝑖
(max
𝑡2∈𝑃𝑗
(simlin(𝑡1,𝑡2))) + avg𝑡2∈𝑃𝑗 (max

𝑡1∈𝑃𝑖
(simlin(𝑡1,𝑡2)))

2
. (1)

Distance between two terms (𝑡1, 𝑡2)was computed using Lin’s
semantic similarity measure [35]. Lin’s measure quantified
“information content” of a term, by enumerating frequency of
the genes that were annotated with the term or its descendant
terms:

freq (𝑡) = genes (𝑡) + ∑
𝑥∈descendant(𝑡)

f req (𝑥) . (2)

Lin’s semantic similarity measure (sim lin) was then deter-
mined as follows:

sim
lin(𝑡1,𝑡2)
= max
𝑡∈𝑆(𝑡1,𝑡2)

(
2 ⋅ log𝑝 (𝑡)

log𝑝 (𝑡1) + log𝑝 (𝑡2)
) ,

where 𝑝 (𝑡) =
f req (𝑡)

f req (root)
.

(3)

All pair-wise distances of the gene sets were computed
and summarized in a matrix. Afterwards, multidimensional

scaling was applied to generate 2D coordinates of the gene
sets as landmarks in semantic space (cmdscale package,
R, https://www.r-project.org/). Finally, the landmarks were
plotted in a plane using scalable vector graphics and finally
the semantic space was constructed.

2.2. Concept Lattices from Microarray Datasets. From one
microarray dataset, one concept lattice was generated as
follows. First, 𝑘-means clustering analysis produced 100
clusters for a dataset. Then, clusters were annotated with
significant GO terms based on hypergeometric probability
with Bonferroni correction. Third, a relation matrix of clus-
ters and annotations was built. Fourth, a formal concept
analysis transformed the relation matrix into a concept
lattice with clusters as objects (extent) and GO terms as
attributes (intent). For graphic representation, this study
adopted Ganter’s algorithm [36]. Accordingly, a concept was
a set of clusters sharing GO terms. Edges between concepts
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Figure 1: Schematic diagram of the study. Microarray experiments are transformed into concept lattices as illustrated on the left panel of the
figure. Semantic space is constructed based on semantic similarities between gene sets as illustrated on the right panel. Concept lattices are
then superimposed on the semantic space to reveal a semantic signature and shared geography by homogeneous experiments.

in the lattice indicated set-inclusion relationship. Therefore,
the graph structure of a concept lattice could convey the
whole information of a relation matrix of clusters and GO
annotations. (http://www.snubi.org/software/biolattice/.)

2.3. Discovery of Semantic Signature. Once semantic space
was constructed and a concept lattice of microarray experi-
ments was generated, the concept lattice could be mapped on
the semantic space. Because extents of a concept lattice were
clusters, or sets of genes, semantic distance from the concept
to any landmark on the semantic space could be calculated
just as distances between landmark gene sets were calculated
(see Figure 2). To appropriately place the concept on the
semantic space, 3 nearest landmarks were found for each
concept. The coordinate of the concept was then determined
within the triangle of the 3 nearest landmarks according to
relative distances to the 3 vertices. In this way, all the concepts
of a concept lattice could be located on the semantic space.
Edges between concepts were drawn as well. Finally, the
whole concept lattice ofmicroarray experimentswas depicted
on the semantic space andunique geographic feature could be
observed (Figure 2).

In order to compare multiple microarray datasets, con-
cept lattices of them were mapped on the semantic space
simultaneously. A common geographic pattern of homo-
geneous microarray datasets on the semantic space, termed
as “semantic signature,” was derived by investigating
overlapping or closely neighbouring concepts and edges.

To visualize the semantic signature, overlapped edges were
emphasized by increasing colour intensity according to the
overlapping frequency.

2.4. Microarray Datasets. Microarray data of hepatotoxic
agent experiments was obtained from a toxicogenomics study
by Toxicogenomics Research Center (TGRC). The study
applied 12 toxic agents to mice orally or intraperitone-
ally and observed gene expression profiles from liver spec-
imen according to time course and dosage. Twelve toxic
agents were D-galactosamine, ethanol, tetracycline, val-
proic acid, methotrexate, ANIT, methylenedianiline, pheny-
toin, thiabendazole, 6-mercaptopurine, phenylbutazone, and
diclofenac.

Twenty microarray datasets were downloaded from
GEO. Datasets were selected among mouse (Mus muscu-
lus) datasets if they included sufficient number of condi-
tions (8 or more) for clustering analysis and experimen-
tal condition and tissues were explicitly described. The
datasets were categorized per condition and tissue: toxin-
related (GDS322, GDS2043), development-related (half of
GDS2577, GDS2227, GDS2398, GDS2521, GDS1695, GDS568,
GDS2202, GDS2203, GDS2098, and GDS2743), and cancer-
related (half of GDS2577, GDS1110, GDS604, GDS2640, and
GDS2554) conditions; neural (GDS2227, GDS1110, GDS604,
GDS887, GDS2850, and GDS2159), hematopoietic (GDS322,
GDS2398, GDS2521, GDS1695, GDS568, GDS2640, and
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Figure 2:The semantic space. (a)Thewhole semantic space. (b)Magnified view of specific regions of the semantic space. Onmagnified views,
title of each landmark gene set is presented near it. (a) LIAN MYELOID DIFF GRANULE: granule constituents expressed during mouse
promyelocytic cell line cell differentiation; METHOTREXATE PROBCELL DN: downregulated in pro B cells FL5 12 following treatment
with methotrexate; JNK UP: upregulated by expression of constitutively active JNK in 3T3 cells; CAMPTOTHECIN PROBCELL DN:
downregulated in pro B cells FL5 12 following treatment with camptothecin; ADIP DIFF CLUSTER2: strongly upregulated at 2 hours during
differentiation of 3T3 L1 fibroblasts into adipocytes cluster 2. (b) PDGF ES UP: upregulated by PDGF in mouse embryonic stem cells via
microarray coupled gene trap mutagenesis; CPR NULL LIVER DN: downregulated in mouse liver tissue from mice in which NADPH
cytochromeP450 reductaseCPRwas specifically deleted in the liver by cre lox recombination versus lox only controls;CPR NULL LIVER UP:
upregulated in mouse liver tissue from mice in which NADPH cytochrome P450 reductase CPR was specifically deleted in the liver
by cre lox recombination versus lox only controls. (c) MOUSE TISSUE TESTIS: genes expressed specifically in mouse testis tissue;
HIPPOCAMPUS DEVELOPMENT PRENATAL: highly expressed in prenatal mouse hippocampus cluster 1; GENOTOXINS 24HRS DISCR:
group of genes whose regulation pattern significantly discriminates between direct cisplatin methyl methanesulfonate mitomycin C and
indirect taxol hydroxyurea etoposide genotoxins 24 hours following treatment of mouse lymphocytes TK 3 7 2C; IDX TSA DN CLUSTER6:
strongly downregulated at 2 hours during differentiation of 3T3 L1 fibroblasts into adipocytes with IDX insulin dexamethasone and isobutyl
xanthine versus fibroblasts treated with IDX TSA to prevent differentiation cluster 6. (d) TPA SKIN DN: downregulated in murine dorsal
skin cells 6 hours after treatment with the phorbol ester carcinogen TPA; ABBUD LIF DN: genes downregulated by LIF treatment 10 ngmL
overnight in AtT20 cells; LEE MYC UP: genes upregulated in hepatoma tissue of Myc transgenic mice; AGED MOUSE HYPOTH UP:
upregulated in the hypothalamus of BALB c mice aged 22 months compared to young 2-month controls; NOVA2 KO SPLICING: genes
that are alternatively spliced in the neocortex of mice deficient in the neuron specific splicing factor Nova2 compared to wild type controls.

GDS2554), and germinal (GDS2043, GDS2202, GDS2203,
and GDS2098) tissues.

3. Results

3.1. Semantic Space. “Semantic space” is shown in Figure 2.
192 gene sets fromMSigDB aremarked on it as its landmarks.
Figure 2 shows the whole picture of the semantic space. Each
vertex indicates one gene set. In this study, the semantic space

was constructed using scalable vector graphics (SVG) so that
themap could bemagnifiedwithout being blurred.Magnified
views of specific regions are illustrated in Figure 2, (a)∼(d).
Given that locations of those gene sets were determined
according to semantic distances between them, gene sets
sharing similar GO annotations congregated in close vicinity.
For example, most of gene sets in the upper right circle of
Figure 2(b) were related mostly to adipose or secretary cell
development.
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(a) (b)

(c) (d)
Figure 3: Semantic signature of hepatotoxic agent experiments. Concept lattice of 4 exemplary microarray experiments are represented on
the semantic space: (a) tetracycline, (b) ethanol, (c) methylenedianiline, and (d) phenytoin. Shared edges are expressed in bold red lines with
colour intensity proportional to overlapping frequency.The common features denote the semantic signature of hepatotoxic agent experiments.

3.2. Semantic Signature: An Example of Hepatotoxic Agent
Experiment. As an exemplary case, we assessed the semantic
signature of a microarray dataset from hepatotoxic agent
experiment (see Section 2). The experiment observed acute
hepatotoxic effect of 12 toxicants in mouse after oral or
intraperitoneal injection and produced 12 microarray data.
Expression profile from each agent was converted into a
concept lattice and then mapped on the semantic space.
Obtained figures of 12 concept lattices were not identical
but their concepts and edges were overlapping or closely
neighbouring on the semantic space. Those common edges
were visually emphasized by grading the colour intensity in
proportion to overlapping frequency (Figure 2). The com-
mon concepts and edgeswere clustered along the right border
of the semantic spacemaking figure of a saw tooth, whichwas
then determined as “semantic signature” of the hepatotoxicity
experiment.

3.3. Semantic Signatures: Comparison of Heterogeneous Exper-
iments. Other various datasets from different experimental

conditions or from different tissues were represented on the
semantic space. Twenty heterogeneous microarray datasets
were obtained from GEO (Gene Expression Omnibus,
http://www.ncbi.nlm.nih.gov/geo/) and they were catego-
rized into 3 conditions (toxin-related, cancer-related, and
development-related experiments) and 3 tissues (germinal,
hematopoietic, and neural tissues) based on descriptions pro-
vided by GEO. To discover semantic signatures per condition
or tissue, common concepts and edges were depicted in the
same way described above (Figure 3). The obtained semantic
signatures exhibited distinctive patterns for each experiment
category. Each SVG is available in

http://www.snubi.org/software/biolattice/bioclass/
canceroverlap.htm;

http://www.snubi.org/software/biolattice/bioclass/
devoverlap.htm;

http://www.snubi.org/software/biolattice/bioclass/
germoverlap.htm;



6 Computational and Mathematical Methods in Medicine

(a) Toxic agent-related (b) Cancer-related (c) Development-related

(d) Germinal tissue (e) Hematopoietic tissue (f) Neural tissue

Figure 4: Semantic signatures of heterogeneous experiments. Various microarray datasets are categorized per condition or tissue and their
semantic signatures are presented in red lines. The conditions are (a) toxic agent-related, (b) cancer-related, and (c) development-related
experiments. The specimens are from (d) germinal, (e) hematopoietic, and (f) neural tissues.

http://www.snubi.org/software/biolattice/bioclass/
hemaoverlap.htm;
http://www.snubi.org/software/biolattice/bioclass/
neuroverlap.htm;
http://www.snubi.org/software/biolattice/bioclass/
toxoverlap.htm.

3.4. Validation of Semantic Signature: Semantic Distance
among Concept Lattices. As shown in Figures 4 and 5, it
might be asserted that geographic patterns from homoge-
neous experiments looked alike and those from heteroge-
neous experiments looked different in the semantic space.
However, such visual judgement of similarity remained
somewhat subjective and arbitrary without quantitative val-
idation. To circumvent the problem, we tested whether
concept lattices of the same experiment category were closer
than those of different category, based on semantic similarity
among concept lattices. The calculation of the semantic
distances between two lattices followed the same strategy that

was used for construction of the semantic space (Figure 4).
Concept lattices of the same experiment conditions were
closely located (Figure 4(a)). And the lattices of development-
related experiments were closer to the lattices of cancer-
related experiments than to those of toxic agent-related ones
as was indicated by topographic similarity between their
semantic signatures. Also, concept lattices of the same tissue
were located in closer vicinity (Figure 4(b)).

4. Discussion

4.1. Biological Interpretation of Semantic Signatures I. For
biological interpretation of the semantic signature from the
hepatotoxic agent experiments, 8 most frequently neigh-
boured landmark gene sets in the signature were listed
(Table 1). One of the landmarks was a gene set that was
upregulated by transcription factor Hxc-8, which was known
to interact with hematopoietic activities in the liver tissue,
suggesting that reactive hematopoiesis is induced by the
hepatotoxic agents (LEI HOXC8 UP gene set) [22]. Another
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Figure 5: Semantic distance among concept lattices. Concept lattices are plotted on 2D space according to semantic distance between them.
Concept lattices of the same (a) experimental condition or (b) tissues are located closely.

Table 1: Landmarks within semantic signature of hepatotoxic agent experiment. Eight most frequently overlapped gene sets among concepts
lattices of hepatotoxic agent experiment are listed.

Title of gene set Description
YENMYCMUT Genes upregulated in mutant MYC mouse model

IGFR IR UP Upregulated in common following stimulation of chimeric TrkC IR or TrkC IGFR
in NIH3T3 cells

3AB GAMMA DN Downregulated synergistically by gamma irradiation and 3-aminobenzamide PARP
inhibitor

LEI HOXC8 UP Upregulated target genes of murine transcription factor Hoxc-8

CHESLER D6MIT150 CIS GLOCUS Cis regulatory quantitative trait loci QTLs found at the D6Mit150 region QTLs
detected in brain tissue

ROS MOUSE AORTA UP Upregulated in mouse aorta by chronic treatment with PPAR-gamma agonist
rosiglitazone

YENMYCWT Genes upregulated in wild type MYC mouse model
TNFALPHA ADIP UP Upregulated in mature differentiated adipocytes following treatment with TNFalpha

landmark gene set was YEN MYC MUT which was gen-
erated from myc mutation mouse; phenobarbital (a hepa-
totoxic agent included in this experiment) was known to
induce apoptosis and carcinogenesis of hepatocytes via c-
myc expression [23]. Other landmarks included a gene set
which was associated with inflammatory change induced
by TNF (TNFALPHA ADIP UP) [24] and gene sets related
to apoptotic of inflammatory signalling by insulin receptor
(ROS MOUSE AORTA UP and IGFR IR UP) [25]. While
the semantic signatures of hepatotoxic agent experiments
shared common landmarks with each other as described
above (thick red line in Figure 3), each concept lattice from
different hepatotoxic agent also exhibited different patterns
(thin red line in Figure 3). For example, concept lattice from

ethanol treatment showed more nodes and edges than that
fromphenytoin, which could be interpreted as ethanol result-
ing in perturbation inmore gene clusters than phenytoin.The
finding was consistent with general biological knowledge that
ethanol is more toxic than phenytoin to the liver.

4.2. Biological Interpretation of Semantic Signatures II. When
geography of the semantic signatures of various microarray
datasets was compared, the semantic signature from
cancer-related experiments was more similar to that from
development-related experiments than to that from toxic
agent-related ones. The finding was consistent with an
established biological knowledge that one of main oncogenic
mechanisms was related to uninhibited activation of
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developmental pathways. Specifically, the semantic signature
of development-related dataset was closely neighboured by
landmarks that included differentially expressed genes during
cell differentiation (LIAN MYELOID DIFF GRANULE,
HIPPOCAMPUS DEVELOPMENT NEONATAL, and
PARK HSC VS MPP UP) and landmarks that were down-
regulated genes by immune-modifying or antineoplastic
drugs (METHOTREXATE PROBCELL DN and CAN-
CERDRUGS PROBCELL DN). The semantic signature of
cancer-related experiments contained landmark gene sets
associated with oncogene activation (LEI HOXC8 UP and
YU CMYC UP), oncogene mutation (YEN MYC MUT),
antineoplastic agents (CANCERDRUGS PROBCELL DN
and GENOTOXINS ALL 4HRS REG), and cell differen-
tiation (LIAN MYELOID DIFF GRANULE and LIAN
MYELOID DIFF RECEPTORS).

4.3. Representation of Semantic Space on 2D Space. This study
was not the first that attempted to graphically represent
biological entities. Several studies have provided “map” of
diverse biological objects, such as genes or proteins, based
on ontological annotations, structural similarity, or sequence
similarities [26–28]. However, those studies employed their
map only to illustrate specific study results. To the authors’
knowledge, semantic space was the first that developed a
comprehensivemap of biological entities as a reference frame
where heterogeneous experiments could be represented and
compared.

In this study, we constructed semantic space on 2D
space for convenience purpose. But positional relationship
of components, especially if they were numerous, should be
distorted when represented on lower dimension. A previous
work of “yeast functional map” evaluated deforming stress
from multidimensional scaling as the dimensionality was
changed [26]. It reported 5D space as optimal and that
increasing the dimensionality from 2D to 3D did not yield
satisfactory decrease of stress, suggesting that 2D space could
be a reasonable choice.

4.4. Measures for Semantic Distance. The current study
adopted Lin’s semantic similarity measure for the calculation
of term-to-term semantic distance and best-match-average
of it for the calculation of set-to-set distances [29]. Other
various measures for semantic distance could be considered,
such as Resnik’s [30], Jiang and Conrath’s [31], or Wang et
al.’s measure [32] instead of Lin’s measure. Similarly, best-
match-average method could be replaced by simple average,
maximum, or maximum weighted by information content
for set-to-set calculation. Jaccard distance could also be
employed, which did not require calculation of term-to-term
distances [33].

To determine the optimal measure for semantic distance,
we evaluated distribution of semantic distances between gene
sets by different combination of measures. As a result, best-
match-average of Lin’s measure showed the largest varia-
tion of the distance values. Thus, it was chosen for the
current study because widely distributed distances reduced
distortion stress during dimension reduction. In addition, we
also assessed how close were the 3 nearest landmarks that

determined a coordinate of each concept in the semantic
space, by calculating area of the triangle composed of the
3 landmarks. It was assumed that if 3 nearest landmarks
werewidely dispersed, placing the concept within the triangle
would give less information for biological interpretation.
The combination of Lin’s measure and best-match-average
method resulted in tolerable size of triangles (data not
shown).

4.5. Limitations and Future Study. A few limitations should
be noted in this study. As already mentioned, 2D represen-
tation of numerous landmarks could not avoid inaccuracy in
their location. Another limitation is the fact that it could not
be claimed that 192 gene sets from MSigDB represented all
necessary spots of biological world and the semantic space
spanned sufficiently wide territory. Lastly, determination of
semantic signature included arbitrary component. Although
visual representation of numeric data could help intuitive
interpretation, similarity versus difference of geographic
pattern should include subjective judgement inevitably.

Future research should consider expression of semantic
space in higher dimension and could expand semantic space
by merging other sources of biological data. In addition, we
should think over to develop a quantitative and objective way
by which similarity/difference of semantic signatures could
be assessed.

5. Conclusions

Semantic spacewas constructed as amap of biological entities
based on their relative semantic distances. When concept
lattices were projected on the semantic space, “semantic
signature,” which was defined as specific geographic patterns
observed on it, allowed intuitive interpretation of microarray
experiments. Comparison of semantic signatures of various
microarray datasets revealed distinctive features according to
experiment conditions or tissues. In conclusion, “semantic
space” could serve as a universal platform for comparative
microarray analysis and “semantic signature” could be dis-
covered.
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