
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Very Important Paper

Using Cross-Correlated Spin Relaxation to Characterize
Backbone Dihedral Angle Distributions of Flexible Protein
Segments
Clemens Kauffmann,*[a] Anna Zawadzka-Kazimierczuk,[b] Georg Kontaxis,[a] and
Robert Konrat*[a]

Crucial to the function of proteins is their existence as
conformational ensembles sampling numerous and structurally
diverse substates. Despite this widely accepted notion there is
still a high demand for meaningful and reliable approaches to
characterize protein ensembles in solution. As it is usually
conducted in solution, NMR spectroscopy offers unique possi-
bilities to address this challenge. Particularly, cross-correlated
relaxation (CCR) effects have long been established to encode
both protein structure and dynamics in a compelling manner.
However, this wealth of information often limits their use in
practice as structure and dynamics might prove difficult to
disentangle. Using a modern Maximum Entropy (MaxEnt)

reweighting approach to interpret CCR rates of Ubiquitin, we
demonstrate that these uncertainties do not necessarily impair
resolving CCR-encoded structural information. Instead, a suit-
able balance between complementary CCR experiments and
prior information is found to be the most crucial factor in
mapping backbone dihedral angle distributions. Experimental
and systematic deviations such as oversimplified dynamics
appear to be of minor importance. Using Ubiquitin as an
example, we demonstrate that CCR rates are capable of
characterizing rigid and flexible residues alike, indicating their
unharnessed potential in studying disordered proteins.

1. Introduction

The structure-function-paradigm is compelling not only due to
its conceptual simplicity. The possibility to describe a protein
system by a singular minimum energy configuration greatly
reduces the complexity by which the underlying structural
ensemble has to be modeled. Most importantly, the assumed
absence of conformational averaging allows to derive a singular
model structure directly from the experimental data, a key
concept of conventional structure calculation methods.[1] How-
ever, this simplifying assumption fails in case of pronounced
structural flexibility. While arguably inconvenient for structure
determination purposes, the ability to sample numerous and
structurally diverse substates is crucial for many proteins to
function[2] as it allows for important regulatory processes such
as allosteric regulation.[3–5] An extreme case of conformational
flexibility is found in so-called intrinsically disordered proteins
(IDPs) that appear unstructured under native conditions.

Disordered regions of at least 30 residues in length are
estimated to occur in 10–35% of prokaryotic and 15–45% of
eukaryotic proteins.[6]

In order to model and characterize protein systems in their
full structural diversity, methods and protocols are required that
do not make overly restrictive assumptions about the character-
istics of the underlying ensemble. However, reconstructing
ensembles from averaged data is generally an ill-posed
problem, i. e. very different ensembles might be compatible
with the data at hand, and only a substantial increase in the
number of experimental observables can possibly alleviate this
problem. NMR spectroscopy offers numerous experimental
parameters to study protein conformational ensembles in
solution, such as hydrogen exchange rates (HDX), scalar
couplings (3J), chemical shifts (CS), residual dipolar couplings
(RDCs), nuclear Overhauser effects (NOEs) and paramagentic
relaxation enhancements (PREs), allowing to probe (even
transient) structural elements as well as their encoded dynamics
with atomic resolution.[7–9]

Here we advocate a less common approach using cross-
correlated relaxation (CCR) mechanisms to probe backbone
dihedral angle distributions of proteins in solution. Cross-
correlated relaxation arises from interference effects between
the fluctuations of different relaxation mechanisms, typically
between two different dipolar (DP) and/or chemical shift
anisotropy (CSA) interactions. Any two relaxation mechanisms
arising from equal rank tensorial interactions can lead to
observable relaxation interference. While, in theory, independ-
ent of their respective distance, in practice, this is of course
limited by the effective means of coherence transfer involving
more remote nuclei. Still, interactions within sequentially
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adjacent residues are generally accessible, allowing for a wide
variety of CCR effects to be probed,[10,11] most of which depend
on the backbone dihedral angles. While inherently non-
injective, these dependencies have been shown to be comple-
mentary, i. e. CCR rates can be analyzed in a combined fashion
to resolve their mutual ambiguities assuming a stable fold.[12,13]

We argue that this complementarity goes further than simply
allowing to resolve angular ambiguities in folded proteins.

We have recently demonstrated that CCR rates reveal
surprising structural and dynamical propensities in intrinsically
disordered proteins (IDPs).[14] However, in the presence of
substantial conformational averaging, quantitative interpreta-
tion of these rates appears difficult due to their non-trivial
convolution of structural and dynamical contributions. Uncer-
tainties about the dynamics translate into uncertainties about
the structure and vice versa. For this reason, CCR rates seem to
demonstrate their full potential predominantly in well-charac-
terized protein systems.[15–20] Using Ubiquitin as an example, we
show that imprecisely modeled protein dynamics do not
necessarily obfuscate CCR-encoded structural information. It is
neither necessary to require precise quantitative agreements
between model and experiment nor to assume a rigid back-
bone to reliably characterize backbone dihedral angle distribu-
tions. Using a Maximum Entropy (MaxEnt) approach, we find
that the complementary nature of CCR rates allows them to
compensate for dynamical and geometrical uncertainties even
in cases of substantial structural flexibility.

While traditional approaches developed for folded proteins
are often ill-equipped to model heterogeneous structural
ensembles, MaxEnt inspired methods have made tremendous
progress in the recent past. Particularly promising are MaxEnt
reweighting approaches, which have matured to well-founded
and efficient protocols over the last few years.[21–25] Given a
predefined population-weighted set of conformations, called
the prior, these methods form an ensemble estimate by
reweighting the prior as little as necessary to match the
experimental data. This works well in practice as long as all
experimentally relevant conformations can safely be specified a
priori.[26] While this requirement cannot be met in every case, it
does generally apply if the protein ensemble is considered not
in its full 3D complexity but in terms of the experimentally
relevant variables, such as interatomic distances or backbone
dihedral angles. This dimensionality reduction not only allows
for simple and extensive definitions of the prior conformations
but also tends to increase the relative information content of
the experiments. A backbone dihedral angle distribution is
more easily defined and restrained than conformational space
in 3D. Thus, we consider MaxEnt reweighting as the method of
choice to assess the structural information encoded by CCR
rates.

We start by deriving an alternative approach to existing
MaxEnt heuristics from first principles. Applying the method on
Ubiquitin, we find that CCR-guided MaxEnt reweighting is
capable of characterizing rigid and flexible protein backbone
regions alike. Most importantly, our results suggest that neither
experimental nor systematic errors are the most relevant factors
in mapping backbone dihedral angle distributions, but rather a

reasonable balance between complementary experiments and
prior information. Our findings indicate a surprisingly low
sensitivity to experimental uncertainties and oversimplified
dynamics, highlighting the potential of CCR rates for the
characterization of conformational ensembles of proteins.

2. Theory

2.1. Cross-Correlated Relaxation

Cross-correlated relaxation (CCR) effects result from correlated
interferences of simultaneous spin relaxation processes. Using
these effects to study protein backbone geometry was first
proposed in the late 90s by Reif et al.,[27] who deduced ψ from
relaxation interference of interresidual Ca-Ha and N-HN dipolar
vectors. Other interactions probing dihedral angles along the
protein backbone were soon proposed,[28–34] for more in-depth
reviews see e.g. Refs. [10, 11, 35].

The angular information is encoded in the spectral density
function, which is most commonly modeled under the simplify-
ing assumption of isotropic molecular tumbling with no internal
dynamics.[27,28] The correlation time is often scaled by a heuristic
order parameter[36] to mimic the effects of local motions,[11,13]

see Refs. [11, 37] for more sophisticated models. Here, we
consider the most commonly exploited types of relaxation
mechanisms, dipolar (DP) and chemical shift anisotropy (CSA),
under the simplifying assumptions above. Three different
combinations can be distinguished,

G
DP;DP
ab;cd qð Þ ¼

2
5

m0�h
4p

� �2 gagbgcgd

r3abr
3
cd

tcS
2 1
2 3cos2q ab; cdð Þ � 1ð Þ;

(1)

G
DP;CSA
ab;u qð Þ ¼

4
15

m0�h
4p

gagb

r3ab
B0gutcS2

1
2

X

i¼x;y;z

su
iið3 cos

2qðab;uiÞ � 1Þ; (2)

GCSA;CSA
u;v qð Þ ¼

8
45 B20gugvtcS

2 1
2

X

i;j¼x;y;z

su
iis

v
jjð3 cos

2qðui; vjÞ � 1Þ: (3)

a, b, c and d denote nuclei subject to dipolar coupling, u and v
are nuclei with CSA, γ is the gyromagentic ratio, r is the
distance between two nuclei, σxx,yy,zz are the tensor components
of the diagonal CSA tensor (in ppm), μ0 is the vacuum
permeability, �h is the reduced Planck constant, B0 is the
magnetic field strength, τc is the overall correlation time, S2 is
the local order parameter and θ denotes the projection angle
between the dipolar vectors (ab, cd) and/or the principal axes
of the CSA tensor coordinate system of nucleus u (ux , uy, uz) or
nucleus v (vx , vy , vz). These projection angles are of course
related to the backbone geometry, allowing us to map G qð Þ to
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Gð�;yÞ. Figure 1 shows the angular dependencies of all CCR
rates employed in this work.

2.2. Maximum Entropy

We consider a distribution of backbone dihedral angles in
(ϕ,ψ)-space in terms of discretized populations p�;y, with
�;y 2 ½� 180�; 180�½. The information about the p�;y is repre-
sented by m population avagered CCR rates
~G j ¼

P

�;y

p�;yG j �;yð Þ, j ¼ 1; . . .m. These observables might not

be able to uniquely determine the underlying populations p�;y.
If this is the case, Jaynes’ Maximum Entropy (MaxEnt)
principle[38] identifies the optimal solution as the maximum
entropy distribution compatible with the data. Following
Jaynes’ original narrative, this principle can be derived from the
intuitive notion of entropy as an information measure. Any
other lower entropy solution would contain more information
than originally supplied. While the original calculus has
remained essentially unchanged, its justifications and axiomati-
zations have been thoroughly investigated over the years[39–45]

and linked to the principles of Bayesian inference.[46–48]

Irrespective of its interpretation, the MaxEnt calculus takes
the form of a constrained optimization problem, see e.g. Refs.
[49–52] Jaynes’ originally suggested maximization of Shannon
entropy[53] is generalized in

max
p�;y

S p�;y
� �

; (4)

where p�;y is the probability vector and S is the negative
Kullback-Leibler divergence[54] or relative entropy,

S p�;y
� �

¼ �
P

�;y

p�;ylog
p�;y
q�;y
; (5)

where q�;y denote the so-called prior probabilities, which result
from the relative nature of entropy measures in general.
Analogous to its counterpart in Bayesian statistics, the prior is
often interpreted as a state of a priori beliefs. Here, the prior
probabilities q�;y are not predefined but fixed, hence S is a
function of the p�;y alone.

In addition the p�;y are subject to a set of constraints,

1 ¼
X

�;y

p�;y; (6)

~G j ¼
X

�;y

p�;yG j �;yð Þ; j ¼ 1; . . . ;m; (7)

where (6) represents the normalization condition. As shown in
the Appendix, the problem is solved by forming the Lagrangian
(17) and inspecting its partial derivatives (18) with respect to
p�;y, which yields the general expression

p�;y l1; . . . ; lmð Þ ¼
q�;y
Z exp

Pm

j¼1
ljG j �;yð Þ

 !

; (8)

where Z is the partition function,

Z ¼
P

�;y

q�;yexp
Pm

j¼1
ljG j �;yð Þ

 !

; (9)

which results from the normalization condition (6). Note that
the MaxEnt distribution (8) is a function solely of the m
Lagrange multipliers λj, hence the dimensionality of the original
problem (4), (6), (7) is drastically reduced.

While the resulting system of m equations and m unknowns
could readily be solved, a common strategy involves forming
the so-called dual Lagrangian instead.[49,55–57] Substitution of (8)
into the Lagrangian yields a convex “free energy” potential of
l1; . . . ; lm, see Apendix Eq. (23),

min
l1 ;...;lm

L l1; . . . ; lmð Þ ¼ log Z l1; . . . ; lmð Þ �
Pm

j¼1
lj

~G j; (10)

which allows to solve the originally constrained problem (4), (6),
(7) by unconstrained optimization of (10) instead. At its
minimum, the partial derivatives of L equate to the conditions
stated in (7),

Figure 1. Angular dependencies of different dipole/CSA interferences assum-
ing a rigid backbone geometry. Upper middle: Ha

i H
N
iþ1; C

0
i yð Þ. Middle left:

Ca

i H
a

i ;NiH
N
i �ð Þ. Middle: C

a

i H
a

i ;Niþ1H
N
iþ1 yð Þ. Middle right: Ha

i H
N
i ; C

0
ið�;yÞ. Lower

left: Ca

i H
a

i ; C
0
i� 1 �ð Þ. Lower middle: Ca

i H
a

i ; C
0
i yð Þ. Lower right: NiH

N
i ;C

0
ið�;yÞ.
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0 ¼ @L
@lx
¼

@logZ
@lx
� ~G x ¼ Gxh i � ~G x; (11)

where angled brackets denote the population weighted
average over the MaxEnt distribution (8). The minimizing
multipliers l1*; . . . ; lm* uniquely characterize p*�;y l1*; . . . ; lm*ð Þ (8)
with maximum S (4) subject to the constraints (6) and (7). The
Hessian of L,

@2L
@lx@ly

¼
@2logZ
@lx@ly

¼ G xGy

� �
� G xh i Gy

� �
; (12)

corresponds to a positive semi-definite covariance matrix[49] or
Fisher information metric.[54] Minimization of (10) is thus
straightforward to implement numerically.

2.3. Maximum Entropy Regression

At first glance, the MaxEnt framework appears like a natural fit
for dealing with ensemble averaged data. Instead of modeling
the populations p�;y explicitly, they can be obtained from a
simple and low-dimensional optimization problem. However,
we have not yet accounted for the possibility of errors in the
data. This is a key limitation of MaxEnt in practice, because
experimental information rarely takes the form of expectation
constraints as assumed in (7). Instead, the conditional proba-
bility terms of Bayesian statistics are generally required to
properly account for experimental uncertainties and/or inaccur-
acies of the forward model.[58] However, defining and sampling
meaningful priors and likelihoods over ensembles, i. e. distribu-
tions over distributions, is challenging both conceptually and
practically. While this concept has been explored,[59–61] most
pragmatic approaches opt for a simple point estimate instead.

Here, we suggest a novel perspective that aims to preserve
the advantages of MaxEnt as introduced in Section 2.2, such as
low dimensionality and well-defined optimality conditions. To
distinguish from noise- and error-free constraints ~G j, we denote
experimentally determined rates as ~G

exp
j . While the general

notion of population averaging still applies, we acknowledge
that the associated equality constraints (7) are ill-suited for
erroneous ~G

exp
j . Thus, a MaxEnt representation as in (8) cannot

be derived from ~G
exp
j , at least in a strict sense. However, we

suggest that the functional form of p�;y l1; . . . ; lmð Þ (8) still holds
some validity. Reconsidering the Dual Lagrangian (10), we note
that the gradient (11) evaluates the difference between
prediction and observation, i. e. the residual. Instead of requir-
ing this term to be zero, we could choose to minimize a suitable
norm, which allows us to reframe MaxEnt in terms of a simple
regression model. For now, we consider a conventional c2 fit,

min
l1 ;...;lm

c2 l1; . . . ; lmð Þ ¼
1
2

Pm

j¼1

G jh i� ~G
exp
j

sj

� �2

; (13)

where angled brackets denote the population weighted
average over p�;y l1; . . . ; lmð Þ (8) and σj represents the standard
deviation associated with Γj. This expression is of course easily

generalized to include multiple measurements of ~G
exp
j . The

similarities with canonical MaxEnt are best illustrated by the
optimality conditions,

0 ¼ @c2

@lx
¼
Pm

j¼1

1
s2
j

G j

� �
� ~G

exp
j

� � @ G jh i
@lx

; (14)

or equivalently, considering (11) and (12),

0 ¼
@c2

@lx
¼
Pm

j¼1

1
s2
j

@logZ
@lj
� ~G

exp
j

� �
@2logZ
@lx@lj

¼
Pm

j¼1

1
s2
j

G j

� �
� ~G

exp
j

� �
G jG x

� �
� G j

� �
G xh i

� �
:

(15)

The gradient entries (14) and (15) combine the gradient of
the MaxEnt Dual (11) and its Hessian (12) in a sum of products,
balancing the residuals of each rate weighted with their
respective variances and covariances. Qualitatively speaking, if
the residuals are approaching zero, i. e. a very good fit can be
achieved, the χ2 fit will resemble an orthodox MaxEnt solution.
If this is not the case, the covariances are adjusted and scaled
down in order to minimize the non-zero residuals. Of course,
the latter case bears little similarity with a conventional MaxEnt
representation. Rather than increasing the inferential uncer-
tainty, experimental errors lead to smaller covariances, implying
averages over smaller subspaces and thus lower rather than
higher entropy solutions. In a way, the expression for
p�;y l1; . . . ; lmð Þ (8) was used for its convenient parametrization
without keeping its original justification intact. Thus, entropy
has to be reintroduced to the equation, which can be achieved
by regularization. Since explicit entropy has already been
investigated by other studies,[21,23,24,62–64] we choose to explore it
implicitly using a more conventional quadratic regularization
term commonly known in the context Tikhonov
regularization[65,66] or ridge regression,[67,68]

min
l1 ;...;lm

c2
reg ¼

1
2

Pm

j¼1

G jh i� ~G
exp
j

sj

� �2

þ
b2

2

Pm

j¼1
l2
j ; (16)

where β is a free parameter, often identified as “temperature”,
balancing the contributions of χ2 and the L2 penalty. This
indirect way of entropy penalization is particularly suited for
biasing techniques[22,69–71] that do not allow for explicit calcu-
lation of S. Its effect on the entropy can easily be assessed from
Eq. (8), noticing that smaller λj imply smaller perturbations of
the prior. An established heuristic for the choice of β is the L-
curve criterion.[72,73] As nonlinear least squares problems, both
Eq. (13) and (16) are locally convex and straightforward to
minimize using the Levenberg-Marquardt algorithm.[74]

Naturally, Eq. (16) shares many similarities with previously
devised approaches. Already in 1978, Gull and Daniell assumed
reduced χ2-statistics to repurpose the MaxEnt Lagrangian for
erroneous data.[75] Other authors chose to preserve the
Lagrangian by extending the equality constraints assuming
additive errors, an idea first sketched in the 90 s[76–78] and
recently rediscovered for structural biology purposes by Cesari
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et al.[22,70] Assuming Gaussian errors, both approaches can be
shown (Ref. [24] and [70], supplementary material) to corre-
spond to the Bayesian MAP estimate of Hummer and
Köfinger,[21,24] who reframed their entropy-regularized χ2-fitting
procedure[62–64] in Bayesian terms assuming a Gaussian like-
lihood and an entropy-inspired prior. A different perspective
has been sketched by Dudik et al. who investigated the
Lagrangian under various “relaxed” constraints to avoid
overfitting.[79,80] While the heuristic proposed here is derived
from slightly different considerations, it does of course illustrate
the same general principle. Uncertainty in the data must be
reflected in a stronger emphasis on the prior.

3. Results

Eq. (16) depends on various parameters and assumptions which
need to be carefully assessed before interpreting its solution,
namely the variances s2

j weighting different rates according to
their overall size and spread, the regularization parameter β
balancing experimental and prior information and the forward
model relating the observed rates Γj to the backbone dihedral
angles.

In a first step, the variances s2
j of each rate were assessed by

comparing the experimental CCR rates with rates predicted from
the Ubiquitin ensemble of Lange et al.,[81] PDB code 2k39.
Simulating the general case of limited prior knowledge, CSA
tensors and dynamics were assumed uniform for all rates and
residues. With a global correlation time τc of 4.1 ns, an overall
order parameter S2 of 0.7 (similar to Refs. [19,82]) was found to
give reasonable but far from perfect agreements between
measured and predicted rates. Four examples are depicted in
Figure 2, the remaining rates are shown in Figure S1, Supporting
Information. Accounting for differences in temperature and/or
magentic field strength, the obtained range of experimental values
agrees well with the original publications validated on
Ubiquitin.[14,28–30,32] As can be seen from Figure 2, not all measured
rates can safely be modeled assuming simple Gaussian noise.
Since the conventional variance estimate is highly sensitive to
outliers, the squared median absolute deviation (MAD2) was
considered a better suited estimate for the subsequent fitting
procedure. Due to the noticable presence of outliers, systematic
deviations and the poor agreements of rate (d), Ha

i HN
i = C

0

i �;yð Þ,
the reported minimum requirement of five observables per
residue[13] was applied. For 56 out of 74 non-terminal residues five
or more CCR rates could be quantified. Residues that yielded four
or less CCR rates (18, including 5 glycines and 3 prolines) were
excluded from the analysis.

With τc, S
2 and s2

j fixed, the regularization parameter β is the
only free parameter left. It is often chosen using the L-curve
criterion. For each residue, c2

reg is minimized for different β using
the random coil prior defined in Sec. 7. The pairwise contributions
of χ2 and

P
l2
j are plotted on a logarithmic scale. The knee point

of the curve indicates the region where χ2 and
P

l2
j are balanced

in the sense that lower β allow for high λ-variability with little gain
in χ2 while higher β restrain the λj at noticeable expense of χ

2. An
exemplary L-curve for I14 is shown in Figure 3.

However, considering the quality of the data and the
obvious presence of outliers, Figure 2, the L-curve criterion is
likely too optimistic in favoring low χ2 solutions. This was
confirmed by comparing the fitting results with the Lange
ensemble[81] in terms of average dihedral angles for different
choices of β, Figure S2, Supporting Information, bottom row. By
evaluating the L-curves collectively, a more conservative

Figure 2. Comparison of CCR rates Γ2k39 calculated from the Lange
ensemble,[81] PDB code 2k39, and the experimentally obtained rates Γexp, (a)
GCa

i H
a
i ;C

0

i� 1ð�Þ
, (b) GCa

i H
a
i ;Niþ1HN

iþ1
ðyÞ, (c) GHa

i H
N
iþ1 ;C

0

i
ðyÞ, (d) GHa

i H
N
i ;C

0

i
ð�;yÞ. The squared

median absolute deviations MAD2 are specified in the lower right corners.
Outliers of rate (b) that were found critical in the subsequent fitting
procedure are highlighted in red. Diamond: 30I, Triangle: 41Q, Square: 70V.
The remaining three rates are depicted in Figure S1, Supporting Information.

Figure 3. Red circles: Exemplary L-curve for I14 obtained by optimizing c2
reg ,

Eq. (16), for different β (between 0 and 1000) and S2 ¼ 0:7. The contributions
of χ2 and

P
l2
j describe an L-shaped curve in a log-log plot. Blue squares:

The entropy S, Eq. (5), of the backbone dihedral angle distribution, Eq. (8),
corresponding to the minimum of c2

reg . Points are linearly interpolated for
improved readability. The knee-point at bopt ¼ 0:5 is highlighted, b ¼ 2:5
marks the regularization parameter chosen for further evaluations, see
Figure 4, 5 and 6.
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estimate was found in the highest overall knee point of b ¼ 2:5.
The corresponding fitting results are summarized in Figure 4.

As entropy S and
P

l2
j are defined relative to a prior

distribution, it is important to assess the influence of the
random coil prior used. Thus, the fitting procedure was
repeated using the uniform prior. The results are summarized in
Figure S3, Supporting Information. Compared to the random
coil prior, Figure S2, Supporting Information, the uniform prior
is less capable of correcting for improbable (ϕ,ψ)-assignments.

Finally, the forward model itself represents an additional
source of uncertainty. The functional forms of Eq. (1) and (2)
build on the assumption of isotropic molecular tumbling in the
absence of internal dynamics, which leads to the convenient
factorization of structural and dynamical contributions. To asses
the influence of the assumed dynamic scaling, the order
parameter x =̂S2 was varied between 0.1 and 1.2, as shown for

b ¼ 2:5 in Figure 5. A comparison of fitting results with different
x and β is shown in Figure S2, Supporting Information.

To evaluate ϕ and ψ not only in terms of averages, a
selection of flexible residues is compared to the ensemble of
Lange et al.[81] in terms of (ϕ,ψ)-distributions in Figure 6. The full
set of (ϕ,ψ)-distributions is shown in Figure S4, Supporting
Information.

Figure 4. Comparison of average backbone dihedral angles qh i in Ubiquitin
between the Lange ensemble,[81] PDB code 2k39, and the CCR-derived
ð�;y)-distributions obtained from Eq. (16) with S2 ¼ 0:7 and b ¼ 2:5. As
specified in the legend, different markers are used to indicate the number of
experimental CCR rates used. The three strong ψ-outliers correspond to the
outliers of GCa

i H
a
i ;Niþ1HN

iþ1
yð Þ highlighted in Figure 2, panel (b).

Figure 5. Average fitting results of Eq. (16) with β=2.5 for all 56 residues
with five or more quantifiable CCR rates assuming different dynamic scalings
x =̂S2 and τc=4.1 ns. D qh ij j is calculated with respect to the average
backbone dihedral angles of the Lange ensemble,[81] PDB code 2k39. Points
are linearly interpolated for improved readability.

Figure 6. Comparison of selected backbone dihedral angle distributions in
Ubiquitin between the Lange ensemble[81] in column (a) and the CCR-derived
fitting results in column (b) obtained from Eq. (16) with S2 ¼ 0:7 and
b ¼ 2:5. Populations are color-coded according to the linear color gradient
at the bottom. Residue type and number are indicated in the top right
corner. D �h ij j and D yh ij j denote the absolute difference in average dihedral
angles between (a) and (b), #rates is the number of CCR rates used to derive
(b).
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4. Discussion

In Figure 2, a selection of experimentally determined rates is
compared to their expected values calculated from the
ensemble of Lange et al.[81] While overall correlation between
experiments and predictions can be observed, there are
obvious differences between different rates. For (a), Ca

i H
a

i /
C0i� 1 �ð Þ, deviations are relatively small and could be reasonably
approximated by Gaussian noise. The spread of (b), Ca

i H
a

i /
Niþ1H

N
iþ1 yð Þ, is not only larger but appears to contain a few

obvious outliers, three of which have been found to heavily
influence the subsequent analysis (highlighted in red). Our
newly proposed experiment[14] (c), Ha

i H
N
iþ1/C

0
i yð Þ, shows system-

atic deviations from predicted values most pronounced for
higher rates. This is consistent with our previous findings,
suggesting a higher overall correlation time as well as a strong
sensitivity to variations of the CSA tensor and/or the backbone
geometry.[14] Rate (d), Ha

i H
N
i /C

0
i �;yð Þ, shows particularly poor

agreements. The expected angular dependency is obscured by
considerable scatter and systematic deviations, likely due to its
small functional range with the highest sensitivity at mostly
unpopulated regions with positive ϕ, see Figure 1. The three
remaining rates (e), (f) and (g), Figure S1, Supporting Informa-
tion, behave similarly to (a) and (c). Errors appear mostly
randomly distributed, minor systematic biases can be observed
for rates (e), NiH

N
i /C

0

i �;yð Þ, and (g), Ca

i H
a

i /C
0

i yð Þ.
Considering these quantitative discrepancies, the agreements

in terms of MaxEnt-derived �h i and yh i, Figure 4, might appear
quite surprising. However, as established in Sec. 3.3, the
experimental and theoretical uncertainties are reflected in a
stronger emphasis on the prior (b ¼ 2:5). Instead of forcing χ2

close to its absolute minimum, a suitable balance between χ2 and
P

l2
j allows to suppress overfitting, revealing the complementary

structural dependencies of CCR rates even in the presence of
systematic and experimental errors.

To achieve this balance, i. e. finding an appropriate β, the L-
curve offers an intuitive heuristic. As explained in Sec. 4, the
pairwise contributions of χ2 and

P
l2
j for different β are

compared on a log-log plot as illustrated for I14 in Figure 3. At
the knee point, λ-variability is considered sufficiently penalized
without excessive restraint of χ2. However, these knee point
solutions, with β between 0.01 and 2.5 for different residues, do
not necessarily yield the best results, see Figure S2, Supporting
Information, bottom row. Instead, we find that a more strongly
weighted prior of b ¼ 2:5 for all residues leads to better
agreements in terms of average dihedral angles. As described in
Sec. 4, the presence of errors should be reflected by an increase
in inferential uncertainty, yielding higher rather than lower
entropy solutions. Thus, a low χ2 does not necessarily indicate a
good solution, especially if it is achieved at the expense of an
informative prior. While the L-curve provides a useful visual
guideline for choosing β, the knee point criterion appears too
reliant on χ2 to avoid overfitting, prior information needs to be
considered more explicitly. Alternatively, the observed change
in slope of S or

P
l2
j , i. e. the second derivative, might provide a

reasonable heuristic.

Of course, this does not imply that the prior can substitute for
the experimental information encoded in χ2, the experimental
data still determines the solution. This is well illustrated by the
highlighted outliers of rate (b), Ca

i H
a
i /Niþ1H

N
iþ1 yð Þ, Figure 2. As can

be seen by their vertical and horizontal projections, these points
correspond to very plausible values for ψ. As a consequence, these
discrepancies are mirrored by the obvious yh i-deviations in
Figure 4. Upon exclusion of rate (b), Ca

i H
a

i /Niþ1H
N
iþ1 yð Þ, the

predicted (ϕ,ψ)-densities improve drastically (Figure S5, Support-
ing Information). The prior can only correct for implausible
conformations, χ2 still shapes the solution. What conformations are
deemed implausible depends on the prior of course. See Figure S2
and S3, Supporting Information, to compare the fitting results
between random coil and uniform prior.

These findings suggest another interesting implication. If the
absolute value of χ2 is of minor importance, how crucial is the
choice of the effective correlation time? This question is explored
in Figure 5, which summarizes the average fitting results assuming
“order parameters” x =̂S2 between 0.1 and 1.2. Here, the “order
parameter” simply serves to rescale the functional range of Γ.
Thus, it is not surprising that the average c2

reg increases with lower
x. However, average �h i and yh i still appear quite stable over a
considerable range, illustrating the general robustness with
respect to systematic errors. As long as the angular dependencies
(1), (2) and (3) are reasonably applicable, their overall scale is of
less importance. However, if the scaling is underestimated by too
much (x=0.1–0.3), the data might point towards a different (ϕ,ψ)-
region, analogous to the outliers in Figure 4. In Figure S2,
Supporting Information, this increase of incorrectly assigned (ϕ,ψ)-
pairs can readily be seen. Overestimating the dynamic scaling (x=

0.9–1.2) leads to an entirely different behavior. As can be seen by
the vertical spreads in Figure S1 and S2, Supporting Information,
increasing the functional range of Γ puts less restraint on (ϕ,ψ)-
space, allowing for better fits in terms of c2

reg. However, the
underlying (ϕ,ψ)-distributions can be implausibly distorted as a
consequence.

These results suggest that the dynamical contributions,
attributed to a simple effective correlation time, are less crucial
than the angular information encoded in locally concerted
motions. Of course, dynamics and geometry are more inter-
twined in reality. For IDPs in particular, more pronounced
diffusion anisotropy and local dynamics will lead to even further
deviations from the simple angular dependencies assumed in
Eqs. (1), (2) and (3). Still, a surprising robustness can be
observed for Ubiquitin despite its notable deviations from
theory, Figure 2. While the assumed dynamic model must be
verified and possibly adapted for other protein systems, this
robust fitting behavior might hold true in the general case. To
this end, we expect that Figure 5 could be used similarly to the
L–Curve, Figure 3, by evaluating the relative changes in p �;yð Þ

and c2
reg upon variation of the dynamics.

Finally, to compare ϕ and ψ in terms of actual distributions,
a selection of flexible residues is compared to the Lange
ensemble[81] in Figure 6.

Q40 is part of a turn-motif preceding a β-annotated
segment from 41 to 45. While featuring mostly right-handed
helical propensities in the PDB ensemble (a), there is noticeable
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density in the left-handed region as well. This feature is
reproduced by the CCR-derived density (b), albeit with slightly
different populations. Still, �h i and yh i are in very good
agreement. In addition, the CCR data seems to suggest a slight
β-propensity, which might be noteworthy considering the
transition from turn to β-strand.

E51 has no assigned secondary structure motif, but
precedes a short turn segment, indicated by a small α-
propensity in the PDB ensemble (a) alongside a broadly
populated β-region. Again, the CCR-derived densities are in
strong qualitative and quantitative agreement.

Q62 is similar to E51. It has no assigned secondary structure
but is located right before a short turn segment. However, in
terms of �h i and yh i, the agreement between the PDB
ensemble (a) and the CCR-derived populations (b) appears
rather poor. Still, the CCR fit (b) is quite remarkable. Broad β-
populations extending to negative ψ are well reproduced.
Propensities of α and ζ[83] (� � � 120�, y � 70�) in (a) are
correctly predicted but more heavily weighted in (b). Interest-
ingly, even the small ɛ-populations around � ¼ 50� and
y ¼ � 180� are reproduced, which is expected to be very
sparsely populated for non-glycine residues. This presence of
positive ϕ likely explains the noticeable and incorrect emphasis
on left-handed α in (b), which is far more frequent in the prior
than ɛ and thus more pronounced.

R72 is annotated as bend-like and part of the flexible C-
terminal tail. It follows a β-strand stretch from 66–71. Its flexible
nature is well-reflected in the PDB ensemble (a) with broadly
distributed populations in β, ζ and α-regions. Interestingly,
propensities with positive ϕ are not centered around canonical
left-handed α, but rather shifted towards smaller values of ψ.
Overall, these propensities are well reproduced by the CCR-
derived distribution (b) with similar densities of β and right-
handed α. However, (b) appears far smoother than (a), a result
of comparing 116 snapshots to a comparatively fine-grained
distribution. In addition, little ζ-propensity is found in (b) and
positive ψ values are biased towards the left-handed α-region,
again illustrating the influence of the chosen prior.

As expected, average ϕ and ψ are not perfectly representa-
tive for (ϕ, ψ)-distributions especially in flexible residues. While
noticeable deviations might be observed on average, there are
still similarities to be discovered in detail. Overall, CCR-guided
MaxEnt reweighting appears well suited to characterize rigid
and flexible residues alike. However, details can only be
resolved as far as experiments and prior allow. Occasional
artifacts of experimental deviations and conflicting prior
assumptions are still noticeable and should be addressed with
care. Conformational heterogeneity can reflect structural flexi-
bility as well as inferential uncertainty, i. e. rigid residues can
appear rather flexible, see Figure S4, Supporting Information.
Including additional observables, such as CCR rates, scalar
couplings, chemical shifts or short-range NOEs, can be expected
to alleviate these effects. Quantitative agreements could be
further improved by multiple measurements and/or alternative
pulse sequences to allow for outlier corrections, cross-validation
and improved variance estimation.

In more general terms, it is important to emphasize that the
information contained in CCR rates strongly depends on the
prior employed. Detailed structural priors allow us to refine,
calculate and/or analyze structural ensembles of folded proteins
in terms of their dynamics.[17–20] Accurate models of both
structure and dynamics make the encoded CSA tensors
accessible.[15,16] The MaxEnt approach presented here provides a
framework for the interpretation of CCR rates in cases of
unspecific prior knowledge. While structural interpretations
appear limited to backbone dihedral angle distributions as a
consequence, we foresee a variety of possible extensions.
Firstly, the interresidual CCR rate Ca

i H
a

i /C
a

iþ1H
a

iþ1 yi; �iþ1ð Þ might
allow for joint analysis of sequential residues that would
otherwise be treated independently. Secondly, by translating
ensemble averaged observables into distributions over so-called
“collective variables”, our method might provide valuable inputs
for metadynamics-based MaxEnt biasing techniques.[71,84,85]

Thirdly, our approach could of course be adapted to reweight a
molecular dynamics simulation.[25] For this case in particular we
expect CCR rates to provide valuable experimental constraints
reflecting both structure and dynamics.

5. Conclusions

Cross-correlated relaxation (CCR) rates were shown to resolve
dihedral angle distributions of both rigid and flexible residues
in Ubiquitin. This was achieved using a modern Maximum
Entropy (MaxEnt) reweighting approach that allows to account
for the presence of structural flexibility in proteins.

While classical MaxEnt is ill-equipped to deal with the errors
that come with experimental data, we show that it can be
recast into a simple regression scheme, retaining its low
dimensionality and well-defined optimality conditions. Crucially,
the procedure does not depend on the number of ensemble
members but only on the number of Lagrange multipliers, one
for each experiment. This implicit way of modeling both
entropy and conformational space proves to be very robust
even outside its canonical scope. While the classical Lagrangian
is not strictly applicable, it can still be repurposed to
approximate the Lagrange multipliers. While many approaches
achieve this by loosening the equality constraints, we derived a
simple and robust χ2-type cost function which we expect to be
particularly useful for MaxEnt biasing techniques that still build
on rather cautious modifications of the Lagrange Dual.[22,69–71]

However, since MaxEnt requires errors to be treated somewhat
ad hoc to arrive at a simple point estimate, free parameters must
always be treated with care. Firstly, the accuracy of each experi-
ment is represented by a variance parameter to weight the
contribution of each observable. While easy to estimate post hoc
for a system like Ubiquitin, studies of less well-known proteins
might require additional considerations. Secondly, the balance
between residual and prior must be assessed with care. We have
found that the widely-used L-curve criterion might be too biased
towards small residuals. Our data suggests that entropy or suitable
estimates thereof are better suited to properly avoid overfitting.
This aspect is particularly important if the fitting results cannot be
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compared with independent data. Thirdly, the prior itself must not
be overlooked. Since overfitting is suppressed by enforcing
entropy, the prior conformations necessarily affect the solution.
While a uniform prior merely flattens the predicted densities, more
informed priors put stronger emphasis on regions deemed
probable a priori. For Ubiquitin, this does not mean that a random
coil prior necessarily leads to broad distributions for rigid residues.
However, an artificial bias towards more strongly populated
regions in (ϕ,ψ)-space could be observed for residues with
unusual propensities especially with positive ϕ. Assessing the
influence of different priors is thus highly recommended.

Lastly, the forward model relating experimental data to
structural information is of crucial importance. In this work, we
examined Ubiquitin under the oversimplified assumption of
isotropic molecular tumbling without internal dynamics. Most
notably, this implies that dynamical and structural contributions
factorize, reducing the effect of dynamics to a simple scaling
factor. While this model did not yield quantitative agreements of
comparable quality between different CCR rates, the underlying
(ϕ,ψ)-distributions could still be resolved with surprising levels of
detail, despite the presence of outliers and systematic deviations.
These results suggest that the structural information encoded in
CCR rates is capable of outweighing other sources of uncertainty,
such as experimental errors, CSA tensor variations, simplified
backbone geometries and imprecise dynamics. This robustness
was observed even for residues with considerable amounts of
conformational flexibility, indicating the unharnessed potential of
CCR rates for studying disordered protein systems. While the
simplified model of a rigid protein under isotropic tumbling must
still be critically assessed and possibly adapted, we expect that
CCR rates will allow us to better understand and potentially
disentangle the subtle interplay of structure and dynamics in
intrinsically disordered proteins.

6. Computational Methods

A total of seven different CCR interactions were employed,
including our newly proposed experiment probing
GHa

i HN
iþ1 ; C

0
i

yð Þ[14] and the closely related GHa
i HN

i ;C
0
i
�;yð Þ interfer-

ence. The remaining five interactions have been described
elsewhere: GCa

i Ha
i ;Niþ1 HN

iþ1
yð Þ,[27] GCa

i Ha
i ;C

0
i

yð Þ,[28] GCa
i Ha

i ;Ni HN
i
�ð Þ,[29]

GCa
i H

a
i ;C
0
i� 1
�ð Þ,[30] GNj HN

i ;C
0

i
�;yð Þ.[32] To ensure internal consistency

and reproducibility, all G j �;yð Þ were calculated according to
Eq. (1) and (2) by rotating an Avogadro[86]-generated backbone
geometry with �;y;w ¼ � 180� (Table S1, Supporting Informa-
tion). Parameters were adapted primarily from Engh and
Huber,[87] angles involving hydrogens were taken from Momany
et al.[88] The principal axes of the carbonyl CSA tensor were set
according to Teng et al.[89] The Z-axis was defined as the cross
product of the C0-O and the C0-Ca bond unit vectors, the X- and
Y-axis as clockwise rotations of the C0-O bond unit vector
around the Z-axis by 82° and � 8°, effectively approximating the
O-C0-N angle with 120°. The tensor components of Ubiquitin
were taken from Cisnetti et al.[15] σxx and σzz were set according
to the reported averages as 249.4 ppm and 87.9 ppm. Following
the suggested calibration, the average σyy was obtained from

the chemical shifts (BMRB ID 17769[90]) as 191.1 ppm. The
resulting angular dependencies are depicted in Figure 1. A
correlation time τc of 4.1 ns was assumed,[91] S2 was treated as a
free parameter. B0 was set in accordance with the experimental
magnetic field of 600 MHz.

For quantitative comparison the ensemble of Lange et al.[81]

was used (PDB code 2k39). CCR rates were calculated from ϕ
and ψ for every structure according to Eq. (1) and (2) using the
above stated CSA tensor, backbone geometry and τc assuming
an order parameter S2 of 0.7. Subsequent averaging over all 116
structures yielded the CCR rate predictions.

For MaxEnt regression according to Eq. (16), the variances s2
j

were estimated by the median absolute deviation between the
2k39-based predictions and the experimental values. The CCR
rates were approximated as 360x360 arrays by rotating the
backbone (Table S1, Supporting Information) in 1° steps. Analo-
gously, the random coil prior was defined on a 360x360 grid using
the coil library of Manstyzov et al.[92] After discarding ill-defined
terminal segments as well as glycine and proline residues, a total
of 147091 angle pairs was extracted and rounded to integers. The
prior was then obtained as the normalized histogram of angle pair
counts. It is shown in Figure S6, Supporting Information. Out of 76
residues, 56 yielded five or more CCR rates. These residues were
analyzed according to Eq. (16) with different β (0 to 1000) and S2

(0.1 to 1.2). Minimization was achieved using the Levenberg-
Marquardt algorithm implemented in SciPy[93] version 1.0.0 with
iteratively updated scaling.[94]

Experimental Section
The sample of 2 mM 13C,15N-uniformly labeled Ubiquitin dissolved
in 50 mM phosphate buffer of pH¼ 7:0, was purchased from Giotto
Biotech.

All experiments were performed on a Bruker 600 MHz spectrometer
equipped with a 5 mm room-temperature probe. The experiments
were performed at 298 K. The experimental parameters are
summarized in Table 1.

The pulse sequence programs were prepared for Bruker spectrom-
eters, according to the original publications: GHa

i HN
iþ1 ;C

0
i

yð Þ,[14]

GCa
i Ha

i ;Niþ1 HN
iþ1

yð Þ,[27] GCa
i Ha

i ; C
0
i

yð Þ,[28] GCa
i Ha

i ;NiH
N
i
�ð Þ,[29] GCa

i Ha
i ; C

0
i� 1
�ð Þ,[30]

GNi HN
i ; C

0
i
ð�;yÞ.[32] For some pulse sequences minor optimizations

were introduced. These will be described in a future publication
alongside the pulse sequence used to measure GHa

i HN
i ; C

0
i
�;yð Þ. All

pulse sequences are available from the authors upon request.

All experiments were performed using the conventional sampling
scheme. Data were processed using the fast Fourier transform
algorithm implemented in mddnmr.[95] The data were displayed and
analyzed using Sparky.[96]

7. Appendix

The constrained optimization problem (4),(6),(7) is recast into
the Lagrangian
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L ¼ �
P

�;y

p�;ylog
p�;y
q�;y
þ
Pm

j¼1
lj

P

�;y

p�;yG j �;yð Þ � ~G j

 !

þl0

X

�;y

p�;y � 1

 !

:

(17)

The partial derivative with respect to p�;y is

@L

@p�;y
¼ � log p�;y � 1þ log q�;y þ

Pm

j¼1
ljG j �;yð Þ þ l0: (18)

Setting the partial derivative to zero, we obtain

log p�;y ¼ log q�;y � 1þ l0 þ
Pm

j¼1
ljG j �;yð Þ: (19)

Taking the exponential and rearranging yields

p�;y ¼
q�;y

exp 1� l0ð Þ exp
Pm

j¼1
ljG j �;yð Þ

 !

: (20)

By applying the normalization condition (6),

1 ¼
P

�;y

q�;y
exp 1� l0ð Þ

exp
Pm

j¼1
ljG j �;yð Þ

 !

; (21)

the partition function is obtained as

exp 1 � l0ð Þ ¼
P

�;y

q�;yexp
Pm

j¼1
ljG j �;yð Þ

 !

¼ Z: (22)

To arrive at the Lagrange Dual (10), we first rearrange the
Lagrangian (17) and then substitute p�;y for the MaxEnt
distribution (8)/(20), making use of the normalization condition (6),

L ¼ �
P

�;y

p�;y log
p�;y
q�;y
þ
Pm

j¼1
lj

P

�;y

p�;yG jð�;yÞ

�
Pm

j¼1
lj

~G j þ l0

P

�;y

p�;y � 1Þ

 !

¼ �
P

�;y

p�;y log
1
Z exp

Pm

j¼1
ljG jð�;yÞ

 !

þ
Pm

j¼1
lj

P

�;y

p�;yG jð�;yÞ �
Pm

j¼1
lj

~G j

¼ log Z �
P

�;y

p�;y
Pm

j¼1
ljG jð�;yÞ

þ
Pm

j¼1
lj

P

�;y

p�;yG jð�;yÞ �
Pm

j¼1
lj

~G j

¼ log Z �
Pm

j¼1
lj

~G j:

(23)
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