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Abstract: Based on the established model of the irreversible rectangular cycle in the previous lit-
erature, in this paper, finite time thermodynamics theory is applied to analyze the performance
characteristics of an irreversible rectangular cycle by firstly taking power density and effective
power as the objective functions. Then, four performance indicators of the cycle, that is, the ther-
mal efficiency, dimensionless power output, dimensionless effective power, and dimensionless
power density, are optimized with the cycle expansion ratio as the optimization variable by ap-
plying the nondominated sorting genetic algorithm II (NSGA-II) and considering four-objective,
three-objective, and two-objective optimization combinations. Finally, optimal results are selected
through three decision-making methods. The results show that although the efficiency of the irre-
versible rectangular cycle under the maximum power density point is less than that at the maximum
power output point, the cycle under the maximum power density point can acquire a smaller size
parameter. The efficiency at the maximum effective power point is always larger than that at the
maximum power output point. When multi-objective optimization is performed on dimensionless
power output, dimensionless effective power, and dimensionless power density, the deviation in-
dex obtained from the technique for order preference by similarity to an ideal solution (TOPSIS)
decision-making method is the smallest value, which means the result is the best.

Keywords: finite time thermodynamics; rectangular cycle; power density; effective power; power
output; thermal efficiency; multi-objective optimization

1. Introduction

After decades of development, a series of instructive and practical achievements
have been obtained in finite time thermodynamics [1-8], the research objects of which
include heat engines [9-15], refrigerators [16,17], heat pumps [18], chemical cycles [19], and
quantum cycles [20,21]. The rectangular cycle (RC) is composed of four thermodynamic
processes, its endothermic processes are closed to the endothermic processes of the dual
cycle, and its exothermic processes are closed to the exothermic processes of the Miller cycle.
Compared with the common internal combustion engine cycles, the cycle has no adiabatic
process, so it is easier to realize in practical engineering. Since the cycle p — v diagram
is rectangular, it is called the RC. Ferreira [22] first applied the classical thermodynamic
theory to study the performance of the RC and derived the work output and thermal
efficiency (TEF). Some scholars have introduced finite time thermodynamics theory into
the performance analyses of the RC on this basis. Considering that the specific heats
(SHs) of the working fluid (WF) were constants, Liu et al. [18] derived the work output
and TEF of an endoreversible RC. Based on [23], Liu et al. [24] analyzed the influences of
heat transfer loss and friction loss on the power output (POW) and TEF of an irreversible
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RC. Considering that the SH of WF were linear [25] and nonlinear [26] variable with
temperature, Wang et al. [25,26] investigated the POW and TEF of endoreversible and
irreversible RCs.

Yan [27] used P - 7 (where P is the cycle POW and 7 is the cycle TEF) as the objective
function to study the performance of an endoreversible Carnot cycle in 1984, and Yil-
maz [28] termed P - 7 as the effective power; then, the effective power was widely applied
in the research of various heat engines [29-33].

In 1995, Sahin et al. [34] first put forward the power density (PD) (defined as the ratio
of cycle POW to the maximum specific volume) as a performance indicator and compared
the performance differences under the conditions of the maximum PD point and maximum
POW point of the Joule-Brayton cycle, the results showing that optimizing the cycle with
the goal of PD can reduce the size of the actual device, which plays a guiding role in the
design of heat engines. Chen et al. [35] first introduced the PD into an internal combustion
engine cycle and derived the TEFs of the reversible Atkinson cycle under the conditions
of the maximum PD point and maximum POW point when any loss was not taken into
account. Al-Sarkhi et al. [36] optimized the PD characteristics of a Miller cycle when any
loss was not considered and obtained the TEF corresponding to the maximum PD point.
Karakurt et al. [37] investigated the PD characteristics of a simple Brayton cycle when the
WEF was supercritical CO,. Shi et al. [38] derived the TEF corresponding to the maximum
PD point of an irreversible Atkinson cycle considered when the SH was constant. Based on
the RC model established in [23], Gong et al. [39] derived the relationships between the PD
and expansion ratio, as well as between the PD and TEF, and compared the performance
differences of the cycle at the maximum PD point and maximum POW point.

As the number of performance indicators of heat engines increases, it is necessary to
obtain global optimization solutions of several objective functions when optimizing the
performance of the heat engines. Compared with the NSGA, the improved multi-objective
optimization (MOO) algorithm (NSGA-II) has a faster running speed and better solution
set, so it is the first choice of the MOO algorithm [40-61]. Many scholars have applied
NSGA-II to the performance optimizations of heat engines and then used several MOO
decision-making methods to choose the optimal solution. Li et al. [49] established a re-
generative Brayton cycle model which was driven by fossil fuels and solar energy and
carried out MOO for the POW, TEF, and dimensionless thermal economic performance.
Ahmadi et al. [50] applied NSGA-II to optimize the performance of the Atkinson cycle,
carried out MOO for the cycle POW and TEF, and provided theoretical guiding signifi-
cance for practical engineering. Based on the established irreversible Dual-Miller cycle
model, Abedinnezhad et al. [51] carried out MOO for the TEF, ecological function, and
ecological performance coefficient. Based on the established irreversible Atkinson cycle
model with constant SH of WEF, Shi et al. [38] applied NSGA-II to carry out MOO for
the dimensionless POW, dimensionless PD, TEF, and dimensionless ecological function.
Tang et al. [52] modeled the improved irreversible closed modified Brayton cycle when
the heat source temperature was changed; derived the expressions of cycle dimensionless
POW, dimensionless PD, TEF, and dimensionless ecological function; and then performed
MOO on the cycle to obtain the optimal solutions of four-objective, three-objective, and
two-objective optimizations. Yang et al. [53] considered five kinds of WF (refrigerant) that
could be used for heat recovery of ORC (organic Rankine cycle), applied NSGA-II to carry
out MOO for the LECTs (total savings of levelized electricity cost) and TEF of the cycle,
and obtained the optimal working points under different refrigerants.

The above research shows that the effective power, PD, and MOO have been widely
applied in performance analyses and optimizations of heat engines. However, research
on effective power, PD, and MOO of the irreversible RC has not been reported in the
published literature. RC is also known as a soft air-cycle heat engine [62], and it is useful
for future soft robots due to their easy integration into soft structures and low-voltage
power requirements. It is useful to further study the performance of the RC.
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On the basis of the irreversible RC model with constant SH of WF built in [24], this
paper will firstly obtain the analytical expressions of cycle PD and effective power by
using finite time thermodynamics theory and compare the performance differences of the
cycle under the conditions of the maximum PD, maximum effective power, and maximum
POW; secondly carry out MOO for the dimensionless POW, TEF, dimensionless PD, and
dimensionless effective power by taking the cycle expansion ratio as the optimization vari-
able and applying the NSGA-II; and finally obtain the optimal solutions of four-objective,
three-objective, and two-objective optimizations by using three decision-making methods.

2. Model and Performance Indicators of an Irreversible RC

Figures 1 and 2 show the irreversible RC model [24]. The cycle consists of two constant
volume processes, 1 — 2 and 3 — 4, as well as two constant pressure processes, 2 — 3
and 4 — 1. Processes 1 — 2 and 2 — 3 are endothermic ones, and processes 3 — 4 and
4 — 1 are exothermic ones.

P
2 ‘ 3
!
—_—t B ——
|
1 l 4
0 >

Figure 1. Cycle p — v diagram.

[
Figure 2. Cycle T — s diagram.

According to the state equation of ideal gas, one has
v3/vy = T3/ T> @

vg/v1 =Ty/Th = v3/02 2
The expansion ratio of the RC is defined as v = v3/vp, and the cycle tempera-

ture ratio (TR) is defined as T = T3/7T;. The following equations can be obtained from
Equations (1) and (2):

I3 =T, 3)
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Ty =T 4
T =1T/y ®)
The heat absorption rate of the WF is
Qi = 1[Cy(To — T1)+Cp(T3 — T) ] (6)
The heat release rate of the WF is
Qout = 111[Co(T3 — Ta)+Cp(Ts — T1) ] )

where m is the mass flow rate of the WF, and Cp and Cy are the SHs at constant pressure
and constant volume, respectively.

There is no loss in the ideal RC, but for the actual RC, it is necessary to consider the
heat transfer loss between the WF and the external cylinder wall because the cylinder wall is
not adiabatic, and the large temperature difference between the high-temperature WF and
the outside makes this heat transfer loss not negligible. According to [63,64], it is assumed
that the heat transfer loss through the cylinder wall is proportional to the temperature
difference between the average temperature of the WF and the ambient temperature, and
the heat transfer loss rate can be expressed as

. B
Qreak = (M1 + T+ T3 — 3T0)§ = (Th+ To+ T3 — 3Ty) By ®)

where Tj is the ambient temperature, and B = 3B is the heat transfer loss coefficient
between the external cylinder wall and the WE.

For the irreversible RC, it is also necessary to consider the friction loss between the
piston and the cylinder wall. According to [65], the POW consumed by friction loss can be

written as
d Wﬂ

Pu= "

where y is the friction loss coefficient.

The average piston speed can be expressed as
x1—x2  x(y—1)

Aty Aty

where x; and x; are the position of the piston at the maximum and minimum volume, and
Atq; is the time consumed in the power stroke.

Substituting the average piston speed ¥ with v in Equation (9), the cycle POW and

—u(dx/dt)? = —puv? )

7= (10)

TEF can be obtained as
P = Qi — Qout — Py = M(Cp —Co)(y —=1)(To = T1) — b(y — 1)2 (11)
go P (Cp = Co) (v = 1)(T2 = ) — by~ 1)? 12)

Qin+ Qpoar (T3 = T2)Cp + (T2 — T1)Co] + By (Ty + T2 + T3 — 3Ty)
where b = u(xp/Atpp)%.
According to the definition of PD in [34], the PD of the RC is
i(Cp — Co) (7 — 1)(Tp — Ty) — b(y —1)?

p_ P _ PG C)y =T T) ~b(y 1) W)

LN 1 !
According to [35], the expressions of standardized dimensionless PD and dimension-
less POW are written as

ﬁd = Pd/(Pd)max (14)
p = P/Pmax (15)
According to the definition of effective power (ng) in [27,28], the Wep of the RC is

[(Cp — Co) (7 — 1)(Ta = Ty) —b(y — 1))

W, = P17 = — (16)
¥ 1 m[(T3 — To)Cp + (T — T1)Co| + B1(Th + T + T3 — 3Tp)
According to [30], the expression of the dimensionless W, is written as
Wep = Wep/ (Wep) o (17)
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When v, Ty, 7, and Tj are given, the temperatures of each state point in the cycle can
be calculated, and then the cycle POW, TEE, PD, and effective power can be obtained by
substituting the calculation results into Equations (11)—(13) and (16).

3. Power Density and Effective Power Performance Analyses

According to [22,24,63-65], the parameters are as follows: C, = 29.092 J/(mol - K),
Cp, =20.78]/(mol - K), v =1.0 ~ 10.0, Tp= 300K, 1= 350K, T =42 ~ 6.2,b =325W,
B =22W/K, and m= 1 mol/s.

3.1. Power Density Performance Analysis

Figure 3 shows the relationships between the maximum specific volume ratio (v4/v1)
and 7 under the conditions of Pmax and (Fd)max' It can be seen from the figure that, at
the same TR (7), the (v4/v1)p corresponding to Pray is always bigger than the (v4/v; )5,
corresponding to (Py) .- When T1is 6.2, (v4/v1)p is 2.451, and (v4/ 01)p, is 1.717, which
decreases by about 29.95%, which means that the size of the heat engine is smaller when it
works at the maximum PD point.

28

B=22W/K

b=32.5W
24+

()

Vy/v,

20 F

Figure 3. Relation between v4 /v and 7.

Figure 4 shows the relationships between the maximum pressure ratio (p3/p1) and T
under the conditions of Pmax and (Py),,- It can be seen from the figure that the (p3/p1)p
corresponding to Pmax is always less than the (p3/p1)p, corresponding to (Pg)ay- When
Tis 6.2, (p3/p1)pis 2.53, and (pg/pl)ﬁd is 3.61, which increases by about 42.69%, which
means that although the heat engine has a smaller size under the condition of maximum

PD, it is accompanied by a larger pressure ratio.

42

B=22W/K
b=32.5W

(P3P,

Y2y

241 (psp)p

Figure 4. Relation between p3/p; and 7.
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Figure 5 shows the relationships between the TEF versus T under the conditions of
Prax and (Py),,y- It can be seen from the figure that the 55 corresponding to Pax is
always bigger than the 7p corresponding to (Pg)max- When T is 6.2, 175 is 0.1269, and P,
is 0.1144, which decreases by about 9.8%.

0.14
0.12
~ 010F U
I],—,
0.08 +
B=22W/K
0.06 |- b=32.5W
004 1 1 1 1

Figure 5. Relation between # and .

According to Figures 3 and 5, when 7 is 6.2, 775, decreases by 9.8% compared with 75,
and the TEF decreases slightly. However, (v4/v4 )pd decreases by 28.95% compared with
(v4/v1)p, and vy /v decreases greatly. This shows that when taking the maximum PD as
the goal, although part of the TEF of the heat engine is sacrificed, the size of the heat engine
decreases greatly.

3.2. Efficient Power Performance Analysis

Figure 6 shows the relationships of W, — v and W,, — 1 when T = 6.2. When 7 = 6.2,
the dimensionless POW corresponding to the (W,p) - is 0.9990, the TEF corresponding
to (W3P>max is 0.1273, and the TEF corresponding to Pmax is 0.1269. Compared with the

maximum POW condition point, the POW corresponding to the (W) __ decreases by

— max
0.1%, and the TEF corresponding to the (W,p) _ increases by 0.32%. Therefore, when the
W, is taken as the objective function, the cycle TEF can increase with sacrificing part of the
POW, and the W), reflects the compromise between the POW and TEF.

1.0

i
W/
(A
/
w 71
0.8 77
/7y
, _
/7 W/
I /
~ ost | e P
- /.,
g ’
N /0
/
04 / //
’
///
s 7=6.2
02 /07 b=32.5W
7.
Piad B=22W/K
.z
0.0 /’;/n L 1 L
.0

10,00 0.03 0.06 0.09 0.12 0.15
n

Figure 6. Relations of W, — 7 and P — 5 when 7 = 6.2.
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4. Multi-Objective Optimization

In this section, the 7 is used as the optimization variable; the Py, P, 77, and W,
are taken as the optimization goals; and the irreversible RC is optimized by using the
“gamultiobj” algorithm that comes from the MATLAB software. Then, the corresponding
Pareto frontiers are obtained, and the optimal solutions can be picked out by applying
three decision-making methods of LINMAP, TOPSIS, and Shannon Entropy. Then, the
three results obtained are compared.

Several MOO problems will arise when solving different combinations of optimization
objectives.

Any combination of two objective functions can obtain six two-objective optimization
expressions:

P(y) { P(y) { _P(y) { () { () { Py(y)
max{ () ,max B(y) ,max Wep(7) ,max Py(y) ,max ng('y) ,max Wep(7) (18)
Any combination of three objective functions can obtain four three-objective optimiza-
tion expressions:

P(7) P(7) P(y) 1(7)
max{ () max{ y(7) max{ Py(y) ,max{ Py(y) (19)
Py(y) Wep (7) Wep (7) Wep('?)

Any combination of four objective functions can obtain one four-objective optimization
expression:
Py()
Py(7)
()
Wep (')’)

Figure 7 shows the complete process of NSGA-II [47]. Compared with the previous
generation MOO evolutionary algorithm NSGA, the NSGA-II mainly makes the following
three improvements:

max (20)

(1) A new algorithm for fast non-dominant sorting is added, which greatly reduces the
computational complexity.

(2) Elite strategy is introduced, and a new population is formed which is composed
of two populations, the parent and the offspring populations, selecting superior
individuals in the new population instead of selecting only in the offspring population,
which not only expands the range of options but also reduces the selection loss of
excellent individuals in the parent population

(3) Canceling the artificial designation of the shared parameters, which has been replaced
by the congestion degree and the congestion degree comparison operator.

Table 1 lists the optimal solutions obtained by four-objective, three-objective, two-objective,
and one-objective optimizations. The deviation index indicates the degree of deviation
between the optimization result and the positive ideal point; the smaller the deviation index
is, the closer the obtained optimization result is to the positive ideal point. Comparing the
results of four-objective, three-objective, two-objective, and one-objective optimizations
listed in Table 1, it can be found that when the MOO of P, P;, and ng is performed, the
deviation index under the TOPSIS method is the minimum, which means that its result is
the best, and the MOO solution is better than the single-objective optimal solutions.

Figures 8-13 show the Pareto optimal frontiers obtained by taking two objectives
(P—n,P—Py, P—Wep, 1 — Py, 11 — Wep, Py — Wep) as the optimization goals. It can be
seen from the curves that as P increases, 7, P4, and ng will decrease; as 1 increases, Py
and Wep will decrease; and as Wep increases, P; will decrease. Comparing the results of
the two-objective optimizations in Table 1, it can be found that when the MOO of P; and
ng is performed, the deviation index under the TOPSIS method is the minimum.
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Figure 7. Flow chart of NSGA-IIL.
Table 1. The optimal solutions obtained by single, double, triple, and quadruple objective optimizations.
L. Optlr.mzatlon Optimization Objectives Deviation
Optimization . Variable Index
Solutions
Methods - - -
% P ] P, Wep D
Quadruple objective LINMAP 2.0893 0.9699 0.1260 0.9612 0.9379 0.2355
__ optimization TOPSIS 2.1115 0.9738 0.1263 0.9672 0.9317 0.2350
(P, 11, Pg,and Wep) Shannon Entropy 1.7170 0.8499 0.1144 0.7645 1 0.6142
Triple objective LINMAP 2.0357 0.9594 0.1252 0.9443 0.9521 0.2543
optimization TOPSIS 2.0357 0.9594 0.1252 0.9443 0.9521 0.2543
(P,n,and Py) Shannon Entropy 1.7170 0.8499 0.1144 0.7645 1 0.6142
Triple objective LINMAP 2.3800 0.9990 0.1273 0.9999 0.8480 0.3519
optimization TOPSIS 2.3800 0.9990 0.1273 0.9999 0.8480 0.3519
(P,17,and Wep) Shannon Entropy 2.3802 0.9990 0.1273 1 0.8479 0.3520
Triple objective LINMAP 2.0965 0.97124 0.1261 0.9632 0.9359 0.2349
_optimization TOPSIS 2.1077 0.9732 0.1263 0.9662 0.9328 0.2348
(P, Py, and Wep) Shannon Entropy 1.7170 0.8499 0.1144 0.7645 1 0.6142
Triple objective LINMAP 2.0725 0.9668 0.1258 0.9562 0.9425 0.2385
optimization TOPSIS 2.0963 0.9712 0.12610 0.9631 0.9360 0.2349
(11, Pg, and Wep) Shannon Entropy 1.7170 0.8499 0.1144 0.7645 1 0.6142
Double objective LINMAP 2.3795 0.9990 0.1273 0.9999 0.8481 0.3516
optimization TOPSIS 2.3795 0.9990 0.1273 0.9999 0.8481 0.3516
(P and %) Shannon Entropy 2.3074 0.9957 0.1274 0.9978 0.8718 0.3174
Double objective LINMAP 2.0107 0.9538 0.1247 0.9352 0.9583 0.2719
optimization TOPSIS 2.0034 0.9521 0.1245 0.9324 0.9600 0.2781
(Pand Py) Shannon Entropy 1.7170 0.8499 0.1144 0.7645 1 0.6142
Double objective LINMAP 2.4074 0.9996 0.1272 0.9997 0.8389 0.3657
optimization TOPSIS 2.4061 1 0.1268 0.9975 0.8209 0.3923
(P and W,p) Shannon Entropy 2.3802 0.9990 0.1273 1 0.8479 0.3520
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Table 1. Cont.

L. Opt11?11zat10n Optimization Objectives Deviation
Optlleathl’l . Variable Index
Solutions
Methods - - -
% P 1 P, Wep D
Double objective LINMAP 1.9519 0.9388 0.1234 0.9107 0.9717 0.3313
optimization TOPSIS 1.9453 0.9370 0.1232 0.9077 0.9731 0.3391
(7 and Pj) Shannon Entropy 1.7170 0.8499 0.1144 0.7645 1 0.6142
Double objective LINMAP 2.3529 0.9980 0.1274 0.9997 0.8569 0.3381
optimization TOPSIS 2.3538 0.9981 0.1274 0.9997 0.8566 0.3385
(17 and Wep) Shannon Entropy 2.3802 0.9990 0.1273 1 0.8479 0.3520
Double objective LINMAP 2.0657 0.9655 0.1257 0.9542 0.9443 0.2405
optimization TOPSIS 2.0825 0.9687 0.1259 0.9592 0.9397 0.2364
(Pg and Wp) Shannon Entropy 1.7170 0.8499 0.1144 0.7645 1 0.6142
Maximum P 2.4061 1 0.1268 0.9975 0.8209 0.3923
Maximum e 2.3529 0.9980 0.1274 0.9997 0.8569 0.3381
Maximum P, e 2.3802 0.9990 0.1273 1 0.8479 0.3520
Maximum Wep 1.7170 0.8499 0.1144 0.7645 1 0.6142
Positive ideal point —_— —_— 1 0.1274 1 1 —
Negative ideal point — — 0.8499 0.1144 0.7645 0.8244 —
0.1275
[}
0.1274 |
0.1273 F *
0.0272 F
N
0.1271 1 Pareto frontier
@ LINMAP or TOPSIS method
01270 | B Shannon Entropy method
0.1269 F

0.995

0.996 0.997 0.998 0.999

P

1.000

Figure 8. Two-objective optimization on P — 7.

1.00 n
097
>
0.94
Pareto frontier
091 F
S P LINMAP method
<« TOPSIS method

0.88 L B Shannon Entropy method

0.85

0.82

1 1 1 1 1 1
0.85 0.88 091 0.94 0.97 1.00

P

Figure 9. Two-objective optimization on P — P,;.



Entropy 2021, 23, 1203

10 of 18
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09985
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Pareto frontier
A LINMAP method
vV TOPSIS method
B Shannon Entropy method

0.9990 09992 09994 09996  0.9998

P

1.0000

Figure 10. Two-objective optimization on P — W,p,.

100F m
0.98
)
0.96
0.94 +
o
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P LINMAP method

« TOPSIS method
050 - B Shannon Entropy method
0.88
086 | 1 L | L | L 1

0.114 0.117 0.120 0.123 0.126

n
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Figure 11. Two-objective optimization on 77 — Py.
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Figure 12. Two-objective optimization on 77 — Wep.
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097

<&

0.94

091 | Pareto frontier

A LINMAP method
TOPSIS method
Shannon Entropy method

<

0.88

0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00

ep

Figure 13. Two-objective optimization on P, — Wep.

Figures 14-17 show the Pareto optimal frontiers obtained by taking three objectives
(P—n =Py, P—1—Wep, P— Py — W,p, 1 — Py — W,p) as the optimization goals. It can
be seen from the curves that as P and # increase, P; will decrease; as P increases and 7
decreases, Wep will first increase and then decrease; as P and Wep increase, P; will decrease;
and as 17 and W,,, increase, P; will decrease. Comparing the results of the three-objective
optimizations in Table 1, it can be found that when the MOO of P, Fd, and Wep is performed,
the deviation index under the TOPSIS method is the minimum.

100 — W6 s@e e I
L] .-.. . ‘
S, ~ \
0.97
|
\ |
094 N\ [
\ |
o
< 091 . A [
% ® Pareto frontier ° |
@ LINMAP or TOPSIS method ‘ ‘
088 Shannon Entropy method “
T l |

Figure 14. Three-objective optimization on P — 7 — P;.

1.0000

0.9995

Pareto frontier
B LINMAPO
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Figure 17. Three-objective optimization on 77 — Py — W,p.

Figure 18 shows the Pareto optimal frontier obtained by taking P, Py, 77, and W, of the
RC as the optimization goals. In this figure, the positive ideal point in the figure means that
P4, P, 1, and W, can all reach the maximum, and the negative ideal point means that P, P,
11, and W, can all reach the minimum. It can be seen from the figure that both the positive
and negative ideal points are all located outside the Pareto frontier, so there is no optimal vy
which makes Py, P, 17, and W, all reach the maximum or minimum. Additionally, for the
four-objective optimization, the optimization result obtained by using the TOPSIS method
has a larger D, 1, and Wep, while the Shannon Entropy decision method has a larger ﬁd ;in
other words, the corresponding heat engine size is smaller. Comparing the results of the
four-objective optimizations in Table 1, it can be found that the deviation index under the
TOPSIS method is the minimum.

Figures 19 and 20 show the average distance and average spread versus generations
for two different multi-objective optimizations. It can be seen from the figures that the
genetic algorithm stops when convergence is attained, and it can be observed that this
occurs at 626 and 666 generations for the four-objective optimization and three-objective
optimization on P, Py, and W,.
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Figure 18. Pareto frontier corresponding to four-objective optimization.
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Figure 19. Average distance and average spread versus number of generations (four-objective optimization). (a) Average
distance versus number of generations (four-objective optimization). (b) Average spread versus number of generations
(four-objective optimization).
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Figure 20. Average distance and average spread versus number of generations (three-objective optimization on P, P, and
Wep). (a) Average distance versus number of generations (three-objective optimization on P, P, and Wep). (b) Average
spread versus number of generations (three-objective optimization on P, P, and ng).

5. Conclusions

Based on the established irreversible RC model, the analytical expressions of cycle PD
and effective power are obtained, and the performance comparisons of the cycle under
the conditions of the maximum PD, maximum effective power, and maximum POW are
compared. The four objectives of the dimensionless POW, TEF, dimensionless PD, and
dimensionless effective power are optimized, and the optimal solutions of four-objective,
three-objective, and two-objective optimizations are compared. The results show that:

(1) Compared with the maximum POW condition, although part of the TEF is sacrificed
when the heat engine works under the maximum PD condition, the heat engine’s size
reduces greatly, which has certain guidance for the actual design of the heat engine.

(2) Compared with the maximum POW condition, the TEF is higher when the cycle
works under the maximum effective power condition, the TEF can increase with
sacrificing part of the POW under the maximum effective power condition, and the
effective power reflects the compromise between the POW and TEF.

(3) Comparing the results of four-objective, three-objective, two-objective, and one-
objective optimizations, when MOO is performed on dimensionless POW, dimension-
less PD, and dimensionless effective power, the deviation index obtained from the
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TOPSIS decision-making method is the smallest value. At this time, the deviation
index is 0.2348, and the optimal compression ratio is 2.1077, which means that the
result is the best, and the multi-objective optimization solution is better than the single
objective optimal solutions.
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Nomenclature

B Heat transfer loss coefficient (W /K)

Cy Specific heat at constant pressure (J/(mol - K))
Co Specific heat at constant volume (J/ (mol - K))
P Power output (W)

Py Power density (W/ m3)

Q Heat transfer rate (W)

T Temperature (K)

Wep Efficient power (W)

Greek symbols

v Compression ratio (-)

n Thermal efficiency (-)

H Friction coefficient (kg/s)

T Temperature ratio (-)

Subscripts

in Input

leak Heat leak

out Output

P Max dimensionless power output condition
Py Max dimensionless power density condition
Wep Max dimensionless effective power condition
U Influence of friction loss

1-4 Cycle state points

Superscripts

- Dimensionless

Abbreviations

MOO  Multi-objective optimization
PD Power density

POW  Power output

RC Rectangular cycle

SH Specific heat

TEF Thermal efficiency

TR Temperature ratio

WEF Working fluid
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