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Abstract

COREGNET is an R/Bioconductor package to analyze large-scale transcriptomic data by highlighting

sets of co-regulators. Based on a transcriptomic dataset, COREGNET can be used to: reconstruct a

large-scale co-regulatory network, integrate regulation evidences such as transcription factor

binding sites and ChIP data, estimate sample-specific regulator activity, identify cooperative

transcription factors and analyze the sample-specific combinations of active regulators through an

interactive visualization tool. In this study COREGNET was used to identify driver regulators of

bladder cancer.

Availability: COREGNET is available at http://bioconductor.org/packages/CoRegNet

Contact: remy.nicolle@issb.genopole.fr or mohamed.elati@issb.genopole.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in genomics enabled the profiling of thousands of

tumors by large consortia and individual laboratories. While the

amount of data holds great promise for our understanding of

tumorigenesis, these datasets necessitate efficient methodologies to

extract valuable knowledge from them.

Transcriptomics is the most commonly available type of tumor

large-scale data. The transcriptome reflects the genetic, epigenetic

and environmental states of a tumor tissue and determines a great

extent the phenotype of cells. Therefore, one of the first step to-

wards the construction of a mechanistic model underlying cancer is

the identification of the sets of transcription factors (TF) that ac-

tively maintain a malignant phenotype. This requires methodologies

to model the tissue specificity of gene regulation by inferring trustful

context-specific networks. More importantly, these models must

take into account the complexity of mammalian gene regulation

often involving the coordinated action of several TF (Panne, 2008).

To identify tumor-driving active regulatory circuits, we propose

a Bioconductor (Huber et al., 2015) package named COREGNET to

(i) reconstruct a large-scale co-regulatory network from gene expres-

sion data and by integrating additional regulatory evidences such as

TF Binding site and ChIP data, (ii) estimate the activity of each TF

of the network in any given sample, (iii) predict sets of cooperative

TF and (iv) identify sample-specific combination of active and driver

TF using an interactive visualization tool integrating genomic aber-

rations. The proposed methods can be used as independent modules

with alternative inputs such as networks inferred by other methods,

experimentally defined networks or a different transcriptomic data

for TF activity prediction and visualization (e.g. cell lines of same

tissue). The following sections outline the functions of the

COREGNET package and its application to the characterization of the

driver regulators of bladder cancer subtypes.

2 The COREGNET application

Each following sections are detailed in the Supplementary

Information file and the workflow is illustrated in Figure 1.

2.1 Regulatory network inference and refinement
To reconstruct a large-scale regulatory network from gene expres-

sion data, the COREGNET package implements the H-LICORN algo-

rithm (Chebil et al., 2014; Elati et al., 2007). Compared to current

methods, H-LICORN focuses on the identification of cooperative regu-

lators of genes. It was proven to have comparable TF-gene pairs
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prediction performance with state of the art methods in synthetic

and Human datasets (Chebil et al., 2014) and to retrieve more plaus-

ible cooperative TF pairs in yeast (Elati et al., 2007, Lai et al., 2014)

and Human datasets (see Supplementary Information). To obtain a

trustful network, regulatory and co-regulatory interactions can be

integrated as additional evidences. These can include any type of

TF–gene interaction data to support regulatory interactions (e.g.

ChIP-seq, TF binding site) and TF–TF interaction data to support

cooperative interactions (e.g. protein interactions). The inferred net-

work can then be refined by selecting a subset of the network that is

enriched in these external regulatory and co-regulatory evidences

using an integrative selection algorithm (Marbach et al., 2012).

2.2 Transcription factor influence
COREGNET implements a function to estimate the activity of a TF in

a given sample. This is based on a measure of transcriptional influ-

ence, which was shown to provide a transformed view of the tran-

scriptome in which classification algorithms are more robust

(Nicolle et al., 2012). Based on a comparison of the expression of

the activated and the repressed targets of a regulator, the influence is

computed in a sample-specific manner (details in Supplementary

Information). Robustness of the measure was tested by correlating

for each TF the influence using the original network and using a par-

tially permuted version of the network with increasing levels of

noise. The same was done by correlating the influence on the sub-

parts of the network that are validated by regulatory evidences. In

all comparisons, the influence was significantly more robust and

consistent with the validated network (e.g. 97% correlation with

20% of noise, 96% for the ChIP validated network) than the other

measures of TF activity that were tested (e.g. 75% with 20% of

noise and 72% ChIP validation for network component analysis,

details and reference in Supplementary Information). Furthermore,

the influence predicts well the activity of a TF in samples in which it

was activated at the protein level by a chemical agonist (details in

Supplementary Information).

2.3 Constructing a network of cooperative TF
To model the active transcriptional programs, a co-regulation net-

work is built by setting an edge between two significantly coopera-

tive TF (details in Supplementary Information). The relevance of

using the H-LICORN algorithm to directly infer a cooperative network

is shown by the higher enrichment of the predicted co-regulators in

experimentally validated and independently predicted protein

interactions (AUPR: 14% for COREGNET, 6% max. among the four

tested algorithms, see Supplementary Information).

2.4 Integrative visualization of transcriptional activity
Transcriptomes are summarized by the influence of the regulators on

the expression of their target genes in the analyzed samples. This ab-

straction of the transcriptomes through TF activity reduces the num-

ber of features thereby simplifying the visualization of the dataset.

Moreover, the co-regulation network unravels the combination of TF

at work in the studied samples. Thus, an interactive visualization tool

is embedded in the COREGNET package to analyze several layers of in-

formation through the sets of active co-regulators. The co-regulation

network is accessible through a Cytoscape (Shannon et al., 2003)

widget with functionalities to display sets of active co-regulators in

particular samples or subtypes (examples in Fig. 1 and in

Supplementary Information).

2.5 Implementation and availability
COREGNET is an R package implementing a Shiny (Winston et al.,

2015) and Cytoscape javascript applet for visualization. The net-

work inference method is implemented in C and can be parallelized.

The package is available as a Supplementary File or through the

Bioconductor repository.

3 Case study

The COREGNET package was used to analyze a set of bladder cancer

samples for which both transcriptome and genomic alterations were

available (Biton et al., 2014, Rebouissou et al., 2014). The inferred

network was used to estimate the influence of regulators and the visu-

alization tool to identify active sets of master regulators for each blad-

der cancer subtype. In line with previous studies (Biton et al., 2014;

Choi et al., 2014), PPARc was found to be the most active TF in the

luminal bladder cancer TCGA subgroup I. Association with genomic

alteration suggesting PPARc to be a major driver of these tumors (see

Supplementary Information), which has been recently validated ex-

perimentally (Biton et al., 2014). Moreover, FOXA1, an effector of

PPARc (Varley et al., 2008) and a co-factor of GATA3 in luminal

breast cancer (Kong et al., 2011), is a significant co-regulator of both

GATA3 and PPARc in the inferred network.
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Fig. 1. Analysis using the COREGNET package. (a) A set of methods can be used to construct a network of cooperative TF from transcriptomic data using the

H-LICORN algorithm and by integrating regulatory evidences. (b) A Shiny/Cytoscape web application is available to visually analyze the network and the data-

sets. (c) A dynamic heatmap shows the influence of all or only a selection of TF in all samples. (d) The view of the co-regulation network reflects the activity of

each TF in the selected samples or sample subtype. (e) Copy number aberration (CNA) of TF can be integrated and will first display as a pie graph showing

the proportion of each alteration status in either all samples or in the selected subtype. The selection of a single TF will display a multi-layer heatmap to visualize

the relationship between sample phenotype and TF expression, activity and CNA
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