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Abstract

Theevolutionanddiversificationof cell types is akeymeansbywhichanimal complexity evolves. Recently, hierarchical clusteringand

phylogeneticmethodshavebeenapplied toRNA-seqdata to infer cell typeevolutionaryhistoryandhomology.Amajor challenge for

interpreting thisdata is thatcell type transcriptomesmaynotevolve independentlydue tocorrelatedchanges ingeneexpression.This

nonindependencecanarise for several reasons, suchascommonregulatory sequences forgenesexpressed inmultiple tissues, that is,

pleiotropic effects of mutations. We develop a model to estimate the level of correlated transcriptome evolution (LCE) and apply it to

different data sets. The results reveal pervasive correlated transcriptome evolution among different cell and tissue types. In general,

tissues related by morphology or developmental lineage exhibit higher LCE than more distantly related tissues. Analyzing new

data collected from bird skin appendages suggests that LCE decreases with the phylogenetic age of tissues compared, with recently

evolved tissues exhibiting the highest LCE. Furthermore, we show correlated evolution can alter patterns of hierarchical clustering,

causing different tissue types from the same species to cluster together. To identify genes that most strongly contribute to the

correlated evolution signal, we performed a gene-wise estimation of LCE on a data set with ten species. Removing genes with high

LCE allows for accurate reconstruction of evolutionary relationships among tissue types. Our study provides a statistical method to

measure and account for correlated gene expression evolution when interpreting comparative transcriptome data.
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Introduction

Complex organisms, such as birds and mammals, generally

have a much higher number of cell types than anatomically

“simple” organisms, like sponges and Trichoplax. For exam-

ple, there are >400 cell types recognized in humans

(Vickaryous and Hall 2006). In contrast, Trichoplax, the

morphologically simplest free-living animal, has five to six

cell types (Grell and Ruthmann 1991; Syed and Schierwater

2002), and in sponges only �10–18 cell types have been

recognized (Simpson 1984; Valentine et al. 1994;

Ereskovsky 2010). Viewed through the lens of animal phylog-

eny, this observation suggests that animal complexity
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increased, in part, via the evolution of new cell types (Arendt

2008; Wagner 2014; Arendt et al. 2016). Thus, understand-

ing the evolution of animal complexity requires investigating

cell type evolutionary history and homology.

A promising approach for inferring cell or tissue type ho-

mology and evolutionary history is the use of hierarchical clus-

tering or phylogenetic methods with RNA-seq data to

reconstruct cell type trees (fig. 1A and B; we used cell types

and tissue types interchangeably in this figure, to represent

the samples that were frequently collected in comparative

RNA-seq studies) (Pu and Brady 2010; Wang et al. 2011;

Pankey et al. 2014; Tschopp et al. 2014; Achim et al. 2015;

Kin et al. 2015; Musser and Wagner 2015). These are analo-

gous to a gene or species trees, but depict relationships

among different cell or tissue types. Homologous cell and

tissue types are expected to be more closely related to each

other than to other tissues (fig. 1A and B). This pattern has

been observed in analyses of mature tissues with distinct func-

tions (Brawand et al. 2011; Merkin et al. 2012; Sudmant et al.

2015). However, the opposite pattern has also been docu-

mented (Pankey et al. 2014; Tschopp et al. 2014), in which

distinct cell/tissue types cluster according to species of origin,

rather than by homology, even when the tissue types are

phylogenetically older than the species (fig. 1C). Recent anal-

yses of this phenomenon have suggested the clustering pat-

tern is related to both tissue similarity and the divergence

times between the species under comparison (Sudmant

et al. 2015; Gu 2016). However, how and why these factors

are related to the shape of reconstructed trees are currently

unclear.

Phylogenetic inference using tree-building methods

assumes that the individuals under comparison (in this case

cell or tissue types) evolve independently of each other, thus

forming distinct historical lineages. Cell and tissue types main-

tain distinct gene expression programs, and thus may evolve

cell and tissue specific gene expression independently.

However, many RNA-seq studies find that most genes are

not uniquely expressed in a single cell or tissue type. For in-

stance, different neuronal cell types express synaptic genes

(Sieburth et al. 2005; Ruvinsky et al. 2007; Stefanakis et al.

2015), different muscle cell types share expression of contrac-

tile genes (Steinmetz et al. 2012; Brunet et al. 2016), and all

tissues employ “housekeeping genes” (Eisenberg and

Levanon 2013). Thus, it is likely that some evolutionary

changes will alter the expression of some genes simulta-

neously across multiple tissues, resulting in correlated patterns

of gene expression evolution. This has the potential to influ-

ence the relationships inferred in cell type trees by generating

similarities among cell types from the same species, causing

them to cluster by species, rather than homologous tissue

type (fig. 1B and C) (Musser and Wagner 2015). Correlated

evolution of gene expression was recently shown to be im-

portant in understanding transcriptome structure using phy-

logenetic networks (Gu et al. 2017).

To address the issue discussed earlier, the level of correlated

gene expression (transcriptome) evolution (LCE), and its influ-

ence on tree reconstruction, needs to be evaluated.

Estimating correlations among quantitative phenotypic traits

along a known phylogeny has been extensively studied

(Felsenstein 1985; Felsenstein 1988; Martins and Garland

1991; Pagel 1994; Diaz-Uriarte and Garland 1996;

Felsenstein 2004; Pagel and Meade 2006). These approaches

analyze the evolution of a few traits over a large number of

species. In contrast, transcriptomic studies deal with many

traits (expression levels of genes or transcripts) over compar-

atively fewer species, where traditional methods do not di-

rectly apply. For this reason, we focus on estimating the

average correlation over all genes to obtain an estimate for

the overall strength of correlated evolution affecting

transcriptomes.

FIG. 1.—Correlated evolution of cell transcriptomes. (A) Cell type history embedded within species history. Cell types A and B originate from ancestral

cell type O prior to split of species 1 and 2. Cell type lineages show homology relationships for the two cell types in the descendant species (subscripts indicate

species). (B) Cell type history without species phylogeny illustrates cell type homology. Gray squiggly lines indicate nonindependence of transcriptome

change. Correlated transcriptome evolution leads to an increase of transcriptome similarities in cell types of the same species relative to their homologous

counterparts in other species. (C) Correlated evolution causes the accumulation of species-specific gene expression similarities between tissues in the same

organism, potentially resulting in different tissues within a species being more similar to each other than to their homologous counterparts in another species.
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In this study, we propose a statistical method to measure

LCE by incorporating a parameter for correlated evolution in

both Brownian and Ornstein–Uhlenbeck (OU) models of gene

expression evolution. Using simulations of gene expression

evolution, we show that our method accurately estimates

the level of correlated evolution among transcriptomes.

Applying this method to published data, we find that corre-

lated evolution is pervasive, and varies in accordance with

developmental and evolutionary relatedness. We show that

tissues of more recent origin display higher LCE compared

with more distantly related tissues, suggesting that the evo-

lutionary independence, or transcriptomic individuation, of

tissues may increase over time. Further, a theoretical study

of our stochastic model of gene expression reveals how LCE

and species divergence time influence transcriptome similari-

ties, and thus affect the hierarchical clustering patterns. Using

a data set with sufficient species sampling, we quantify LCE

for individual genes. By excluding genes with high LCE, we

were able to reconstruct trees that recover expected patterns

of tissue type homology.

Materials and Methods

Publicly Available Transcriptome Data Processing

Transcript read counts in Merkin et al. (2012) were down-

loaded from GSE41637 (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc¼GSE41637; last accessed January 25,

2018). Nine tissues (brain, colon, heart, kidney, liver, lung,

muscle, spleen, and testes) in five species (chicken, cow,

mouse, rat, and rhesus macaque) are profiled in this work.

We followed methods in Merkin et al. (2012) to map each

transcript to respective genomes (musmus9, rhemac2, rat-

nor4, bostau4, galgal3) and extract FPKM values for each

gene. We then normalized FPKM to TPM (Transcript per mil-

lion mapped transcripts) by the sum (Wagner et al. 2012).

Normalized gene expression RPKM from Brawand et al.

(2011) was downloaded from the supplementary tables of

the original publication. According to Brawand et al., RPKM

were normalized using the median value of the most con-

served a thousand genes among samples. Six tissues (cerebel-

lum, brain without cerebellum, heart, kidney, liver, and testis)

in nine mammalian species and chicken are profiled in this

work.

Transcript read counts from Tschopp et al. (2014) was down-

loaded from GSE60373 (http://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc¼GSE60373; last accessed January 25,

2018). Tail bud, forelimb bud, hindlimb bud, and genital bud

in early development stage from mouse and anolis were profiled

in this work. Read counts were also normalized to TPM values.

Skin Appendage at Placode Stage Transcriptome Data

To collect skin appendage placode transcriptome data, we

dissected developing skin from embryos of single comb white

leghorn chicken and emu. Fertile chicken eggs, obtained from

the University of Connecticut Poultry Farm, and emu eggs,

obtained from Songline Emu Farm in Gill, MA, were incu-

bated in a standard egg incubator at 37.8 and 35.5 �C, re-

spectively. Skin appendages in birds develop at different times

across the embryo. We dissected embryonic placode skin

from dorsal tract feathers between Hamburger and

Hamilton (1951; H&H) stages 33 and 34, asymmetric (scutate)

scales from the dorsal hindlimb tarsometatarsus at H&H stage

37, symmetric (reticulate) scales from the hindlimb ventral

metatarsal footpad at H&H stage 39, and claws from the

tips of the hindlimb digits at H&H stage 36. Dissected skin

was treated with 10 mg/ml dispase for�12 h at 4 �C to allow

for complete separation of epidermis and dermis. RNA was

extracted from epidermal tissue using a Qiagen Rneasy kit.

Stand-specific polyadenylated RNA libraries were prepared for

sequencing by the Yale Center for Genome Analysis using an

in-house protocol. For each individual tissue sample, we se-

quenced �50 million reads (one-quarter of a lane) on an

Illumina Hiseq 2000. We sequenced two biological replicates

for each tissue, with the exception of emu symmetric scales

and claws, for which we were only able to obtain one repli-

cate due to limitations in the number of eggs we could

acquire.

Reads were mapped to the respective species genome

available at the time: WASHUC2 for chicken (Ensembl release

68 downloaded October 4, 2012) and a preliminary version of

the Emu genome generated by the laboratory of Allan Baker

at the Royal Ontario Museum and University of Toronto

(mapped on December 5, 2012). Reads were mapped with

Tophat2 v2.0.6 using the –GTF option. Mapped reads were

assigned to genes using the program HTSeq, requiring that

reads map to the correct strand, and using the “intersection-

nonempty” option for dealing with reads that mapped to

more than one feature.

Estimating the Level of Correlated Transcriptome Evolution

For all data sets, we calculated TPM (transcripts per million

transcripts) as the measure of gene expression level (Wagner

et al. 2012). We also used normalized RPKM from Brawand

et al. (2011) to compare the effect of different quantification

methods. All transcriptome data were further processed to

facilitate cross-species comparison, with the exception of the

normalized RPKM of Brawand data set which was already

normalized between species using a median-scaling proce-

dure on highly conserved genes. For the other data sets, we

followed the normalization method of Musser and Wagner

(2015), using one-to-one orthologs. We then used the square

root transformation to correct for the heteroscedasticity of

transcriptome data (Musser and Wagner 2015). However,

even after the square root transformation, we found some

very highly expressed genes, such as mitochondrial genes,

that still exhibited high variance relative to other genes.
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These were removed to prevent overestimation of correlated

evolution. Finally, we averaged sqrt(TPM) values across repli-

cates to generate a representative transcriptome for each tis-

sue in each species.

We estimated LCE (̂c) for all combinations of tissue and

species in all data sets by calculating the Pearson correlation of

their contrast vectors. We tested the significance of correlated

evolution by calculating a P value from a null distribution of

randomly permutated gene expression contrast vectors (de-

scribed below). We conducted 1, 000 permutations to gen-

erate a null distribution of the LCE ĉ. Actual estimates of

correlated evolution were considered significantly higher

than expected by chance if they fell in the top 5% of the

null distribution. We conducted ANOVA tests in R to deter-

mine whether correlated evolution values varied depending

on time since the last common ancestor of the species used

for comparisons. The Welch’s t-test was used to determine

whether the mean ĉ values estimated from the Brawand and

Merkin data sets for the same tissue pairs were significantly

different.

One challenge of estimating the permutation P value is that

the degree of freedom would be overestimated using the

whole transcriptome, because gene expression evolution be-

tween genes is not independent (Oakley et al. 2005;

Ghanbarian and Hurst 2015), for instance because genes

can be coregulated by the same transcription factors

(Pavlicev and Widder 2015). Thus, a low P value is always

achieved if a whole transcriptome permutation test is per-

formed. To account for this, we subsampled 50 genes for

each permutation, which represents a lower bound for the

number of independently varying gene clusters identified in

single cell transcriptome data. The lower bound of indepen-

dently varying gene clusters is estimated using the approach

of Wagner et al. (2008). We randomly sampled different sets

of n genes. For each set of n genes, we calculated a correla-

tion matrix using gene expression values from the single-cell

transcriptome data set of Pavlicev et al. (2017). We then cal-

culated the eigenvalues of the correlation matrix, and the

variance of the eigenvalues. According to (Wagner et al.

2008), the effective number of independent genes equals

to n minus the variance of eigenvalues of the correlation ma-

trix. We observed that the variance of eigenvalues is always

<1 when n ¼ 50. That is to say, if we randomly draw 50

genes, their gene expression can be considered as indepen-

dent events. Further, we estimated the theoretical P value for

a cc. Based on the characteristic of Pearson correlation coef-

ficient, the test statistic t ¼ ĉc

ffiffiffiffiffiffiffi
n�2
pffiffiffiffiffiffiffiffiffiffi
1�ĉc

2
p is distributed as a t-distri-

bution with n�2 degrees of freedom. According to the

discussion above, the lower bound of n is 50 for the whole

transcriptome. Thus, we find the minimal cc to get a theoret-

ical P value <0.05 is 0.235 (fig. 4, dashed line).

We estimated the per-gene LCE (ĉi ) using the correlation

between phylogenetic independent contrasts (Felsenstein

1985) for all tissue pairs in the Brawand data set. We tested

its significance using the test statistic ti ¼ ĉi

ffiffiffiffiffiffiffi
n�2
pffiffiffiffiffiffiffiffiffi
1�ĉi

2
p . According

to the property of the sample correlation coefficient, ti is dis-

tributed as a t-distribution with n� 2 degrees of freedom

under the null hypothesis ci ¼ 0. Here, n is the number of

independent contrasts. We calculated the P value of per-gene

LCE using the probability of t > ti under the null hypothesis.

We calculated the FDR and the fraction of genes under the

true null hypothesis (p0, i.e., the proportion of genes do not

have correlated evolution between two tissues) using

Bioconductor package “qvalue” (Benjamini–Hochberg proce-

dure). We performed gene ontology (GO) analysis using

DAVID bioinformatics tools (v6.8).

Results

Stochastic Modeling of Correlated Transcriptome
Evolution

To model correlated transcriptome evolution, we initially con-

sider two cell types, A and B, in two species, 1 and 2 (fig. 1A

and B). We assume that the two cell types are more ancient

than the last common ancestor of species 1 and 2, which we

refer to as species 0. We use vectors A1, A2, B1, B2 to repre-

sent the transcriptome profiles of cell types A and B in species

1 and 2, respectively. Similarly, we use vectors A0, B0 to rep-

resent the unknown transcriptome profiles in species 0. For

each gene i, we model the evolution of its expression level in

the four cell types as a stochastic process:

Xi;t

o
¼ A1;i;t ;A2;i;t ; B1;i;t ; B2;i;t

� �T
onn

(1)

Here, Xi;t ’s are multivariate random variables indexed by

the continuous time variable t, representing the expression

level of gene i in cell types A and B from two species. We

consider the time interval from the speciation event (t ¼ 0) to

present (t ¼ t0). The initial state of the stochastic process

Xi;t

��
is Xi;0 ¼ ðA0;i ;A0;i;B0;i;B0;iÞT . Gene expression values

are only measured at the present time t ¼ t0. We studied the

stochastic process Xi;t

��
with the Brownian model and the

Ornstein–Uhlenbeck (OU) model, and developed an estimator

of LCE (eqs. 6 and 8).

Brownian Model

We first study the case when Xi;t

��
is a Brownian process, a

model for neutral transcriptome evolution. The Brownian

model is adequate when gene expression changes can be

sufficiently explained by random drift (Khaitovich et al.

2004; Yanai et al. 2004; Yang et al. 2017). The accumulated

variances in gene expression are proportional to the diver-

gence time in this model. We describe the multivariate

Brownian process Xi;t

��
with the following stochastic differ-

ential equation:
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dXi;t ¼ S � dDt (2)

Here, Dt ¼ D1;t ;D2;t ;D3;t ;D4;t

� �T
is a vector of four indepen-

dent Brownian processes (Here, we use D for Brownian pro-

cesses to avoid the confusion with cell type B). At time t, they

are independent and identically normally distributed with

mean 0 and variance r2t. r2 is the variance in gene expression

that is expected to accumulate per unit time in each cell type.

LCE is modeled by parameter c in the correlation matrix R of

this process:

R ¼ SST ¼

1 0 c 0

0 1 0 c

c 0 1 0

0 c 0 1

0
BBBBB@

1
CCCCCA (3)

c, ranging in [�1, 1], is the correlation between the gene

expression changes in the two cell types: corrðDA1;i;t ;DB1;i;tÞ
and corrðDA2;i;t;DB2;i;tÞ. If c > 0, cell types A and B will un-

dergo correlated gene expression evolution. We generally ex-

pect that c > 0, although negative correlations are also

mathematically possible. This is because gene expression levels

may change toward the same direction if they are coregulated

in two cell types. On the other hand, if c ¼ 0, gene expression

changes are uncorrelated in tissues A and B, and no correlated

evolution is happening.

We developed a method to estimate LCE parameter c us-

ing data from current time, t ¼ t0. For Brownian models, it is

known that gene expression vector, Xi;t0
¼

A1;i;t0
;A2;i;t0

;B1;i;t0
;B2;i;t0

� �T
, is distributed as a multivariate

normal random vector with mean �X i;t0
¼ A1;i;t¼0;A2;i;t¼0;
�

B1;i;t¼0;B2;i;t¼0ÞT ¼ A0;i ;A0;i;B0;i;B0;i

� �T
, and covariance ma-

trix: r2t0 � R. Its gene expression contrast vector,

Yi;t0
¼ A1;i;t0

� A2;i;t0
;B1;i;t0

� B2;i;t0

� �T
(4)

is a linear transformation of Xi;t0
:

Yi;t0
¼ M � Xi;t0

; where M ¼
1 �1 0 0

0 0 1 �1

 !
(5)

Because a linear transformation of a normally distributed

random variable is still normally distributed, Yi;t0
is distributed

as bivariate normal distribution with mean M�X i;t0
¼ 0; 0ð ÞT

and covariance matrix: M � ðr2t0 � RÞ �MT ¼ 2r2t0

1 c

c 1

 !
,

regardless of the initial state of the Brownian process.

Thus, we find that c is the Pearson correlation

coefficient of the gene expression contrasts between

cell types A and B. As a result, we estimate c using the

correlation coefficient of the observed transcriptome

contrasts:

ĉ ¼ corrðA1 � A2;B1 � B2Þ (6)

Although we assumed a universal parameter c for all genes in

the derivation above, our simulation analysis (see below)

showed that when c varies among genes, ĉ estimated the

average LCE among all genes.

Ornstein–Uhlenbeck Model

We also studied when gene expression evolution is subject to

stabilizing selection (Gilad et al. 2006; Fay and Wittkopp 2008;

BedfordandHartl2009;Metzgeretal. 2017). In this case, Xi;t

��
is a multivariate Ornstein–Uhlenbeck process. This process is de-

scribed by the following stochastic differential equation:

dXi;t ¼ �k Xi;t � li

� �
dt þ S � dDt (7)

Here, S and Dt are defined as the same as in the Brownian

model (eq. 3). k represents the strength of stabilizing selection

and is always positive. (Brownian model is the limiting case

when k ¼ 0.) li ¼ lA;i; lA;i ;lB;i ;lB;i

� �T
is the fitness opti-

mum. For a gene i, gene expression optima are the same in

homologous tissues, whereas they may differ between tissues

in the same species. Assuming that tissues A and B have

evolved long before the speciation event, we study the sta-

tionary solution for the OU process.

We took an analogous approach to that we utilized for the

Brownian model to estimate LCE parameter c using data from

current time. First, as shown in (Meucci 2009), the stationary

solution for equation (7) is a multivariate normal distribution

with mean li and covariance matrix r2

2k R. Second, we got the

gene expression contrast vector Yi;t0
through the linear trans-

formation (eqs. 4 and 5), and found that Yi;t is distributed

as bivariate normal distribution with mean 0 and covariance

matrix r2

k

1 c

c 1

 !
, regardless of the evolutionary optimum.

Again, we find that c is the Pearson correlation coefficient of

the gene expression contrasts between cell type A and B. As a

result, we arrived at the same estimator of LCE parameter c as

in the Brownian model:

ĉ ¼ corrðA1 � A2;B1 � B2Þ (8)

This formula indicates that our estimation of LCE is invari-

ant to some transformations of gene expression measures.

For example, if gene expression measure increases by an ad-

ditive constant c in one species, ĉ ¼ corrðA1 � A2 � c;B1 �
B2 � cÞ remains unchanged. In fact the measure is invariant

under any affine transformation: y¼ axþ c.

Estimation of Correlated Evolution Is Accurate in Simulated
Data

We simulated transcriptome evolution data to evaluate our

LCE estimator ĉ under various conditions. A total of 6,119
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one-to-one ortholog genes among four mammals and

chicken are considered as in Merkin et. al (2012). For each

gene, we simulated its gene expression evolutionary trajectory

fXi;tg by iteratively updating Xi;t for a short time period dt

according to equation (7) (k ¼ 0 for Brownian model; k > 0

for OU model). Negative Xi;t were suppressed to zero in each

iteration to avoid negative expression values in the simulation.

We used square root transformed gene expression TPMs from

Merkin et al. as selective optima li and their initial states Xi;0

(see Materials and Methods). TPMs from two pairs of

tissues were used to represent both highly correlated tran-

scriptome profiles (corr lung; spleenð Þ ¼ 0:74, fig. 2 blue

points) and lowly correlated transcriptome profiles

(corr brain; testesð Þ ¼ 0:24, fig. 2 orange points). We gener-

ated LCE parameter c and stabilizing selection parameter k
from various distributions to simulate different evolutionary

conditions. c were drawn from two distributions: 1) a beta

distribution, and 2) a mixture distribution of beta distribution

and zeros. The mixture distribution simulates the scenario that

a fraction of the genes experience varied levels of correlated

evolution, whereas the rest of the genes evolve indepen-

dently. Similarly, k were drawn from three distributions:

1) zeros (Brownian model), 2) a gamma distribution, and 3)

a mixture distribution of gamma distribution and zeros. The

mixture distribution simulates the scenario where genes are

constrained by varied levels of stabilizing selection with a frac-

tion of genes evolves neutrally. We find that our estimates of

LCE are robust to various model parameters. We observed a

high correlation (R2 > 0:95) between estimated LCE (̂c) and

the mean of true c among genes in all cases (fig. 2).

Meanwhile, as predicted by the theoretical analysis, the cor-

relation in gene expression optima and the initial state of the

stochastic process does not influence the estimation of LCE, ĉ
(different colors in fig. 2). In summary, ĉ estimated from phy-

logenetic contrasts accurately estimates the average LCE

among all genes under the Brownian and OU process.

Correlated Evolution Estimates Are Consistent across Data
Sets

To document LCE among various tissues, we applied our

model to three previously published comparative transcrip-

tome data sets: 1) Merkin et al. (2012), containing nine ma-

ture tissues from four mammals and chicken (fig. 3A),
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FIG. 2.—Estimation of LCE in simulated transcriptome data. We simulated 1, 000 transcriptome evolutionary trajectories with varied distributions of

stabilizing force k and LCE paratmer c. The distributions of k are: k ¼ 0 (Brownian model), a gamma distribution (Ornstein–Uhlenbeck model), and a mixture

distribution of zeros and gamma distribution (mixture of Brownian and OU model). The distributions of c are: a beta distribution, and a mixture distribution of

beta distribution and zeros. In all conditions, we observed a high correlation between the estimated LCE (̂c) and the mean of true c among genes

(R2 > 0:95). Blue and orange colors are simulations with highly (lung–spleen) and lowly (brain–testes) correlated gene expression optima, respectively.

We find that estimation of LCE are not influenced by the correlation between gene expression optima or the initial state of the stochastic process. We used

square root transformed TPMs from Merkin data as gene expression optima and the initial states in the simulation. A total of 600 data points are randomly

sampled to be plotted in this figure.
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2) Brawand et al. (2011), containing six mature tissues in ten

species of mammals and chicken (fig. 3B), and 3) Tschopp et al.

(2014), reporting data on limb, genital-, and tail buds at early

developmental stages in mouse and Anolis. These data sets

have three advantages. First, all samples for each data set

were generated in the same lab and with the same protocol,

reducing batch effects. Second, these data sets include a

diverse set of both mature and developing tissues, enabling

us to determine the extent to which correlated evolution varies

depending on tissue relationships. Third, the Brawand and

Merkindata sets sampledfive tissues incommon(“brain”,heart,

liver, kidney, and testes), allowing us to determine whether esti-

mates of LCE are consistent across data sets and species.

We explored the extent to which our estimates of LCE, ĉ,

depends on the normalization method of gene expression

measures, the species compared, and data set used. To en-

sure that observations are independent, we calculated ĉ using

the correlation between phylogenetic independent contrast

vectors (Felsenstein 1985) of gene expression levels in Merkin

and Brawand data sets. We found that ĉ is consistent with

different gene expression normalization methods: normalized

RPKM as in Brawand et al. (2011), or normalized TPM as

proposed in Musser and Wagner (2015) (fig. 3C,

R2 ¼ 0:986, supplementary fig. S1A, Supplementary

Material online). We found consistent ĉ regardless of the di-

vergence time based on estimates by Hedges et al. (2006) for

mature tissues studied in both Brawand and Merkin (fig. 3D,

for all tissue pairs ANOVA P values for dependence of ĉ on

divergence time> 0.1). However, ĉ estimated from recently

diverged species pairs (< 50 Myr) tended to be lower than
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FIG. 3.—Effect of normalization methods, species divergence time, and data set on estimates of LCE. (A) The time tree for species analyzed in Merkin

data set. (B) The time tree for species analyzed in Brawand data set. All tissues considered here are much older than the species compared in these two data

sets. (C) The scatterplot of estimated LCE using two normalization methods for Brawand data set: normalized RPKM according to most consistently

expressed genes as in Brawand et al. (2011), and normalized TPM according to one-to-one orthologs as in Musser et al. (2015). The normalization methods

of gene expression levels do not affect the estimation of LCE (R2¼0.986). (D) Estimates of LCE (̂cÞ from brain and heart sampled in both Merkin and

Brawand data sets using independent contrasts. The horizontal axis is the species divergence time in million years at internal nodes as shown in (A) and (B).

The vertical axis is the estimated LCE, ĉ. The estimated LCE (̂cÞ is not influenced by species divergence time (ANOVA P value>0.1). The dashed lines indicate

the mean value of ĉ with divergence time>50 Ma (blue for Merkin data, orange for Brawand data). (E) Boxplot of estimated LCE for two shared tissue

comparisons between Brawand and Merkin data set (see all shared tissue comparisons in supplementary fig. S1, Supplementary Material online). Estimates

from two data sets do not statistically differ (Welch’s t-test, “-“: P>0.05, “*”: P<0.05; “**” P<0.01). We conclude that our estimates of LCE are

consistent if estimated from data sets produced by different laboratories.
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from more distantly related species for the same tissues, con-

tributing to relatively large SD for some tissue pairs (supple-

mentary tables S1–S3, Supplementary Material online). One

possible explanation of this finding is that recently diverged

species have not accumulated enough gene expression

changes to allow for accurate estimation of correlated evolu-

tion. Thus, comparisons from recently diverged species may

be dominated by observational noise which likely is uncorre-

lated, resulting in underestimation of c:
Notably, we found consistent ĉ for the same tissue pairs

across different data sets (fig. 3E and supplementary fig. 1B,

Supplementary Material online). The average ĉ values for the

same tissue pair, calculated for Merkin and Brawand data sets

separately do not differ statistically (Welch’s t-test P val-

ues> 0.1), indicating that estimates of the relative LCE are

robust to variations in data acquisition. As a result, the fact

that our estimation of LCE is consistent with different normal-

ization methods, species, as well as data sets suggests our

results reflect biological properties of these tissues, rather

than technical artifacts introduced by data acquisition or

manipulation.

Correlated Evolution Is Pervasive and Varies in Degree
across Diverse Tissues

Our results show that correlated evolution is pervasive and

strong, and varies in degree depending on the tissues under

comparison (fig. 4 and supplementary tables S1 and S2,

Supplementary Material online). The highest estimates of

LCE were from embryonic appendage buds (fig. 4; points in

red), where ĉ ranged from 0.81 (early hindlimb and tail buds)

to 0.89 (early hindlimb and genital buds) consistent with the

conclusion of the authors that genital and limb buds are de-

velopmentally highly related. Correlated evolution estimates

among the differentiated tissues of the Brawand and Merkin

data sets were lower. For each pair of tissues in the Brawand

and Merkin data sets, we calculated �c, the mean value of ĉ
from independent contrasts with split time> 50 Myr (supple-

mentary tables S1 and S2, Supplementary Material online).

Mean estimates ranged from 0.17 (liver and testes) to 0.71

(forebrain and cerebellum), indicating substantial variation in

correlated evolution among differentiated tissues (fig. 4).

Most tissues exhibited at least some degree of correlated evo-

lution, with �71% of individual ĉ significantly greater than

expected by chance (permutation P value< 0.05). Notable

exceptions were tissue comparisons with testes, which dom-

inated the lower end of LCE estimates (fig. 4, data points in

gray), and could not be statistically distinguished from a

model in which gene expression evolved independently be-

tween tissues.

Level of Correlated Evolution Differs with Phylogenetic
Age of Tissues

The observation that tissues exhibit different LCE indicates

that tissues’ evolutionary independence may itself evolve.

For instance, do cell and tissue types of recent origin exhibit

higher LCE relative to other tissues? To address this question,
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FIG. 4.—Estimates of LCE in various tissue pairs. LCE estimates for Tschopp, Merkin, and Brawand data sets. Tschopp estimates (c; points in red) are for

early forelimb-, hindlimb-, genital-, and tail buds from mouse and Anolis. Merkin and Brawand estimates (�c) are from 10 different mature tissues in 12

species of mammal and chicken. Estimates of LCE range from 0 to 1, with higher values indicating stronger correlated evolution. Dotted line indicates cutoff

for estimates of c significantly greater than expected by chance under a model without correlated evolution (see Materials and Methods). Gray colors identify

LCE estimates with testes. Numbers identify LCE estimates for other tissues with highest and lowest LCE (points in blue): 1) cerebellum and forebrain, 2)

spleen and lung, 3) spleen and colon, 4) colon and lung, 5) heart and skeletal muscle, 6) brain and liver (Brawand data set), 7) heart and liver, 8) cerebellum

and liver, 9) brain and liver (Merkin data set), and 10) liver and skeletal muscle. Black data points are the remaining tissue comparisons from Merkin and

Brawand data set (supplementary table S4, Supplementary Material online). Of note, brain and liver comparison were tested in both Merkin and Brawand

data set, and LCE estimates from two data sets do not significantly differ from each other (t-test P value>0.5).
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we collected transcriptomes from developing bird feathers,

two different avian scale types, and claws from two avian

species, chicken and emu. Feathers are an evolutionary inno-

vation that evolved in the bird stem lineage, replacing scales

across much of the body (Prum and Brush 2002). Scales are

found in all reptiles, and also on the feet of birds. Bird scales

include large, asymmetric “scutate” scales, found on the top

of the foot, and small, symmetric “reticulate” scales on the

sides and plantar surface. Birds also have claws, which de-

velop from distal toe skin, immediately adjacent to both avian

scale types. Claws are shared by reptiles and mammals, indi-

cating that they are phylogenetically older than feathers and

scales.

We sampled epidermis during early development of these

skin appendages in chicken and emu. LCE estimates (table 1

and supplementary table S5, Supplementary Material online)

ranged from 0.71 (feathers and claws) to 0.88 (feathers and

scutate scales). Claws, the phylogenetically most ancient skin

appendage in this sample, have a lower LCE compared with

other skin appendages. Feathers, which evolved most re-

cently, are highly correlated with scutate scales (̂c ¼ 0:88),

but exhibit less correlated evolution with reticulate scales

(̂c ¼ 0:79, t-test on bootstrapping P¼ 9�10�4) or claws

(̂c ¼ 0:72, t-test on bootstrapping P¼ 3�10�4). Notably,

feathers and scutate scales undergo more correlated evolu-

tion than is found between the two avian scale types, which

existed prior to the origin of feathers (̂c ¼ 0:86). These results

indicate that LCE is not determined by the shared anatomical

location of scales and claws on the distal hindlimb. Rather, our

data show that the more recently evolved tissue, feathers,

evolves in concert with its sister tissue type, scutate scales.

This is consistent with the hypotheses that feathers and scu-

tate scales are serially homologous in early development, and

are both derived from ancestral archosaur scales (Prum and

Williamson 2001; Harris et al. 2002; Musser et al. 2015; Di-Poı̈

and Milinkovitch 2016). Thus, our results suggest that the

degree of genetic individuation may increase over evolution-

ary time, with tissues of more recent origin undergoing rela-

tively higher LCE.

Theoretical Analysis of Transcriptome Clustering Patterns

Hierarchical clustering of transcriptomes has been utilized as a

discovery tool for cell and tissue type homologies across spe-

cies (Tschopp et al. 2014), and for reconstructing the phylog-

eny of cell type diversification (Arendt 2008; Kin et al. 2015).

However, it is unclear how correlated evolution may influence

the result of hierarchical clustering. To explore this, we first

conducted a theoretical analysis of how LCE influences the

hierarchical clustering pattern of two tissues in two species

using our stochastic models of transcriptome evolution. Using

Pearson correlation as the similarity measure, samples group

by tissue type when the correlation between the same tissue

(corr A1;A2ð Þ and corrðB1; B2Þ) is higher than the correlation

between tissues from the same species (corr A1;B1ð Þ and

corrðA2;B2Þ). Otherwise they group by species. We studied

the formula of their transcriptome correlation matrix to pre-

dict the hierarchical clustering pattern under various condi-

tions (fig. 5).

Under the Brownian model, the correlation matrix of the

four samples is determined by three parameters (supplemen-

tary methods, eqs. S1–S4, Supplementary Material online):

LCE (cB), the correlation of gene expression profiles between

the ancestral cell types (rB ¼ corr A0;B0ð Þ), and the ratio of

accumulated random walk variances and the variances in

gene expression levels in the ancestral cell types

(aB ¼ r2t0

var A0ð Þ / t0). In the parameter space of rB and cB, the

phase transition boundary between clustering by species and

clustering by tissue is a straight line with positive intersections

on both axis (fig. 5A and supplementary methods, eqs. S1–S4,

Supplementary Material online). We find that samples cluster

by tissue type with small rB and cB, whereas samples cluster by

species when two tissue types are similar to each other an-

cestrally (large rB) and have high LCE (large cB).

We arrived at a similar conclusion under the OU model.

The correlation matrix of four cell types is determined by LCE

(cOU), the correlation of gene expression optima in two tissues

(rOU ¼ corr lA;lBð Þ), and the ratio of stochastic variances and

the variances in the expression optima (aOU ¼ r2

2k�var lAð Þ) (sup-

plementary methods, eq. S5, Supplementary Material online).

The phase transition boundary between two hierarchical clus-

tering patterns in the parameter space of rOU and cOU is also a

straight line as in the Brownian model (fig. 5B). We find again

that samples cluster by species when two tissue types are

similar to each other (large rOU) and experience high LCE

(large cOU). In both models, when there is no correlated evo-

lution (c ¼ 0), it is expected that samples group by tissue type.

As a result, the hierarchical clustering pattern is shaped by

evolutionary changes as well as historical residuals (fig. 5). In

both models, the correlation between the same tissues from

two species reflects, in part, the residual historical signature of

homology. However, this historical signal decreases over time

due to the variation introduced by gene expression evolution.

On the other hand, the correlation between tissues from the

same species is influenced by LCE, as well as their correlation

Table 1

Estimated LCE among Avian Skin Appendages

Feather Scutate Scale Reticulate Scale Claw

Feather 1 0.88 0.79 0.71

Scutate Scale 1 0.86 0.72

Reticulate Scale 1 0.71

Claw 1

NOTE.—Estimates were obtained from transcriptomes of early skin appendage
development (placodes) in chicken and emu embryos. For each skin appendage type
in each species, we averaged gene expression across replicates, and calculated ĉ using
gene expression contrasts <10 to avoid the influence of highly expressed structural
genes.
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in the ancestor (Brownian model) or correlation in their fitness

optima (OU model). It is worthwhile to note that LCE (value on

y axis) and the correlation in the ancestor or fitness optima

(value on x axis) may be positively related. As a result, the

biological observations are likely near the diagonal of figure 5.

Together, these factors affect the hierarchical clustering pat-

tern of cell type transcriptomes and need to be considered

when using comparative transcriptomes in cell type evolution-

ary study.

Correlated Evolution Shapes Transcriptome Similarities

Our transcriptome evolution model suggests that LCE affects

the hierarchical clustering pattern to various extents (fig. 5).

This is consistent with the previous observation that tissue

transcriptomes can cluster by species or by tissue homology

under different conditions (Sudmant et al. 2015; Gu 2016).

Clustering by species can occur even when the tissues are

more ancient than the tissues under comparison, as has

been shown in a number of cases (Lin et al. 2014; Tschopp

et al. 2014; Sudmant et al. 2015; Gu 2016). Similarly, we

observed the species clustering pattern in the reanalysis of

three data sets described earlier, and the pattern persists

with different gene expression metrics, including with both

normalized TPM and RPKM relative expression values. For ex-

ample, lung and spleen evolved prior to the common ancestor

of birds and mammals, yet we found lung and spleen samples

from chicken and mouse clustered by species, rather than

tissue identity (fig. 6A).

To explore the prevalence of clustering by species, and its

association with LCE in real data, we determined the cluster-

ing pattern for every pair of tissue and species in the Brawand,

Merkin, and Tschopp data sets. We found that the majority of

mature tissues cluster by tissue type, whereas tissues with

high LCE cluster by species (fig. 6B; symbols in red, supple-

mentary table S4, Supplementary Material online). Further,

the more distantly related the species, the more likely tissues

clustered by species rather than homology. Tissues collected

from species with divergence times<50 Myr always clustered

by tissue homology. However, with >50 Myr of divergence,

nearly all tissue pairs with c> 0.5 clustered by species, rather

than homologous tissue. Phylogenetic divergence time also

affects clustering because greater divergence time allows for

the accumulation of more species-specific similarities via cor-

related evolution, whereas similarity due to homology decays.

Thus, transcriptomes reflect both the homology of cell and

tissue types, as well as the effect of correlated evolution within

each lineage.

Clustering by Tissue Type Is Recovered by Excluding Genes
with High Correlated Evolution

The observation above suggest that the effect of correlated

evolution needs to be carefully considered when using hier-

archical clustering or phylogenetic reconstruction methods

with comparative RNA-seq data. To dissect the contribution

of each gene to correlated transcriptome evolution, we esti-

mated per-gene LCE (ĉi ) for each one-to-one ortholog i, by

calculating the correlation between its expression contrasts in

two tissues along the phylogenetic tree (Felsenstein 1985). A

limitation for estimating per-gene LCE is species number. As a

result, we calculated per-gene LCE estimates only for the

Brawand data set, which contained the largest number of

species (fig. 3B). However, we only included gene expression
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FIG. 5.—Theoretical hierarchical clustering pattern varies with model parameters. (A) Brownian model. (B) Ornstein–Uhlenbeck model. The hierarchical

clustering pattern of four cell types, A1, A2, B1, and B2, is determined by the correlation matrix of their transcriptome profiles (supplementary eq. S2,

Supplementary Material online). Homology signal (horizontal axis; corrðA0; B0Þ or corrðlA; lB)) and correlated evolution signal (vertical axis; c) shape cell

type transcriptome similarities together. The phase transition condition between clustering by homology and clustering by species is a straight line (supple-

mentary eqs. S4 and S5, Supplementary Material online). In both models, no clustering by species pattern is observed without correlated evolution (c ¼ 0). aB

and aOU are parameters that are related to the random walk variance, r2, in Brownian and OU model, respectively (see supplementary methods,

Supplementary Material online). The dashed arrow indicates how the phase transition boundary changes with parameters aB and aOU. If the random

walk variance r2 decreases, there is higher chance to see group-by-homology pattern.
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contrasts outside the primate group to avoid biases from

dense sampling in one clade and short branch lengths, which

could result in inaccurate estimation of variance between spe-

cies gene expression (Garland et al. 1992; Ackerly 2000).

We then tested whether our estimate of per-gene LCE is

significant for all tissue pairs (see Materials and Methods). We

estimated the portion of genes that belong to the true null

hypothesis (p0), that is, do not show correlated evolution,

using the P value distribution of all analyzed genes. In

Brawand data, p0 varies from 0.08 (forebrain–cerebellum)

to 0.64 (liver–testes) (supplementary table S6,

Supplementary Material online), indicating that in this analy-

sis, a large fraction of one-to-one orthologous genes are influ-

enced by correlated evolution. This included 36% of the

genes in the liver–testes comparison and 92% in the

forebrain–cerebellum comparison. We then identified individ-

ual genes with high LCE for each tissue pair using FDR< 0.05

(Benjamini–Hochberg procedure) and with effect size

ĉi > 0:5. The comparison of forebrain and cerebellum yielded

the largest number of highly correlated genes (n ¼ 4;099),

whereas tissue comparisons with testes yielded limited num-

ber of highly correlated genes (average n ¼ 24; fig. 6C). The

top enriched GO terms in forebrain–cerebellum specific cor-

related genes (n ¼ 631) are related to pan-neuronal functions

such as ion transmembrane transport and chemical synaptic

transmission (supplementary table S7, Supplementary

Material online). We also identified 1,190 genes were highly

correlated in at least five tissue comparisons. GO analysis of

these genes showed enrichment for cell cycle, metabolic, and

RNA processing related GO terms (supplementary table S8,
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Supplementary Material online). Finally, we refined the hier-

archical clustering analysis of cell type transcriptomes by ex-

cluding genes with high LCE. Whereas forebrain and

cerebellum samples cluster by species outside the primates

using all one-to-one orthologous genes (fig. 6D), their clus-

tering pattern reveals tissue homology after removing genes

with high LCE (fig. 6E). Hence, identification and elimination

of genes with high LCE can be used to recover the phyloge-

netic history of cell and tissue types.

Discussion

In this study, we analyzed patterns of transcriptome variation

among different cell and tissue types and species using sto-

chastic models of gene expression evolution. We found strong

signals of correlated gene expression variation among differ-

ent cell and tissue types. This pattern can arise for a number of

reasons. The principal ones are: 1) Artifacts in measuring gene

expression in different species causing species specific differ-

ences in estimated expression level (Gilad 2015; Sudmant

et al. 2015); 2) mechanistic reasons, where either gene regu-

latory communalities among cell types leads to “concerted”

evolution of gene expression due to pleiotropic effects of

mutations (Musser and Wagner 2015) or species specific

physiological differences affecting gene expression (Lin et al.

2014) (anonymous reviewer). We address these possible

causes of correlated gene expression variation below.

As with any quantitative method, RNA-seq can be subject

to artifacts, and some sources of artifacts have been identified

(Marioni et al. 2008; Seqc Maqc-Iii Consortium 2014; Gilad

2015). For instance, batch effects can lead to systematic dif-

ferences between data sets and thus affect downstream anal-

ysis. However, we consider it unlikely that the main result of

this study, pervasive and strong correlated variation in gene

expression, is caused solely by known artifacts. There are a

number of features of our results that are hard to explain as

artifacts. One is that the same tissues from different species

and data from different laboratories leads to statistically indis-

tinguishable results with respect to the estimated LCE (fig. 3D

and E). Secondly, artifacts due to different genome quality

and transcript annotations should affect estimates of different

cell and tissues in the same way, resulting in statistically indis-

tinguishable estimates of LCE between different tissue pairs.

In contrast, we find that the LCE estimates varied across dif-

ferent tissue pairs, and is generally higher between tissues

with similar cell biology (fig. 4). For instance, our highest esti-

mates were among early developing limb, genital, and tail

bud tissue. At this early stage of development, these anlagen

largely consist of undifferentiated mesenchymal cells.

Moreover, two of the highest measures of correlated evolu-

tion were for forebrain and cerebellum (�c¼0.71), and heart

and skeletal muscle (�c¼0.47). Both tissue pairs express com-

mon sets of pan-neuronal and contractile genes, respectively.

Furthermore, we found evidence that developmental origin

influences the degree of correlated variation in differentiated

tissue. Lung and colon (�c¼0.50), both endodermal deriva-

tives, were highly correlated relative to other differentiated

tissues despite their very distinct functions. These findings

along with the fact that our estimates are consistent across

various data sets and consistent with respect to gene expres-

sion normalization methods (fig. 3) suggest that estimated

LCE reflect the biological nature of the tissues under compar-

ison, rather than artifacts of genome quality, transcripts an-

notation, or batch effects. The overall pattern of gene

expression correlations described here would require a quite

peculiar set of artifacts to generate the biologically plausible

differences.

The second possible explanation for the correlated gene

expression variation is what has been called “concerted” evo-

lution of gene expression (Musser and Wagner 2015).

Concerted gene expression evolution occurs when cell types

share parts of their gene regulatory networks. Thus, muta-

tions in certain cis- or trans-regulatory factors can affect gene

expression in more than one cell type. This is a special case of

pleiotropic effects, a widely recognized pattern for all kinds of

characters (Stearns 2010; Wagner and Zhang 2011) and thus

plausibly also for gene expression in different cell types. A

related explanation is that correlated evolution is expected if

species differ in their physiological states in a way that affects

gene expression in the two cell types studied. For instance,

differences in hormone levels, diet, or preferred temperature

can lead to species-specific differences in gene expression af-

fecting multiple cells. Correlated evolutionary changes caused

by any of these molecular and physiological factors can be

called concerted evolution. The term “concerted evolution”

originated in the study of nucleotide sequence evolution

(Dover 1993; Elder and Turner 1995; Liao 1999), but more

generally we use the term here for the “sharing” of muta-

tional effects among different cell types, tissues, and organs

(Musser and Wagner 2015). This interpretation predicts that

tissue specific genes do not contribute to correlated evolution.

Consistent with this, we observed significantly decreased LCE

when analyzing tissue specific genes only (supplementary fig.

S2, Supplementary Material online, Welch’s t-test P

value< 10�6).

One obvious reason for correlated evolution is the fact that

nearly all cell types share certain metabolic and structural

“housekeeping” genes, and thus evolutionary changes in

their expression would contribute to correlated gene expres-

sion variation. However, our finding that different tissue types

from the same set of species (e.g., human and mouse) can

have very different LCE (figs. 3E and 4) suggests that corre-

lated evolution does not solely originate from globally shared

“housekeeping” genes. Instead, the correlated evolution sig-

nals are heavily influenced by the nature of the tissues and

cells compared, suggesting that the structure of the gene

regulatory networks active in these cells affects the strength

of correlated evolution. For instance, our finding of relatively
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high LCE between forebrain and cerebellum is consistent with

findings in other animals that common transcription factors

regulate pan-neuronal gene expression across different neu-

ronal cell types (Ruvinsky et al. 2007; Stefanakis et al. 2015).

Previous studies have shown that gene expression in testes

has a high degree of tissue-specificity (Lin et al. 2014; Yue

et al. 2014), is highly divergent among mammals relative to

other tissues (Brawand et al. 2011), and is under directional

selection (Khaitovich et al. 2005, 2006). Our results suggest

that a key factor in explaining the distinct evolutionary history

of testes is its ability to evolve gene expression independently

of other organs, that is, gene regulatory individuality.

Here, we acknowledge that most samples in our analysis

contain more than one cell type, and cell types may be shared

among different tissues. These may contribute to LCE esti-

mated for tissue types. Never the less, tissue transcriptomes

can still serve as a surrogate of gene expression profile of

major cell types in that tissue type. Particularly, although testes

share epithelial and mesenchymal cell types with other tissues,

no significant LCE was observed between testes and other

tissues. In addition, genes with strongest LCE signal between

cerebellum and forebrain are highly enriched for synaptic

functions rather than structural or supportive functions by

sharing some glial cells.

Overall, it is important to note that the empirical results we

report here identify a statistical pattern, correlated gene ex-

pression variation between cell and tissue types, which can

have a variety of explanations. In this study, we did not spe-

cifically investigate the actual cause for these patterns, which

needs to be done on a case by case basis. However, our results

indicate that this pattern is less likely to be caused by artifacts

or some global biological factor. Further empirical investiga-

tions are needed to reveal the mechanistic basis for this

phenomenon.

Modeling Correlated Evolution Is Essential for
Reconstructing Cell Type Phylogeny

Our study raises several issues of practical importance for

comparative transcriptomics. It is clear that many evolutionary

changes in gene expression are not limited to a single cell

type, making cross species comparisons difficult. This fact

has hampered attempts to use gene expression data to assess

the homology of cells and tissues across species, because

straight forward clustering of gene expression profiles from

different species can lead to obviously wrong results. For ex-

ample, Tschopp et al. (2014) showed that clustering of tran-

scriptomes is unable to reproduce the fact that limb buds of

mice and lizards are homologous and thus also prevented the

assessment of the hypothesized serial homology of limbs and

external genitalia (penis/clitoris). Hence, it would be desirable

to correct for the effects of correlated variation when

attempting to reconstruct the evolutionary history of cell

and tissue types from comparative transcriptome data.

Correcting for correlated gene expression evolution is chal-

lenging because correlated evolution is occurring at different

levels in different tissues. In this study, we outline a potential

solution to this problem. We show that correlations of phylo-

genetic contrasts (Felsenstein 1985), with large enough taxon

samples, can identify genes with high contributions to the

correlated evolution signal. Excluding those genes from a hi-

erarchical clustering analysis leads to a result reflecting tissue

homology (fig. 6D and E). This highlights the importance of

sampling more taxa in evolutionary studies of cell or tissue

types. Genes that are less vulnerable to correlated evolution in

tissues of interest can be identified from a group of species

with known tissue homology. These genes allow for the clas-

sification of tissues with uncertain homology using unsuper-

vised learning methods, such as PCA and hierarchical

clustering (fig. 6D and E), thus facilitating the study of the

origination of novel cell and tissue types. It will be of value to

develop analytical tools to systematically correct for the effects

of correlated gene expression evolution and thus enable the

broad application of the comparative method with respect to

cell and tissue transcriptomes.

It will also be useful to extend phylogenetic independent

contrasts (PIC) to models other than Brownian motion.

Previous simulation results suggest that PIC outperforms other

methods under OU model but show decreased accuracy

(Martins and Garland 1991; Diaz-Uriarte and Garland 1996).

Moreover, there is currently a debate regarding whether

Brownian motion is adequate for modeling gene expression

evolution (Gilad et al. 2006; Fay and Wittkopp 2008). Recently

diverged taxa, such as primates, may obey assumptions in the

Brownianmotionmodel (Khaitovichetal.2004;Khaitovichetal.

2006; Yang et al. 2017). In other cases, transcriptome diver-

gence has been observed to saturate (Bedford and Hartl 2009;

Kinetal.2016;Metzgeretal.2017) (Brawanddata, supplemen-

tary fig. S3, Supplementary Material online), which may be ad-

equately modeled with an OU model (supplementary methods,

eqs. S6 and S7, Supplementary Material online). Thus, a theo-

retical study of comparative methods under the OU model may

advance our understanding of correlated evolution.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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