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Biomass and yield are key variables for assessing the production and performance of

agricultural systems. Modeling and predicting the biomass and yield of individual plants

at the farm scale represents a major challenge in precision agriculture, particularly when

salinity and other abiotic stresses may play a role. Here, we evaluate a diversity panel

of the wild tomato species (Solanum pimpinellifolium) through both field and unmanned

aerial vehicle (UAV)-based phenotyping of 600 control and 600 salt-treated plants. The

study objective was to predict fresh shoot mass, tomato fruit numbers, and yield mass

at harvest based on a range of variables derived from the UAV imagery. UAV-based

red–green–blue (RGB) imageries collected 1, 2, 4, 6, 7, and 8 weeks before harvest were

also used to determine if prediction accuracies varied between control and salt-treated

plants. Multispectral UAV-based imagery was also collected 1 and 2 weeks prior to

harvest to further explore predictive insights. In order to estimate the end of season

biomass and yield, a random forest machine learning approach was implemented using

UAV-imagery-derived predictors as input variables. Shape features derived from the UAV,

such as plant area, border length, width, and length, were found to have the highest

importance in the predictions, followed by vegetation indices and the entropy texture

measure. The multispectral UAV imagery collected 2 weeks prior to harvest produced

the highest explained variances for fresh shoot mass (87.95%), fruit numbers (63.88%),

and yield mass per plant (66.51%). The RGB UAV imagery produced very similar results

to those of the multispectral UAV dataset, with the explained variance reducing as a

function of increasing time to harvest. The results showed that predicting the yield of

salt-stressed plants produced higher accuracies when the models excluded control

plants, whereas predicting the yield of control plants was not affected by the inclusion

of salt-stressed plants within the models. This research demonstrates that it is possible

to predict the average biomass and yield up to 8 weeks prior to harvest within 4.23% of
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field-based measurements and up to 4 weeks prior to harvest at the individual plant level.

Results from this work may be useful in providing guidance for yield forecasting of healthy

and salt-stressed tomato plants, which in turn may inform growing practices, logistical

planning, and sales operations.

Keywords: UAV, yield, biomass, tomato plants, salinity, random forest, RGB, multi-spectral

INTRODUCTION

Along with growing populations and the challenges of climate
change, salt-stress presents as a major threat to global food
production. While soil salinity in irrigated agriculture is a global

concern, it is particularly so in arid and semiarid climates
(Pitman and Lauchli, 2002; Rao et al., 2013; Machado and
Serralheiro, 2017). Breeding of crop cultivars with improved salt
tolerance represents one potential pathway toward improving
food and water security (Hickey et al., 2019; Johansen
et al., 2019a). To do this requires the identification of salt-

tolerant genotypes/accessions, whose tolerance traits can then be
introgressed into commercial varieties (Munns and Tester, 2008;
Messerer et al., 2018; Morton et al., 2019). In order to identify
the potential salt tolerance of plant accessions, phenotyping
and related approaches that can effectively map, monitor, and
predict plant biophysical and biochemical properties are required
(Johansen et al., 2019a). Two indicators of plant response that can
offer insight into performance are biomass and yield. While the
effects of salinity are to generally reduce a plant’s biomass and
yield, what is not well-understood is how salt stress affects the
ability to predict these variables ahead of harvest time (Flowers
and Flower, 2005; Verslues et al., 2006; Stavridou et al., 2017;
Johansen et al., 2019a,b).

Measurements of biomass provide information on a plant’s
ability to capture sunlight, water, and minerals, and the rates at
which it can turn these into physical growth (Johansen et al.,

2019b). It is also useful in informing the amount and timing of
fertilizer, pesticides, and water to be applied to optimize crop
performance and improve agricultural management practices
(Jaleel et al., 2009; Bendig et al., 2015): key metrics behind
the concept of precision agriculture. Predicting yield prior to
harvest can facilitate logistical planning and scheduling of field
and harvest operations, e.g., fruit picking, storage, packaging,

and transportation (Robson et al., 2017), as well as help in
financial planning and management. In recent years, predicting
biomass and yield (along with other biophysical and biochemical
properties) through various types of sensing technologies has
become a focus for both precision agriculture and smart farming.
While precision agriculture attempts to observe, measure, and
respond to inter- and intrafield crop variability, smart farming
encompasses a focus on agricultural systems management via big
data analytics, using context and situation awareness, often in real
time (Zhang et al., 2002; Gebbers and Adamchuk, 2010; Wolfert
et al., 2017).

Both precision agriculture and smart farming require large
amounts of data to ensure informed decision-making at the
specific plant, tree, or plot level. Data required to drive timely

or near real-time information-based decisions may be obtained
using a range of remote sensing platforms, as well as in-field
robotics and sensing technologies (Wolfert et al., 2017). However,
satellite-based remote sensing is often unable to provide the
spatial resolution required for per-plant or per-tree assessment,
with timely data acquisition often affected by cloud cover or
other adverse atmospheric conditions (Nevavuori et al., 2019).
Airborne remote sensing remains costly, especially if used for
high-frequency assessment of growth patterns and other crop
parameters relying on multitemporal data (Koh andWich, 2012).
Field-based robotics have proved useful for fruit counting, fruit
ripening assessment, flower identification, yield prediction, and
measurements of three-dimensional structure (Underwood et al.,
2016; Bargoti and Underwood, 2017; Wang Z. et al., 2018;
Wendel et al., 2018; Westling et al., 2018) but are generally
restricted to smaller areas with no ground obstacles to hinder
access (Kragh and Underwood, 2019). At the other end of the
spectrum, it can be very time consuming, labor intensive, and
subjective to consistently collect field data suitable for predicting
biomass and yield at harvest (Sugiura et al., 2015; Holman
et al., 2016). The divide between space- and ground-based data
collection has recently been filled by the use of unmanned aerial
vehicles (UAVs), which provide a means for efficient, regular,
and flexible collection of imagery at very high spatial resolutions,
suitable for regular assessment of crops, their properties, and
stress factors (Gil-Docampo et al., 2018). Deployment of UAVs
for data collection also reduces the requirement for human-
based on-site observations (and potential for investigator bias),
increases safety and access, and facilitates the implementation of
management practices in the agricultural sector (Shi et al., 2016;
Barbedo, 2019).

Despite the commercial importance of tomatoes, relatively
few studies have assessed the potential for using UAV-based
imagery for modeling their biomass and yield [annual global
production is∼171 million tons; (FAOSTAT, 2017)]. Senthilnath
et al. (2016) used two UAV-derived images to delineate and
classify tomato fruits on individual plants but found that many
fruits were omitted, as they were visually occluded by leaves and
stalks. Johansen et al. (2019a) used a time series of RGB and
multispectral UAV imagery to accurately monitor phenotypic
traits of individual tomato plants, including plant area, plant
projective cover, condition, and growth rate, and used these
variables to successfully identify tomato plant accessions that
performed the best in terms of yield. Moeckel et al. (2018)
estimated crop height and biomass of eggplant, tomato, and
cabbage plants from a time series of five red, green, and blue
(RGB) UAV-based data sets and found measured crop height
to correlate well with biomass when using random forest and
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support vector regression. Johansen et al. (2019b) provided
some initial findings for using UAV imagery to predict biomass
and yield at harvest. However, this initial work only assessed
prediction accuracies of individual plants from RGB imagery and
excluded an evaluation on variable importance for the prediction
models. This paper significantly expands on the interpretation
of these preliminary results and further explores the use of
multispectral imagery, variable importance, model predictions
of biomass, fruit numbers, and yield mass, and a comparison of
model results for control and salt-treated plants.

The use of UAVs for plant phenotyping purposes has
witnessed their application for plant height assessment (Hu
et al., 2018; Wang X. et al., 2018), genotype performance under
low nitrogen conditions (Buchaillot et al., 2019), crop growth
monitoring (Holman et al., 2016), among many others (Yang
et al., 2017). While UAV imagery has only been exploited to a
limited extent for predicting biomass and yield of tomato plants,
it has been applied to assess biomass and yield of other crops. For
instance, Fathipoor et al. (2019) used RGBUAV imagery acquired
at the mid-season growth stage to predict corn forage yield
using a combination of plant height and vegetation indices for
partial least square regression. Ballesteros et al. (2018) used height
derived from UAV-based RGB imagery as well as green canopy
cover and canopy volume to estimate the biomass of onion, with
canopy volume found to be particularly informative. Han et al.
(2019) used various predictor variables, including plant height,
canopy shape, and vegetation indices, to predict aboveground
biomass of maize from UAV-based imagery and achieved the
best results using a random forest model. Nevavuori et al. (2019)
used convolutional neural networks (CNN) to build a model for
predicting yields of wheat and barley fields using multispectral
UAV imagery. They found that yield prediction errors were lower
for UAV data acquired early in the growth season than using data
acquired later and closer to harvest. Other examples of UAV-
based studies using machine learning approaches for biomass
estimation include the mapping of wheat (Lu et al., 2019), grass
sward (Nasi et al., 2018), rice (Jiang et al., 2019), and maize (Han
et al., 2019). Related crop yield estimation studies include the
mapping of oilseed rape (Peng et al., 2019), barley (Escalante
et al., 2019), rice (Yang et al., 2019), and cotton (Zou et al., 2018).
Apart from the work by Moeckel et al. (2018) and Johansen et al.
(2019a,b), no other research was identified using UAV-based time
series for the prediction of biomass and yield of tomato plants
at harvest.

The UAV-based studies on yield and biomass mapping
reviewed above used a variety of artificial intelligence approaches,
including both machine learning and deep learning techniques.
In fact, Liakos et al. (2018) identified yield prediction as one of the
most common applications of machine learning in agriculture.
Although big data analysis is becoming more common in the
agricultural sector (Kamilaris et al., 2017), obtaining the required
data volumes of suitable quality needed for large-scale application
of machine learning approaches remains a challenge. Still, more
traditional and established machine learning approaches are
often beneficial for smaller scale studies, where interpretability
may also be important. From the selection of machine learning
algorithms used in agricultural UAV-based studies, the random

forest approach has been regularly identified as producing the
best results, which is commonly attributed to its lower sensitivity
to data skewness and prevention of model overfitting (e.g.,
Moeckel et al., 2018; Han et al., 2019; Lu et al., 2019).

Overall, the objectives of this research were three-fold: (1)
to predict biomass (fresh shoot mass) and yield (tomato fruit
numbers and yield mass) at harvest from a time series of RGB
UAV-based imagery; (2) to determine if prediction accuracies
varied between control and salt-treated plants; and (3) to
compare results of RGB andmultispectral UAV imagery collected
1 and 2weeks before harvest. To do this, a random forest machine
learning approach was employed to predict biomass and yield
for both control and salt-treated plants using a time series of six
RGB and twomultispectral UAV image data sets collected prior to
harvest. An ability to forecast at-harvest biomass and yield would
offer growers a capacity to identify and understand biomass and
yield variability in areas affected by salinity and could be used to
optimize per plant inputs during the growing season, while also
informing logistical and sales related operations.

MATERIALS AND METHODS

Study Area and Experimental Design
The study area was located at the King Abdulaziz University
Agricultural Research Station in Hada Al-Sham (21.7967◦N,
39.7264◦E), about 60 km east of Jeddah in the Makkah region of
Saudi Arabia. The area receives an annual rainfall of <100mm
and has a predominantly sandy loam soil type. A tomato
field-trial experiment was initiated in November 2017, with
the field arrangement consisting of four 30 × 30m plots. In
each of the four plots, 15 rows of 20 tomato plants were
planted, producing a combined total of 1,200 plants (Figure 1).
These 1,200 plants included 200 different genotypes, consisting
of 199 Solanum pimpinellifolium accessions and one Solanum
lycopersicum accession (the commercial tomato, Heinz 1706).
The 199 S. pimpinellifolium accessions originated from different
parts of Peru and Ecuador.

Seeds for these accessions were propagated at King Abdullah
University of Science and Technology (KAUST) (Johansen et al.,
2019a). Using these, the tomato plants were sown at a greenhouse
nursery at KAUST a month before transplanting, which occurred
on November 1-2, 2017. Plants were allocated into two control
and two salt-treated plots, following a randomized design
(Figure 1). Three replicates of the 200 accessions were planted
in each of the two treatments. The two control plots were
irrigated with low salinity water (27mM NaCl, 900-1,000 ppm)
throughout the growing season. The two salt-treated plots were
irrigated with saline water of 127mM NaCl (4,500 ppm) from
November 14, 2017, 197mM NaCl (7,000 ppm) from December
4, 225mM NaCl (8,000 ppm) from December 10, 254mM
NaCl (9,000 ppm) from December 18, and 183mM NaCl (6,500
ppm) from January 12, 2018 until harvest, which occurred
between January 16-22 (Johansen et al., 2019a). Drip irrigation
was applied once in the morning for 10min and again in the
evening for 10min until November 9, then for 15min in
the morning and evening until December 17, and 30min in
the morning and evening until harvest, in response to the
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FIGURE 1 | Setup of the tomato plant trial with 300 plants in each of the two control and two salt-treated plots. The plant trial covered an area of ∼75 × 75m, with

each plot of 300 plants being 30 × 30m.

increasing irrigation requirements of growing plants. Weeds
within each plot were manually removed before each of the
UAV flights. During the growing season, maximum day and
minimum night temperatures ranged from 27 to 37◦C and 12
to 24◦C, respectively. During the growing season, no rainfall
was recorded, but several sandstorms occurred, with the most
severe and damaging on December 8 and 16, 2017. After each
sandstorm, farm employees washed the plants with non-saline
water to remove dust from the leaves (Johansen et al., 2019a).

Field Data Collection
Field and UAV data were collected on November 23 and 30,
December 6 and 20, 2017, and January 7 and 14, 2018, i.e., 1,
2, 4, 6, 7, and 8 weeks before harvest. Five GCPs were deployed
for geo-referencing the UAV imagery and their coordinates
measured at the planting date (November 2) using a Leica GS10
base station with an AS10 antenna and a Leica GD15 smart
antenna as a rover (Leica Geosystems, St. Gallen, Switzerland).
GCPs were placed at the center and at each of the four corners
of the study site. All collected Global Navigation Satellite System
data were postprocessed using the Leica Geo Office software
(Leica Geosystems, St. Gallen, Switzerland). Six near-Lambertian
panels in white, four shades of gray, and in black (Johansen et al.,
2018, 2019a) were placed within the field and measured with
an ASD FieldSpec4 spectrometer (Malvern Panalytical, Malvern,
UK) for radiometric calibration of the collected imagery.

Between January 16 and 26, fresh shoot mass, fruit numbers,
and yield mass were measured for all tomato plants remaining
at harvest. The fresh shoot mass, including aboveground plant
material and fruit, was measured first. Fresh shoot mass ranged
from 17 to 5,402 g per plant, averaging 715 g/plant (Table 1).
Fruit numbers were manually counted for both mature (fruits
with some redness) and immature (green fruits) fruits >3mm in

diameter on each plant. The fruit was subsequently weighed for
each plant. For plants with >1 kg shoot mass, a representative
sample of the whole plant was selected to count and weigh
all fruits >3mm in diameter. To estimate the fruit numbers
and their weight for the whole plant, the sample was used for
extrapolation and multiplied by the weight ratio of the whole
plant and the selected sample. Based on all harvested plants,
the number of tomatoes ranged from 1 to 3,349 per plant,
averaging 532 fruits/plant. Yield mass ranged from 0.1 to 1,433
g/plant, averaging 227 g/plant (Johansen et al., 2019a). The
total number of observations at harvest for fresh shoot mass,
fruit number, and yield mass were 1,027 (514 control and 513
salt treated), 980 (496 control and 484 salt treated), and 979
(497 control and 482 salt treated) plants, respectively (Table 1).
The present study only examines those plants that survived
until harvest.

UAV Data Collection and Processing
A gimbal-stabilized Zenmuse X3 camera (Dà-Jiāng Innovations,
Shenzhen, China) installed on a DJI Matrice 100 (Dà-Jiāng
Innovations, Shenzhen, China) quadcopter was used to collect
RGB imagery for all of the six field campaigns, i.e., 1,
2, 4, 6, 7, and 8 weeks before harvest. The Zenmuse X3
camera has a Sony EXMOR 1/2.3′′ complementary metal-oxide
semiconductor (CMOS) sensor with the full width at half-
maximum being ∼400–510 nm for the blue band, 480–600 nm
for the green band, and 580-700 nm for the red band (Sato
et al., 2016). The Parrot Sequoia sensor (Parrot SA, Paris,
France), also installed on the DJI Matrice 100, was used to
collect coincident multispectral green (530–570 nm), red (640–
680 nm), red edge (730–740 nm), and near-infrared (NIR) (770–
810 nm) imagery for the last two campaigns, i.e., 1 and 2
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TABLE 1 | Minimum, maximum, and mean values and the total number of observations (obs.) as well as control and salt observations of fresh shoot mass, fruit numbers,

and yield mass.

Minimum Maximum Mean Total obs. Control obs. Salt obs.

Fresh shoot mass 17 g/plant 5,402 g/plant 715 g/plant 1,027 514 513

Fruit numbers 1 fruit/plant 3,349 fruits/plant 532 fruits/plant 980 496 484

Yield mass 0.1 g/plant 1,433 g/plant 272 g/plant 979 497 422

Note that only fruits >3mm in diameter were included.

weeks before harvest. All UAV campaigns occurred under cloud-
free conditions at around solar noon. The Universal Ground
Control Station (UgCS) Client application (SPH Engineering,
SIA, Riga, Latvia) was used for flight planning. For each
UAV campaign, the image data were collected at an altitude
of 13m above ground level and at a speed of 2 m/s. This
produced a forward overlap and sidelap of 78 and 82%,
respectively, for the RGB imagery (3-s image intervals) and
83 and 68%, respectively, for the multispectral imagery (1-
s image intervals) (Johansen et al., 2019a). A geo-referenced
orthomosaic and digital surface model (DSM) were produced at
a pixel size of 0.5 and 1.12 cm for the RGB and multispectral
imagery, respectively, using Agisoft PhotoScan (Agisoft LLC, St.
Petersburg, Russia). A digital terrain model (DTM), produced
from RGB UAV imagery collected of the study site before
planting, was subtracted from the DSMs to produce canopy
height models (CHMs) for each of the six UAV campaign
(Johansen et al., 2019a).

Buchaillot et al. (2019), Madec et al. (2017), and Singh
et al. (2019) used RGB UAV imagery for phenotyping maize
and wheat and argued that no radiometric correction of the
UAV imagery was required, at least when using point cloud
information for plant height measurements and field-based RGB
imagery acquired coincidently with the UAV data. However, it
is considered good practice to radiometrically calibrate UAV
imagery to remove or normalize effects of sun-object-sensor
geometry and illumination conditions (Tmusic et al., 2020).
The empirical line calibration method has become a standard
approach for UAV-based studies to correct the imagery to at-
surface reflectance using either natural features (Lelong et al.,
2008) or other types of commercial (e.g., spectralon) or more
cost-effective Lambertian panels, e.g., made from masonite,
plywood, or ethylene-vinyl acetate (Wang and Myint, 2015;
Jeong et al., 2018; Barreto et al., 2019; Tmusic et al., 2020).
An empirical line correction, produced between field-derived
spectrometer measurements and the digital numbers of the
radiometric calibration panels within the multispectral and RGB
orthomosaics, was used to convert the orthomosaics to at-surface
reflectance (Ahmed et al., 2017; Johansen et al., 2018). For the
empirical line corrections, the coefficients of determination (R2)
were >0.98 for all band combinations and data sets. While
the multispectral imagery produced a linear empirical line, an
exponential relationship was required for the RGB imagery.
An exponential relationship of the empirical line correction
for RGB UAV imagery was also identified by Jeong et al.
(2018).

Delineation of Tomato Plants
The eCognition Developer 9.3 software (Trimble, Munich,
Germany) was used to develop an object-based rule set
to delineate all individual tomato plants within the six
RGB and two multispectral orthomosaics. After a fine-scale
multiresolution segmentation, vegetation indices, and spectral
band combinations were used to classify objects, representing the
green parts of the tomato plants. A region-growing algorithm
was subsequently applied to expand tomato plant objects into
neighboring unclassified objects using more relaxed vegetation
index thresholds. Unclassified objects enclosed by tomato plant
objects were merged with the enclosing tomato plant objects. To
remove small incorrectly classified tomato plant objects, an area
threshold of <150 cm2 was applied. Remaining tomato plants
were then resized using a number of growing and shrinking
processes and the use of the produced CHM to adjust the edges of
the tomato plant objects. The delineation results of the six RGB
and two multispectral orthomosaics were visually assessed and
manually edited if necessary. A more detailed description of the
object-based approach can be found in Johansen et al. (2019a).

Extraction of Image Variables
Based on the delineated plants, shape, spectral, and texture
variables were extracted from both the RGB and multispectral
UAV imagery. For the RGB imagery, the extracted variables
included the three RGB bands, the Green–Red Index (Motohka
et al., 2010), nine shape features (border length, width, length,
length/width ratio, elliptic fit, shape index, compactness,
roundness, and border index) exported directly from the
eCognition Developer software, four gray-level co-occurrence
textural measures [homogeneity, contrast, entropy, and
dissimilarity; (Haralick et al., 1973)] based on the three spectral
bands and the Green–Red Index, maximum plant height,
and the standard deviation of maximum height (see Table 2).
For the multispectral UAV imagery, the extracted variables
included the four spectral bands (green, red, red edge, and
NIR), six vegetation indices (Robson et al., 2017) (Table 3), nine
shape features, four gray-level co-occurrence textural measures
[homogeneity, contrast, entropy, and dissimilarity; (Haralick
et al., 1973; Lofstedt et al., 2019)] based on the four spectral bands
and the normalized difference vegetation index (NDVI), as well
as maximum height and the standard deviation of maximum
height (see Table 2).

Image-based texture measures have been found useful for
UAV-based biomass estimation in other studies (Zheng et al.,
2019) and may provide additional spatial information useful for

Frontiers in Artificial Intelligence | www.frontiersin.org 5 May 2020 | Volume 3 | Article 28

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Johansen et al. UAV-Based Biomass and Yield Predictions

TABLE 2 | Variables extracted (gray fields) from the red–green–blue (RGB) (35 in

total) and multispectral (46 in total) unmanned aerial vehicle (UAV) imagery for

each individual tomato plant.

Image-derived

variables

MS RGB Image-derived

variables

MS RGB

Border length Homogeneity blue

Width Homogeneity green

Length Homogeneity

Green–Red Index

Length/width ratio Homogeneity red

Elliptic fit Homogeneity red edge

Shape index Homogeneity NIR

Compactness Homogeneity NDVI

Roundness Contrast blue

Border index Contrast green

Area Contrast Green–Red

Index

Maximum height Contrast red

Standard deviation

height

Contrast red edge

Blue Contrast NIR

Green Contrast NDVI

Red

Red edge Entropy green

NIR Entropy Green–Red

Index

Green–Red Index Entropy red

NDVI Entropy red edge

RENDVI Entropy NIR

NDRE Entropy NDVI

NIRRENDVI Dissimilarity blue

Green NDVI Dissimilarity green

Standard deviation blue Dissimilarity Green–Red

Index

Standard deviation

green

Dissimilarity red

Standard deviation red Dissimilarity red edge

Standard deviation red

edge

Dissimilarity NIR

Standard deviation NIR Dissimilarity NDVI

improving classification results (Johansen et al., 2007). To achieve
directional invariance, the sum of all four directions (0, 45, 90,
and 135◦) were calculated before the texture calculation. The
calculation of texture [following (Gil-Docampo et al., 2018)] was
independent of the image data bit depth, as the dynamic range
was interpolated to 8 bit before evaluating the co-occurrence
(Trimble eCognition Developer, 2017; Lofstedt et al., 2019). All
extracted per-plant image variables from all eight image data sets
(six RGB and two multispectral) were then used to assess their
linear, exponential, logarithmic, and second-order polynomial
correlation with the corresponding field-derived measurements
of biomass, fruit numbers, and yield mass. Those variables with
an R2 < 0.10 in all four correlations were omitted from further
analysis, as they were considered insignificant. The remaining

TABLE 3 | Vegetation indices calculated from the multispectral unmanned aerial

vehicle (UAV) imagery and extracted for each individual tomato plant.

Vegetation

Indices

Equation References

Green–Red

index

(Green – red)/(Green + red) Motohka et al., 2010

NDVI (NIR – red)/(NIR + red) Rouse et al., 1973

RENDVI (Red edge – red)/(red edge

+ red)

Sims and Gamon, 2002b

NDRE (NIR – red edge)/(NIR + red

edge)

Jorge et al., 2019

NIRRENDVI {[(NIR + red edge)/2] –

red}/{[(NIR + red edge)/2] +

red}

Xie et al., 2018

Green NDVI (NIR – green)/(NIR + green) Gitelson and Merzlyak, 1998

variables were used for predicting biomass and yield using a
random forest machine learning approach.

Random Forest Modeling and Analysis
The random forest machine learning approach has been applied
widely in ecological studies (e.g., Prasad et al., 2006; Cutler
et al., 2007) and in various remote-sensing-based analyses (e.g.,
Belgiu and Dragut, 2016; Shi and Yang, 2016; Ma et al., 2017;
Sarron et al., 2018; Tu et al., 2019). Some of the identified
benefits of random forest is its capability to model complex
variable interactions and prevent overfitting (Maxwell et al.,
2018). Breiman (2001) found the random forest approach to
perform better than other classifiers, including discriminant
analysis, support vector machines, and neural networks. Similar
to the statistical approach of bagging, the random forest approach
is used to determine the optimal set of decision trees. Successive
classification trees are independently constructed using a random
sample of the data that does not depend on earlier decision
trees (Johansen et al., 2015). The best split at each node is based
on a subset of randomly selected predictor variables: in this
case, set to 10 (mtry), or if the number of variables were fewer
than 10, then all variables were considered. For those data sets
with >10 variables, it was found through an iterative process
that reducing the number of variables considered at each node
to 10 did not affect the results. A value of 10 was selected
because below that value, more variation in the accuracy between
multiple runs of the models was noted. The final aggregation
approach for all decision trees produced by the random forest
algorithm prevents overfitting. A total of 1,000 decision trees
(ntree) were used in this process to ensure stable predictions
that were not too computationally intensive (Oliveira et al.,
2012). Every training set is randomly sampled from the whole
data set with replacement, i.e., the same observation can be
used multiple times. Hence, in each decision tree, a bootstrap
sample was selected, containing 63.2% of the data, with the
remaining data used as evaluation data and to calculate the
out-of-bag (OOB) error rate. In this study, the OOB error
rate was used as an unbiased estimate of prediction error
(Braga-Neto and Dougherty, 2004; Ghosh et al., 2014). Using
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a bootstrap sample for each decision tree further prevents
overfitting. The experiments were implemented with the R
package “randomForest” (https://CRAN.R-project.org/package=
randomForest) (Liaw and Wiener, 2002).

Each of the six RGB and two multispectral image data sets
were used independently to produce random forest models
for predicting fresh shoot mass, fruit numbers, and yield
mass per plant, using all plant observations, only salt-treated
observations, and only control observations, yielding a total
of 72 models (Johansen et al., 2019b). The models based on
all plant observations were also applied to a subset consisting
only of salt-treated plants and another subset including only
control plants. This assessment was undertaken to evaluate how
separate models adapted specifically to either salt-treated or
control plants performed compared to those incorporating all
plant observations. To determine the accuracy of each model,
the importance of each predictor variable, the percentage of
explained variance, and the root mean square error (RMSE)
between the OOB observations of the field and UAV-derived
measurements of fresh shoot mass, fruit numbers, and yield mass
per plant were assessed. The relative root mean square error
(rRMSE), defined as the RMSE divided by the mean values of the
field observations, was also calculated. The decision trees were
fully grown, and each was used to predict the OOB observations
for that bootstrap sample. The final predicted value for an
observation was the average of the OOB predictions for that
observation based on the 1,000 decision trees. The permutation
importance measure was used in this study. The importance of
each variable is estimated by determining how much prediction
error increases for each decision tree when OOB data for a
selected variable is permuted and while all other variables are left
unchanged. The increase in prediction error is then averaged over
all trees and normalized by the standard deviation and measured
as the percentage increase in mean squared error (%IncMSE)
(Liaw and Wiener, 2002; Gregorutti et al., 2017).

RESULTS

Object-Based Variable Importance for
Predicting Biomass and Yield
For the eight UAV image data sets (six RGB and two
multispectral), 94.6–99.1% of all plants were automatically
detected, with 5–16% of the plants subjected to additional
manual adjustment to improve the delineation results. Plant
length (longest axis) measured in the field with a tape measure
produced an R2 value and RMSE of 0.85 and 0.052m (n =

132), respectively, when compared with measurements from
the automatically delineated plants. There was a tendency of
smaller plants being slightly overestimated, whereas larger plants
were slightly underestimated in length (Johansen et al., 2019a,b).
Manual adjustment of the delineation results increased the R2

value to 0.97 and reduced the RMSE to 0.018m. Figure 2 depicts
the delineation results for January 7, and further details on the
delineation results can be found in Johansen et al. (2019a).

Based on the delineated tomato plant objects, extracted
parameters including shape features, spectral information,

vegetation indices, texture features, and height information were
used for predicting biomass and yield for each individual tomato
plant.Table 4 shows the number of variables used for the random
forest models, i.e., those variables with R2 > 0.10 when assessed
against field-derived measurements of biomass and yield. When
performing the random forest machine learning predictions of
biomass and yield, the variable importance was calculated. As
expected, some bands proved to be of high importance in most of
the predictions, whereas other bands consistently appeared with
low importance. When all models were rerun omitting the bands
with low importance, it was found that reducing the number
of bands with low importance did not increase the variance
explained or reduce the RMSE. Hence, in this study, there was
little benefit in further reducing the number of predictor variables
included in the predictions.

Prediction models of fresh shoot mass, fruit numbers, and
yield mass were significantly improved by inclusion of shape
features, including plant area, border length, width, and length,
with plant area consistently achieving the highest importance
values (Figure 3). However, there was a tendency of the
importance scores for the plant area to reduce as a function of
increasing time to harvest. Interestingly, the importance values
for plant area were higher for the December 20 and January 7 data
sets than the January 14 data set (closest to harvest), at least for
fruit numbers and yield mass. After December 20, deterioration
of many of the tomato plants occurred due to a number of
destructive sandstorms on December 8 and 16, which damaged
many plants (≈9%). That, combined with the increasing salt
stress toward the end of the growing season, caused many of
the remaining plants to exhibit signs of poor condition and
senescence. Hence, the physical appearance and plant area of
some plants may not have corresponded as well on January 14
to their measured yield as they did on December 20 and January
7. Plant area on December 20 and January 7may reflect how well-
plants coped with the sandstorms, with those coping well also
yielding well. However, it is possible that the correlation between
area and yield uncoupled in the final days of the experiment, i.e.,
January 14 (Figure 3), because of a lag between how well a plant
performed at a particular time (e.g., measured by area) and how
that translated to effects on fruiting and yield, which might not
have manifested before January 14. The four shape features, i.e.,
plant area, border length, width, and length of individual plant
objects, were important model input parameters for both the six
RGB UAV collections (Figure 3) and the two multispectral UAV
data sets (Table 5).

In terms of spectral metrics, the Green–Red Index had
high importance for predicting fresh shoot mass for all six
RGB UAV captures (Figure 3) as well as the multispectral
UAV imagery (Table 5). Several of the other multispectral
vegetation indices were also highly ranked in their importance
for predicting fresh shoot mass, fruit numbers, and yield
mass. In fact, for the prediction of fresh shoot mass on
January 14 using the multispectral UAV imagery, the 10 highest
ranked predictor variables in terms of importance consisted
entirely of shape features and vegetation indices (Table 5).
Many UAV-based crop studies have reported positive correlation
between vegetation indices and both biomass and yield (e.g.,
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FIGURE 2 | Delineation results (yellow outlines) based on unmanned aerial vehicle (UAV) imagery collected on January 7, 2018 for (A) the whole field site and (B) a

subset of 20 tomato plants outlined in the white rectangle.

Hassan et al., 2019; Niu et al., 2019; Zheng et al., 2019). In our
study, the Green–Red Index showed relatively lower importance
for the prediction of fruit numbers and yield mass based on
the RGB UAV imagery. Again, this may have been attributed to
the severe sandstorms prior to the December 20 data collection,
which could have limited the Green–Red Index from providing
greater predictive value in terms of fruit numbers and yield
mass. In addition, some senescent tomato plants still produced
high fruit numbers at the end of the growing season, which
again also would have reduced the capacity of vegetation indices
successfully predicting fruit numbers and yield mass. It should be
noted that the Green–Red index achieved the highest importance
in predicting fresh shoot mass on December 20. This date
corresponds to the highest recorded green biomass during the

season, as the damage from the preceding sandstorm events and
increasing salt-stress resulted in the senescence of many plants
after December 20 (Johansen et al., 2019a).

Several of the texture features extracted for the individual
tomato plants were of importance for predicting fresh shoot
mass, fruit number, and yield mass from the RGB and
multispectral UAV imagery. The entropy texture measure of
the spectral bands and vegetation indices proved especially
useful for these predictions. The entropy texture measure tended
to show an exponential relationship with biomass and yield.
Entropy texture extracted from a gray level co-occurrence
matrix measures the spatial disorder of pixels, with texturally
uniform image objects having small values (Kekre et al., 2010).
Tomato plants with increasing biomass and yield appeared with
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TABLE 4 | Number of variables used for predicting fresh shoot mass, fruit numbers, and yield mass from the six red–green–blue (RGB) and two multispectral (MS)

unmanned aerial vehicle (UAV) data sets.

Jan 14 RGB/MS Jan 7 RGB/MS Dec 20 RGB Dec 6 RGB Nov 30 RGB Nov 23 RGB

Fresh shoot mass 20/31 20/35 19 14 14 8

Fruit numbers 20/31 18/26 15 14 8 4

Yield mass 20/31 19/27 15 14 8 8

FIGURE 3 | Variable importance in the random forest models based on the six unmanned aerial vehicle (UAV) red–green–blue (RGB) image data sets for the prediction

of fresh shoot mass, fruit number, and yield mass. Only variables that were included in ≥3 out of the six RGB unmanned aerial vehicle (UAV) data sets are presented.

Variables were sorted based on the number of data sets within which they were included and their importance value.
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TABLE 5 | Ranking of the 10 most important variables in the random forest models based on the two multispectral unmanned aerial vehicle (UAV) image data sets for the

prediction of fresh shoot mass, fruit number, and yield mass.

Importance Fresh shoot mass Fruit number Yield mass

Ranking 14-Jan 7-Jan 14-Jan 7-Jan 14-Jan 7-Jan

1 Area Area Area Area Area Area

2 Width Width Length Width Length Width

3 Length NIRRENDVI Ent RedEdge Ent RedEdge Ent RedEdge Ent RedEdge

4 NDVI Length Width RENDVI Width NIRRENDVI

5 NIRRENDVI RENDVI Green-Red index Green-Red index Green NDVI Green-Red index

6 Green-Red index Green-Red index Ent NIR NIRRENDVI Dis NDVI RENDVI

7 Red Red Green NDVI Length Border length Length

8 RENDVI Hom NDVI Ent green Hom NDVI Con red Hom NDVI

9 Border length Ent Green Border length Border length Ent NIR Green NDVI

10 Green NDVI Ent RedEdge Dis NDVI Dis NDVI Ent green Border length

increasing entropy texture values, indicating a more complex
and “disorderly” plant canopy architecture. However, once the
biomass and yield reached a set threshold in size, the entropy
texture values became unsuited for accurately predicting biomass
and yield because of the exponential relationship. Hence, large
plants with large amounts of biomass and high fruit numbers
and yield mass represented the maximum spatial disorder
of pixels accounted for by the entropy measure. While the
entropy texture measure might be a useful predictor variable
for smaller tomato plants with limited biomass and yield, the
measure became increasingly unsuited as a predictive variable
with increasing biomass and yield. This is likely the reason
why the entropy texture measure was found informative during
the earliest image campaigns (i.e., when the plants were still
small) but had a lower importance for those data sets collected
closer to harvest (i.e., when the plants were larger) (see
Figure 3).

The measurements of plant height and their standard
deviation was in most cases identified with low importance
as a predictor variable. A cause of this might have been
the fact that plant height did not vary much between
large and small plants, with plant growth mainly occurring
horizontally. In addition, the sandstorm events that occurred
during the growing season caused many of the branches to
break, which also affected plant height in some cases. The
importance of predictor variables was also assessed separately
for the control and salt-treated tomato plants. While variations
in the ranking of predictor variables occurred, the shape
features were still found to be most important, followed by
vegetation indices and then texture measures (the entropy
texture measure in particular). However, one noticeable variation
was the much higher importance of the standard deviation
of maximum plant height for the salt-treated tomato plants
when using the RGB UAV imagery. This may have been
due to the much lower yield and hence limited effect of the
tomato fruit weight on the plant height. It is likely that the
standard deviation of plant height played an important role
in the salt-treated plants because of their smaller plant size
and lower degree of sprawling. Hence, plant height was a

stronger determinant of plant size overall, compared with the
control plants.

Prediction of Biomass and Yield of All
Plants
Distribution of Predictions for All Plants
The average field-derived fresh shoot mass, fruit numbers, and
yield mass for all plants remaining at harvest was 715.29,
532.06, and 226.96 g, respectively, whereas those for the control
plants were 1070.67, 810.00, and 362.55 g, respectively, while
those of the salt-treated plants were 355.56, 241.89, and 87.47 g,
respectively. When assessing the field-based average values
against those predicted from all eight UAV image data sets
(November 23-January 14) using the random forest models
developed on (and applied to) all plants, it was found that
all the average predicted values were within 16.97 g (2.37%),
20.12 (3.78%), and 9.59 g (4.23%) for fresh shoot mass, fruit
numbers, and yield mass, respectively (Figure 4). This indicates
that the average biomass and yield can be predicted with
high accuracy as much as 8 weeks in advance, even with the
disruptive sandstorms and increasing salt-stress affecting those
plants remaining at harvest. However, the range of values for
the field observations was much larger than from the predictions
of the earliest UAV data collections (e.g., see interquartile range
between field observations and predictions for November 23 in
Figure 4). The whisker and interquartile range of fresh shoot
mass, fruit numbers, and yield mass predictions approached
those of the field observations the closer to harvest the UAV
data were collected (Figure 4). Therefore, while the average fresh
shoot mass, fruit numbers, and yield mass could be accurately
mapped well in advance of harvest, the prediction accuracy for
an individual plants’ fresh shoot mass, fruit numbers, and yield
mass increased as a function of decreasing time until harvest.
For all eight UAV data sets, the median of the predicted fruit
numbers and yield mass was overestimated (Figure 4): although
this appeared to be less of an issue for the predicted fresh shoot
mass. It can also be seen from Figure 4 that those plants with
very high fresh shoot mass, fruit numbers, and yield mass were
underestimated based on the UAV imagery.
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FIGURE 4 | Box-and-whisker plots, showing the variation in red–green–blue (RGB) and multispectral unmanned aerial vehicle (UAV) predicted fresh shoot mass, fruit

numbers, and yield mass throughout the growing season in relation to field-based observations at the time of harvest.

Distribution of Predictions for Control and

Salt-Treated Plants
When assessing the average values of predicted fresh shoot
mass, fruit numbers, and yield mass for just the control plants
using the random forest models developed on all plants, the
first three UAV data sets (November 23 and 30, December 6)
significantly underestimated average values of 108.76–238.14 g
(10.16–22.24%) for fresh shoot mass, 52.14–175.87 (6.44–
21.71%) for fruit numbers, and 30.00–87.85 g (8.27–24.23%)
for yield mass (Table 6). Assessing just the salt-treated plants
showed the opposite pattern, with the first three UAV data
sets (November 23 and 30, December 6) producing significantly
overestimated average values of 121.14–272.58 g (34.07–76.66%)
for fresh shoot mass, 92.27–221.76 (38.15–91.68%) for fruit
numbers, and 47.67–110.05 g (54.50–125.81%) for yield mass.
Hence, the underestimation of average values for the control
plants and the overestimation of the salt-treated plants balanced
the average values for predicting fresh shoot mass, fruit numbers,
and yield mass for all tomato plants for the first three UAV data
captures. It also shows that while the overall average biomass
and yield for all plants were accurately predicted, the predictions
were not accurate for individual plants. This was likely because

the response to the salt treatment had not yet come into full
effect on November 23 and 30 and December 6, and hence,
the predictions did not account for the further increase in salt
treatment and consequent impact on plant growth. On the other
hand, biomass and yield of control plants were underestimated as
the initial impact of the salt treatment on half the plants reduced
the overall average. The data sets collected on December 20 and
January 7 and 14 produced much better average estimates for the
control-only and salt-treated-only data sets, with all being within
14% of the average value estimated from the field data. This was
because the variables extracted from the UAV imagery on those
dates and used for predicting biomass and yield at harvest better
represented each individual plant’s condition at harvest.

Assessment of All Individual Plants From Single Date

UAV Data
The initial assessment of prediction accuracies of fresh shoot
mass, fruit numbers, and yield mass was based on the OOB
observations of tomato plants, including both the control and
the salt-treated plants. The RGB image-based results showed
that in the week before harvest, the explained variance of fresh
shoot mass, number of tomatoes, and yield mass were 86.60%
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TABLE 6 | Percentage average over- and underestimation of predicted fresh shoot mass, fruit numbers, and yield mass in relation to the field measurements when

assessing control and salt-treated plants separately.

14-Jan MS 14-Jan 7-Jan MS 7-Jan 20-Dec 6-Dec 30-Nov 23-Nov

Fresh shoot mass—control (%) −1.53 −2.04 −2.76 −2.45 −4.36 −10.16 −12.72 −22.24

Fresh shoot mass—salt (%) 7.03 6.74 7.19 6.04 12.49 34.07 42.84 76.66

Fruit numbers—control (%) 2.84 3.12 −0.44 −0.61 0.24 −6.44 −12.29 −21.71

Fruit numbers—salt (%) −1.50 −1.00 10.22 8.62 6.15 38.15 52.58 91.68

Yield mass—control (%) 2.01 2.34 2.21 1.96 −0.66 −8.27 −14.24 −24.23

Yield mass—salt (%) 3.54 4.82 1.37 −0.22 13.79 54.50 73.81 125.81

Positive values indicate overestimation and negative values indicate underestimation.

(RMSE = 208.4 g, rRMSE = 29.14%), 59.46% (RMSE = 379.7,
rRMSE = 71.36%), and 61.09% (RMSE = 168.9 g, rRMSE =

74.40%), respectively. Two weeks before harvest, the explained
variance was slightly higher and the RMSE slightly lower than
the week prior to harvest for the predicted fresh shoot mass,
fruit numbers, and yield mass, using the RGB imagery (Table 7),
possibly attributed to deterioration of some plants toward the end
of the growing season. The results derived from the multispectral
and RGB UAV data sets collected on January 7 and 14 were
very similar and will be further compared in Comparison of
Model Results for Control and Salt-Treated Plants below. On
December 20, the explained variance of fresh shoot mass, fruit
numbers, and yield mass was 79.20% (RMSE = 259.8 g, rRMSE
= 36.31%), 55.90% (RMSE = 395.5, rRMSE = 74.33%), and
57.73% (RMSE = 175.7 g, rRMSE = 77.42%). On December 6, a
reduction of>20% in explained variance and associated increases
in RMSEwas observed when comparing with December 20 for all
three variables. As destructive sandstorms damaged many plants
(≈9%) on December 8 and 16, the imagery collected after the
sandstorm events provided more representative information on
biomass and yield at harvest for the individual plants than the
data collected prior to the sandstorms (Johansen et al., 2019b).
The data collected on November 23 and 30 were found to
be unsuitable for predicting biomass and yield at harvest for
individual plants. Although the explained variance of fresh shoot
mass was 46.57% on November 30, the RMSE was still more than
double those for January 7 and 14.

Figure 5 provides an example, based on the multispectral
UAV imagery from January 7, of the distribution of predicted
fresh shoot mass, fruit numbers, and yield mass in relation to
the field-based measurements. The best-fit regression lines show
that there was a tendency of small plants being overestimated
in terms of predicted fresh shoot mass, fruit numbers, and yield
mass. However, those plants with high fresh shoot mass, fruit
numbers, and yield mass had their values underestimated. The
higher explained variance for fresh shoot mass was related to the
ability to integrate shape features such as plant area and other
plant dimensions. Those shape features and the greenness of
the plants, expressed through the use of vegetation indices, are
closely related to biomass (Bendig et al., 2015). Fruit numbers
and yield mass have a more indirect relationship to the shape and
greenness of the plants. For example, some smaller and senescent
field-assessed tomato plants were identified with large numbers

of fruit, which would likely have been influenced by the different
types of accessions and the two treatments.

Figure 6 clearly shows the difference between the control
and salt-treated tomato plants in terms of fresh shoot mass,
fruit number, and yield mass based on the multispectral
UAV imagery collected on January 7. Most of the plants
(96.7%) in the salt-treated plots had a fresh shoot mass
between 0 and 1,000 g, with only 3.3% plants appearing in
the category between 1,000 and 1,500 g. Although ∼48% of
the control plants appeared in the category between 0 and
1,000 g of fresh shoot mass, ∼48 and 4% occurred with fresh
shoot mass weights between 1,000 and 2,000 g and 2,000 and
3,500 g, respectively. The predicted distribution in terms of
fruit number and yield mass between control and salt-treated
plants was similar to that of fresh shoot mass, with all but
six and five plants appearing with >800 fruits and >450 g
of yield mass, respectively, for the salt-treated plots. The
control plots on the other hand produced fruit numbers and
yield mass for some plants up to 2,751 fruits and 1,050 g of
fruit, respectively.

Assessment of All Individual Plants From

Multitemporal UAV Data
Combining data from different dates was also investigated to
assess if the use of multitemporal information improved the
prediction accuracies of fresh shoot mass, fruit numbers, and
yield mass. Using the predictor variables from the multispectral
imagery from both January 7 and 14, the explained variance
increased by 1.66% (from 87.95 to 89.61%) and 0.10% (from 63.88
to 63.98%), and the rRMSE decreased by 1.94 and 0.04% for fresh
shoot mass and fruit numbers, respectively, in comparison to
the results using only data from January 7. For the yield mass
predictions, the use of multispectral data from both January 7
and 14 caused a decrease in the explained variance of 0.64%
and an increase in rRMSE of 0.76%. For the RGB imagery, the
combination of data from January 7 and 14 and December 20
produced increases in explained variance of 1.44 (from 87.61
to 89.05%), 2.31 (from 60.61 to 62.92%), and 1.45% (from
64.37 to 65.82%) and decreases in rRMSE of 1.67, 2.01, and
1.36% for fresh shoot mass, fruit numbers, and yield mass,
respectively. The addition of RGB data from November 23
and 30 reduced the prediction accuracies. As such, negligible
differences in prediction accuracies were identified from using
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TABLE 7 | Percentage explained variance (EV) and relative root mean square error (rRMSE) based on predictions of fresh shoot mass, fruit numbers, and yield mass for all

eight unmanned aerial vehicle (UAV) data sets based on the joint analysis of control and salt-treated tomato plants.

14-Jan MS 14-Jan 7-Jan MS 7-Jan 20-Dec 6-Dec 30-Nov 23-Nov

EV fresh shoot mass (%) 87.69 86.6 87.95 87.61 79.2 59.14 46.57 17.77

rRMSE fresh shoot mass (%) 27.90 29.14 27.64 28.02 36.31 50.89 58.23 72.21

EV fruit numbers (%) 57.86 59.46 63.88 60.61 55.9 33.77 25.3 2.15

rRMSE fruit numbers (%) 72.89 71.36 67.37 70.25 74.33 91.20 96.77 110.79

EV yield mass (%) 59.47 61.09 66.51 64.37 57.73 37.51 26.36 6.31

rRMSE yield mass (%) 76.08 74.40 69.09 71.09 77.42 94.27 102.25 115.36

The two multispectral UAV data sets are denoted with “MS,” whereas the other data sets represent the RGB UAV data.

FIGURE 5 | Scatterplots showing the linear relationships between field-measured and predicted (A) fresh shoot mass, (B) fruit numbers, and (C) yield mass based on

the multispectral unmanned aerial vehicle (UAV) imagery collected on January 7, 2018.

multitemporal data as opposed to a single date (January 7 or 14)
prior to harvest.

Comparison of Model Results for Control
and Salt-Treated Plants
Different random forest models were developed for (1) all tomato
plants, (2) the control plants only, and (3) the salt-treated plants
only. The models developed for all tomato plants were applied
to all plants, the control plants only, and the salt-treated plants
only, whereas the models developed for the control plants only
and the salt-treated plants only were only applied to those specific
subexperiments. As a general trend, the variance explained
decreased and the rRMSE increased as a function of increasing
time until harvest, indicating that approaching harvest time, the
predictions of fresh shoot mass, fruit numbers, and yield mass
improved (Figure 7). The random forest model developed on
and applied to all (i.e., both control and salt-treated) tomato
plants produced the highest proportion of explained variance
and the lowest rRMSE for predicting fresh shoot mass, fruit
numbers, and yield mass on December 20, January 7 and 14
(Figure 7). It is likely that the larger range of measurements
included when using both control and salt-treated plants in the
model development improved the prediction, as the salt-treated
and control plants included some of the plants with the lowest
and highest measures, respectively, of fresh shoot mass, fruit
numbers, and yield mass.

Assessing Models Developed for Control Plants Only

and Salt-Treated Plants Only
The random forest models developed on and applied to just
the control plants had very similar amounts of explained
variance (within 0.011) to the results produced when using
the random forest model developed for all plants and applied
only to the control plants for the UAV data sets collected
on December 20 and January 7 and 14. On December 6,
a reduction in explained variance of 3.49% was observed
when using the model developed on and applied to just the
control plants. However, for fresh shoot mass, fruit numbers,
and yield mass, the explained variance was higher (by up to
6.29 on December 6, 5.28 on December 20, and 5.05% on
December 20, respectively) between December 6 and January
14, when using the random forest models specifically developed
on and applied to only the salt-treated plants compared
to using the model developed on all plants (Figure 7). In
addition, within the same period, a lowering of the RMSE
was observed for predicted fresh shoot mass, fruit numbers,
and yield mass of 6.06–70.15 g (1.70–19.73%), 5.27–31.05 (2.18–
12.84%, excluding January 7), and 1.95–20.33 g (2.23–23.24%),
respectively, using the model for the salt-treated plants only
(Figure 7). These results indicate that models to predict biomass
and yield of salt-stressed plants may need to be separately
developed, whereas predicting the yield of control plants was
not affected by the inclusion of salt-stressed plants within the
models. The results also demonstrate the ability to predict
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FIGURE 6 | Maps of predicted fresh shoot mass, fruit numbers, and yield mass per tomato plant based on the multispectral unmanned aerial vehicle (UAV) imagery

collected on January 7.

biomass and yield of individual tomato plants up to 4 weeks
before harvest.

Comparing Model Results of the Multispectral and

RGB UAV Imagery
The difference in explained variance between the multispectral
and RGB UAV-derived predictions of fresh shoot mass, fruit
numbers, and yield mass was within 3.27% for both January 7
and 14 when assessing all plants. While the multispectral UAV
data produced predictions with slightly higher explained variance
for all variables than the RGB imagery collected on January

7, the RGB UAV imagery produced slightly higher explained
variance for fruit numbers (1.60%) and yield mass (1.62%) for
all plants on January 14 (Figure 8). Corresponding lowering of
the RMSE on January 7 for all three variables predicted from the
multispectral UAV imagery was observed, while the multispectral
UAV-based RMSEs for fruit numbers and yield mass on January
14 increased slightly (8.14 and 3.81 g, respectively). An objective
comparison of the results from the multispectral and RGB
imagery was difficult to achieve because of the differences in
suitable predictor variables (Table 2), number and wavelength
locations of spectral bands, pixel sizes (0.50 cm for RGB and
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FIGURE 7 | Percentage explained variance and root mean square error of predicted measurements of fresh shoot mass, fruit numbers, and yield mass based on the

RGB unmanned aerial vehicle (UAV) imagery collected on November 23 and 30, December 6 and 20, and January 7 and 14 using random forest models based on (1)

all tomato plants, (2) only control plants, (3) all plants but applied only to the control plants, (4) only salt-treated plants, and (5) all plants but applied only to the

salt-treated plants.

1.12 cm for multispectral), camera specifications (12MP for RGB
vs. 1.2 MP for the multispectral), as well as field of view and
focal length differences, among others. Despite this, Figure 8
shows that neither multispectral nor RGB UAV imagery were
clearly advantageous in any combination of variables, models,
and treatments, as long as accurate delineation of tomato plants
can be achieved for derivation of plant shape features, as these
were the most important variables for the prediction of biomass
and yield.

For instance, when comparing the multispectral and RGB
UAV imagery for the control plants only, the RGB imagery
explained the highest amount of variance for fruit numbers and
yield mass using both the random forest model based on the
control plants (3.72–4.81% higher) and on all plants (2.89–3.65%

higher) on January 14 (Figure 8). In contrast, the multispectral
imagery could be used to predict fresh shoot mass with an
explained variance of 1.43 and 1.46% higher than the RGB
imagery for the control plants using control plants only and all
plants for modeling, respectively. On January 7, the multispectral
UAV imagery produced the highest proportion of explained
variance in all cases for the control plants (0.32–5.83% higher
than the RGB imagery), with the highest difference of 5.83% for
fruit numbers when using a model developed on all plants and
applied only to the control plants (Figure 8).

When predicting the salt-treated plants only based on the
random forest model specifically developed on only the salt-
treated plants, the multispectral UAV imagery produced higher
proportions of explained variance than the RGB UAV imagery
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FIGURE 8 | Comparison between the percentage explained variance and root mean square error of predicted measurements of fresh shoot mass, fruit numbers, and

yield derived from the multispectral and red–green–blue (RGB) unmanned aerial vehicle (UAV) imagery acquired on January 7 and 14, using random forest models

based on (1) all tomato plants, (2) only control plants, (3) all plants but applied only to the control plants, (4) only salt-treated plants, and (5) all plants but applied only

to the salt-treated plants.

for both January 7 (higher by 1.66% for fresh shoot mass, 5.82%
for yield mass, and 6.89% for fruit numbers) and 14 (higher by
2.90% for yield mass, 3.01% for fresh shoot mass, and 4.13%
for fruit numbers). Similar observations were identified when
using the random forest model based on all plants for salt-treated
plants to predict their fresh shoot mass, fruit numbers, and yield
mass, where themultispectral UAV imagery explained the highest
amount of variance (3.13–6.51% higher) for both January 7 and
14, with the exception of fruit numbers on January 7, when the
RGBUAV imagery (43.86%) explained 3.88%more variance than
the multispectral UAV imagery (39.98%) (Figure 8). Overall, the
increase in explained variance were generally accompanied by a
decrease in RMSE.

DISCUSSION

Model Transferability of UAV Data
Using the random forest machine learning approach, our results
showed that UAV imagery collected within 4 weeks of harvest
provided the best results for predicting biomass and yield at
harvest for individual tomato plants. Our results also indicated

that separate random forest models for predicting yield of salt-
stressed plants might be required. In contrast, the yield of control
plants could be predicted with similar accuracies when using
models developed on both all plants and control plants only.
This may be attributed to the fact that the control plants covered
a similar range of values to that for all plants, whereas the
salt-treated plants mainly covered the lower range of recorded
values. For instance, 157 (out of 497) control plants had higher
numbers of fruit yield than any of the salt-treated plants. Hence,
those models developed specifically on and applied to the salt-
treated plants performed better than using those developed on all
plants when applied to the salt-treated plants. This emphasizes
the importance of carefully selecting data sets in terms of size,
variability, and representativeness for model development to
ensure transferability (Liu et al., 2018; Maxwell et al., 2018; Ma
et al., 2019). Model transferability will also require data that are
representative in other contexts, e.g., including multiple growing
seasons, different areas, different climate and weather conditions,
different soils, and different management practices (Maxwell
et al., 2018). Hence, future work should focus on assessing the
model transferability of machine learning approaches for UAV-
based mapping applications. It will be valuable for growers to
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know if the same machine learning model can be used under
different contexts or if the same model can be used universally
for the same plant species.

The analysis included 199 S. pimpinellifolium accessions and
one S. lycopersicum accession (the commercial tomato, Heinz
1706). Considering the high mapping accuracies of the UAV
data collected in the weeks preceding harvest, the developed
models did not seem to be affected by the large variety of
accessions included in the training data. The three salt-treated
S. lycopersicum plants all died prior to harvest, and while the
biomass of the three control plants was predicted (based on
the multispectral UAV imagery collected on January 7) to be
within 6.84–14.48% of the field-based observations (better than
the RMSE and rRMSE of 197.7 g and 27.64%, respectively,
Figure 5A), the predicted yield was significantly overestimated,
with two plants not producing fruit and one plant producing
630 fewer fruits and 283 g of yield mass less than predicted.
Despite the small sample size of the S. lycopersicum species,
these results raise questions on whether the developed models
can be employed for different tomato plant species. Hence,
future studies testing model transferability of machine learning
approaches should also test different species.

The Issue of Data Dimensionality and
Errors
The availability of UAV data for supporting smart farming is
expected to grow significantly in the future (Wolfert et al.,
2017; Liakos et al., 2018). The dimensionality of available
data is also expected to increase, with the availability of
hyperspectral imagery providing hundreds of spectral bands for
analysis (Torresan et al., 2016; Adao et al., 2017). Likewise,
additional sensors provide new observation capacity, e.g., LiDAR
data providing three-dimensional information on crops, or
thermal data providing temperature measurements at high
spatial resolution, both of which are increasingly being integrated
with other information and used for crop assessment (Calderon
et al., 2013; Ivushkin et al., 2019). The growing availability
of such UAV-based data sets will likely make predictions of
biomass, yield, and other biophysical and biochemical properties
not only more accurate but also more complex. In many
instances, this results in higher computational costs and longer
processing times, which limits the proficiency of real-time
delivery. With the increasing UAV data dimensionality, machine
learning approaches become the only feasible option for big
data analytics. In most cases, preprocessing approaches (standard
UAV processing workflow to produce orthomosaics, geo-
referencing, radiometric corrections, etc.) are time consuming for
large data sets. To increase the ability to achieve well-calibrated
and analyzed near real-time UAV map outputs from big data,
machine learning approaches suitable for converting raw data
into final map outputs should be explored (Yang et al., 2020).

While deep learning models are designed for high-quality
data feature learning (Zhang et al., 2018), some research
has experimented with deep learning models for low-quality
data. Approaches such as those by Vincent et al. (2010) and
Wang and Tao (2016) have focused on data denoising routines
and identifying reliable features within corrupted data, and
these might be explored in future research for deep learning

models applied to multiple UAV data sets collected under
various conditions and with different acquisition parameters.
Zhang et al. (2018) also discussed a multimodel deep learning
approach specifically suited to heterogeneous data, which might
be explored in future research as well to regionalize UAV
data sets for optimization of analysis and results. Despite the
availability of some approaches suited for reducing the effects of
uncertainties and noise inherent in UAV data, further exploration
is still required to effectively reduce processing time and alleviate
the need for complex intermediate processing steps of UAV
data, preventing near real-time delivery of information on crop
variables. For instance, uncertainty in UAV-based thermal data
may be introduced by wind speed, wind direction, and flight
direction. UAV optical data collected by RGB and multispectral
and hyperspectral sensors are all sensitive to the time, season,
and latitude of data acquisition, as that will affect the solar
angle and shadowing effects. In addition, the quality of sensor
calibration may impact data quality (Barreto et al., 2019). The
current basic preprocessing chain of optical UAV data includes
many steps, where multiple filtering modes, blending modes,
color correction, and interpolation approaches will affect the
orthomosaic and hence potentially introduce data noise. In
addition, the spectral and radiometric properties of different
camera systems tend to differ, making direct comparison of
data unfeasible (Tmusic et al., 2020). In addition to all of
these potential uncertainties, flight planning parameters, such
as forward overlap, sidelap, speed, flight direction, and flying
height (Tu et al., 2020), as well as weather conditions during data
acquisition, e.g., wind speed and direction, cloud shadows, dust
near the ground, and variations in the atmosphere’s composition
(Zhang et al., 2014; Ziliana et al., 2018), will all influence
and affect the quality of the acquired data. With all of these
potential issues introduced inherent in UAV data, it is important
that future work explore the sensitivity of machine learning
approaches to these uncertainties.

Variable Standardization of Model Inputs
Ultimately, our research showed that plant-based shape
parameters had the highest importance for predicting biomass
and yield of the tomato plants using random forest models. As
long as the UAV-derived imagery is geometrically registered
and a suitable delineation approach can be developed, the
mapping of shape parameters is likely to be influenced less than
the spectral characteristics when using cameras with different
spectral and radiometric characteristics or if flight planning
parameters vary between data acquisitions. Hence, if integrating
multiple data sets from different UAV-based sources for mapping
tomato plants, shape parameters should be a main focus to
ensure consistency between data sets. Vegetation indices proved
useful in this research as well, and they have been utilized
previously to reduce atmospheric effects and limit the need
for image calibration (Lillesand et al., 2015; Xue and Su, 2017;
Fernandez-Gallego et al., 2019). However, ratio-based indices
are still affected by the spectral resolution and band width of the
sensor used. Vegetation indices often fail to account for canopy-
background interactions and canopy bidirectional reflectance
anisotropies, especially those associated with shadowing effects,
and become insensitive to vegetation with high leaf area index
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values, which leads to insensitivities to vegetation variation of
dense plants and trees (Gitelson et al., 1996; Sims and Gamon,
2002a; Asner and Warner, 2003). As such, the application of
vegetation indices for mapping biophysical and biochemical
parameters lacks generality, making them time, space, and crop
type specific (Houborg et al., 2007). Mapping actual biophysical
and biochemical parameters from optical data and using these
as model inputs for predicting crop parameters such as biomass
and yield might ensure further standardization when integrating
data collected for different areas and from different sensors
with machine learning approaches (Houborg et al., 2007;
Gholizadeh et al., 2015). That will generally require field-based
measurements to be collected for model calibration purposes.
In fact, the use of high-quality field data is imperative for both
calibration and validation to standardize UAV-derived outputs
suited as model input for prediction of crop parameters (Von
Bueren et al., 2014). Radiometric correction of imagery is equally
important to ensure consistency of optical image data over time
and between sites (Jeong et al., 2018; Tmusic et al., 2020). Hence,
despite the large array of UAV image data sets and acquisition
and processing routines for crop assessment, potential avenues
exist to improve the consistency of diverse data used as input for
machine learning approaches.

CONCLUSIONS

A novel approach for using UAV-based imagery collected at
various intervals prior to harvest was employed to predict
fresh shoot mass, fruit numbers, and yield mass of tomato
plants at harvest using a random forest machine learning
approach. Shape features derived from individual tomato plants
were determined to be the most important predictor variables,
followed by vegetation indices and image texture. While the
average biomass and yield at the field level could accurately be
predicted up to 8 weeks prior to harvest, a significant reduction
in prediction accuracy of biomass and yield of individual plants
was identified when using UAV imagery collected more than 4
weeks before harvest. This was attributed to sandstorm events,
where the imagery collected after the sandstorms provided more
representative predictions of biomass, fruit numbers, and yield
mass at harvest for individual plants than the data collected prior
to the sandstorms. Models specifically developed for predicting
yield from the salt-stressed plants increased the explained
variance by up to 6.29% (relative to those models for all plants),
whereas little (<1.1% explained variance) variation occurred in
the results for predicting yield of the control plants irrespective
of which models were used.

The research demonstrates the suitability of using UAV
imagery and a random forest machine learning approach for
biomass and yield prediction of tomato plants but highlights
the need for careful consideration in terms of data inputs
(e.g., parameters of control vs. salt-stressed plants) for model
development. It is important to be mindful of data quality both
with regard to UAV-based imagery and field-based observations,
as machine learning approaches are inevitably influenced
by errors. It is therefore imperative to follow standardized
procedures when extracting data used as input into machine

learning algorithms. Future work should compare the results of
different machine and deep learning approaches for predicting
biomass, yield, and other biophysical and biochemical properties
of agricultural crops and explore the sensitivities of these
approaches to typical UAV data inconsistencies (preprocessing
steps, cloud shadow contamination of imagery, sensor noise,
etc.). Assessing the transferability of developed machine and
deep learning models to test their applicability to a wider context
also needs to be explored (e.g., for UAV imagery collected of the
same crops but for different areas or during different growing
seasons for the same area). Finally, heritability calculations to
evaluate the variation between phenotypic traits of the tomato
plants in response to genetic variation among the different
tomato plant accessions will be an important extension of this
research. This research and identified future directions may
provide growers with valuable UAV-derived information on
how to manage plant growth, increase yield, and obtain advance
knowledge on harvesting, sales, and distribution requirements of
tomatoes and other fruit.
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