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Abstract: Introducing novel biomarkers for accurately detecting and differentiating rheumatoid
arthritis (RA) and osteoarthritis (OA) using clinical samples is essential. In the current study, we
searched for a novel data-driven gene signature of synovial tissues to differentiate RA from OA
patients. Fifty-three RA, 41 OA, and 25 normal microarray-based transcriptome samples were utilized.
The area under the curve random forests (RF) variable importance measurement was applied to
seek the most influential differential genes between RA and OA. Five algorithms including RF,
k-nearest neighbors (kNN), support vector machines (SVM), naïve-Bayes, and a tree-based method
were employed for the classification. We found a 16-gene signature that could effectively differentiate
RA from OA, including TMOD1, POP7, SGCA, KLRD1, ALOX5, RAB22A, ANK3, PTPN3, GZMK,
CLU, GZMB, FBXL7, TNFRSF4, IL32, MXRA7, and CD8A. The externally validated accuracy of the
RF model was 0.96 (sensitivity = 1.00, specificity = 0.90). Likewise, the accuracy of kNN, SVM,
naïve-Bayes, and decision tree was 0.96, 0.96, 0.96, and 0.91, respectively. Functional meta-analysis
exhibited the differential pathological processes of RA and OA; suggested promising targets for
further mechanistic and therapeutic studies. In conclusion, the proposed genetic signature combined
with sophisticated classification methods may improve the diagnosis and management of RA patients.

Keywords: rheumatoid arthritis; osteoarthritis; diagnostic biomarker; machine learning; meta-analysis;
pathway analysis

1. Introduction

In accordance with the dramatically increased incidence in the older population, osteoarthritis
(OA) and rheumatoid arthritis (RA) are currently among the most common causes of
musculoskeletal-related chronic disability [1,2]. Depending on the case definition and joint sites
under study, the prevalence of RA was at 0.5–1.1% while that of OA was much more common, ranging
from 5% of the hip and 33% of the knee to 60% of the hands in adults 65 years of age or older [3,4].
RA is a chronic autoimmune disease that exhibits persistent synovial and systematic inflammation
along with the existence of autoantibodies [5]. On the other hand, OA has been characterized as a
non-inflammatory degenerative joint disease although synovial inflammation is a debatably important
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feature [6,7]. OA and RA are pathophysiologically different but share similar and overlapping features
in terms of underlying mechanisms [8,9]. In addition, early-stage RA appears to be remarkably similar
to other forms of arthritis, especially OA; thus, more investigations are needed to introduce better
approaches for differentiating RA and OA [10].

Although laboratory tests, prominently blood test, have been believed to provide the most
important information for diagnosis of arthritis, 30% of RA patients had negative rheumatoid factor or
anticyclic citrullinated peptide antibodies while 40% got a normal result for erythrocyte sedimentation
rate or C-reactive protein [11]. The values indicate that complementary and alternative methods are
needed to increase the diagnostic accuracy of RA. Among them, synovial tissue has been used for the
diagnosis and study of arthritis for decades and its substantial impact was recently reviewed [12,13].
Several studies have suggested specific immunohistochemical features of synovial tissue that separate
RA (or OA) from other joint diseases or the early stage from the late stage of disease [14–16]. However,
a recent study indicated that only a minority of patients could have a definitive diagnosis despite the
high success rate of gathering synovial tissue [17]. This reduces the potential of using synovial tissue
not only for abnormal detection but also for proper guidance of treatments. Moreover, investigations
exploring small subsets of genes that can be used to classify RA versus OA, RA versus healthy persons
and OA versus healthy persons using synovial tissues are lacking.

Herein, we searched for genome-wide transcriptional profiles from the synovial tissues of RA,
OA, and normal synovial samples and looked for genetic signatures that were suitable for accurately
differentiating RA from OA as well as RA from normal tissues and OA from normal tissues. The results
from this investigation are expected to be helpful in some particular populations, such as elder patients
with inflammatory presentation of OA and patients without typical biomarkers. In addition, we
applied gene expression meta-analysis and functional analysis to explore the different biological
processes involved in the pathophysiology of RA and OA. The bioinformatics-based suggestive
mechanisms would be helpful for further mechanistic and therapeutic studies. In conclusion, our
findings may assist the blood-based laboratory tests to improve the accuracy of diagnosis and success
rate of clinical interventions.

2. Materials and Methods

2.1. Data Sets

The available Affymetrix and Illumina microarrays on gene expression in RA, OA, and healthy
control (N) synovial tissues were curated from Gene Expression Omnibus with the search terms
“Rheumatoid arthritis”, “Osteoarthritis”, “Synovial tissue*”, and “Synovial membrane”. As a result,
the following data sets were included: GSE1919 (3 RA, 3 OA, and 5 N), GSE39340 (10 RA and 7 OA),
GSE36700 (7 RA and 5 OA), GSE55457 (13 RA, 10 OA, and 10 N), GSE55584 (10 RA and 6 OA), GSE55235
(10 RA, 10 OA, and 10 N). Synovial tissues mixed from different patients in the GSE1919 data set were
excluded before data processing and analysis. In total, the data sets on RA and OA included 94 patients.
The comparisons between OA and normal controls and between RA and normal controls consisted
of 48 and 51 samples, respectively. Information on the included data sets is presented in Table S1.
We then divided the six data sets into two groups: set A (for variable selection purpose) consisted of
GSE1919, GSE39340, and GSE36700; set B (for model fitting purpose) consisted of GSE55457, GSE55584,
and GSE55235.

2.2. Microarray Data Preprocessing

Robust multiarray average normalization in affy package version 1.54.0 was conducted for
Affymetrix-based datasets, and robust spline normalization in lumi package version 2.28.0 was applied
for Illumina beadchip arrays [18,19]. The probes were mapped according to Entrez Gene ID and official
gene nomenclature. Subsequently, the individual datasets were merged after removing batch effects
by empirical the Bayes cross-study normalization method [20]. Following cross-study normalization,
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only common genes among different platforms, e.g., Affymetrix and Illumina, and datasets remained
(8597 genes).

2.3. Variable Importance Measurement and Selection

In this study, the area under the curve permutation random forest variable importance
measurement (AUC-RF VIM) was applied. AUC-RF VIM was conducted using party package
version 1.2-3 [21]. Only the candidates that had a variable importance value higher than our arbitrary
criterion were selected for the classification tasks.

2.4. Exploratory Data Analysis and Visualization

We performed the Wilcoxon rank-sum test to compare the differences of individual predictors
between two groups. Additionally, principal component analysis (PCA), a data dimensionality
reduction technique, was utilized to explore the underlying trends and patterns of data as well as to
detect possible outliers of two comparative groups [22]. Using Metaboanalyst 3.0, a heatmap of the
centered and scaled data was also applied to visualize the differences in gene expression between two
groups [23]. Violin plots with overlay box plots of the predictors were constructed using violin plots
with ggpubR version 0.1.5 [24]. PCA and visualization were performed using FactoMineR version 1.35
and factoextra version 1.0.4 [25,26].

2.5. Supervised Machine Learning

RA and OA were classified using classification and regression training (caret) package version
6.0.77 [27]. Random forests (RF), an aggregation or ensemble of numerous decision trees, each of
which utilizes resampled data and branches out based on a randomly chosen subset of features,
was applied as the main classifier in the current study [28]. Four other commonly used machine
learning classification techniques that belong to different categories of algorithms were also employed:
k-nearest neighbors (kNN), naïve Bayes, support vector machines with polynomial kernel (SVM), and
a tree-based method (we call it C5.0, named after the R function). Each classifier has one or several
tuning parameters that need to be optimized. Grid search or random search with the tune length of 10
were applied when applicable [29]. First, we set the number of trees consisting of random forests to
500, which is known to suffice and thus is commonly used in practice. Additionally, the number of
randomly chosen variables at each split was tuned from one to 16 in RF. The naïve Bayes classifier was
optimized with a Gaussian kernel of data-driven bandwidth. The number of closest training examples
(k) in kNN was tuned to define the value of k that resulted in optimal performance of the model. It is
well known that the SVM classifier can be found by solving a quadratic programming via the dual of
the primal problem where the cost constant C > 0 penalizes the margins. In our analysis, the SVM
classifier relied on the polynomial kernel represented by

K(x, y) = γ
(

xTy + 1
)d

, x, y ∈ Rp

where γ > 0, d ≥ 1 are the scale parameter and degree of the polynomial, respectively. The tuning
parameters C, γ, d were tuned using the random search method. The C5.0 function in R supports
different tree-based methods; it is, for example, a single tree if ‘trials’ is set to one, or a boosting,
analogous to AdaBoost with some tweaks, otherwise. The model can be further improved by
considering whether to use a rule-based tree or a classification tree and whether to filter unimportant
variables in advance or not. The aforementioned options were all determined using the random search
method. Performance indicators of the model were evaluated in the test set using accuracy, specificity,
and sensitivity. A seed number was used prior to the data splitting and model training to obtain
reproducible results. A receiver operating characteristic (ROC) curve of the performance of the optimal
RF model on the test set was visualized using pROC package version 1.10.0 [30]. Visualization of the
top 10 important genes of the optimal RF model was performed using GraphPad Prism 6 (GraphPad
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Software Inc., San Diego, CA, USA). In addition, a quick assessment of the classification of RA and
normal tissues as well as OA and normal tissues was conducted using ArrayMining [31].

2.6. Random Forests Classification Model Explanation

We applied local interpretable model-agnostic explanations (R package version 0.3.0) in order to
explain the prediction decisions of the optimal RF classifier regarding the most important features [32].
A forward selection algorithm with six features was utilized to select the most relevant features.
The labels of two were established to observe the explanation of RA and OA. Other parameters were
kept as default.

2.7. Gene Expression Meta-Analysis

Gene expression meta-analyses between RA and OA, RA and normal tissues, and OA and normal
tissues were performed by combined effects size. The statistical heterogeneity was first estimated
by Cochran’s Q test. A fixed effects model was used when estimated Q values have approximately
followed a chi-square distribution; otherwise, a random effects model was applied. The analysis was
conducted in accordance with the published protocol of Networkanalyst [20].

2.8. Pathway Enrichment Analysis and Protein Association Network

Gene Ontology and gene set enrichment analysis was conducted using the STRING database with
default settings [33]. All differentially expressed genes that had combined effects size greater than
1.5 were input to the software for the enrichment analyses using GO biological processes and Kyoto
Encyclopedia of Genes and Genomes annotation. The protein–protein interaction network derived
from the STRING knowledgebase was also visualized.

2.9. Statistical Significance

Where applicable, a p-value of 0.05 or a false discovery rate FDR of 0.05 was used for
null-hypothesis testing. The R statistic version 3.4.2 was used as the environment for data processing,
machine learning classification and visualization unless specifically indicated [34].

2.10. Ethics and Data Availability

Ethical application has been waived by Seoul National University Institutional Review Board
(SNU 17-08-047). The datasets analyzed during the current study are available in the GEO repository.
GSE1919, GSE39340, GSE36700, GSE55457, GSE55584, GSE55235.

3. Results

3.1. Variable Importance Measurement and Selection

Error rate-based (ER)-RF variable importance measurement (VIM) has been recommended for
feature selection in high-dimensional data [35]. Nevertheless, a previous investigation demonstrated
that area under the curve (AUC)-RF VIM outperforms ER-RF VIM, especially in unbalanced class
problems [36]. Hence, we applied AUC-RF for variable importance measurement to estimate the score
of every gene with the corresponding conditions. The workflow of variable selection is shown in
Figure 1a. The measurement was conducted using cross-study normalized data set A derived from
three different data sets: GSE1919, GSE39340, and GSE36700 (Table S1). These available data sets
came from various populations (one Asian and two European) and several microarray platforms
(Affymetrix U95A, Illumina V 4.0, and Affymetrix 133 Plus 2.0) with a total number of 35 samples were
used for variable importance measurement. A larger set of data was used for modeling and testing
(described below). The batch effects removed data sets were visualized using principal component
analysis (PCA) (Figure S1). As a result, 381 genes exhibited an importance score to the classification of
RA and OA greater than zero. Because the package does not provide a handy criterion for selecting the
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candidates, we finally selected 16 genes with a score of 1.5 × 10−3 or higher as potential variables for
the classification of RA and OA in unseen cross-study normalized data set B (Figure 1b). The selection
was arbitrary to some extent. However, we intended to select the smallest genetic signature that
could effectively discriminate RA from OA. A redundant list of genetic signatures—e.g., hundreds of
genes—would make it unimaginable for finding the rationales of machine learning-based classification
as well as clinical interpretation. Detailed information about the proposed genetic biomarkers can be
found in Table 1.
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Figure 1. Workflow of variable selection and machine learning classification. (a) Variable selection
workflow. (b) Classification analysis workflow. RF: random forests; SVM: support vector machines;
kNN: k nearest neighbors. GSE55457, GSE55584, and GSE55235 are from the same study and were
used for modeling and validation of the data-driven proposed biomarkers.

Table 1. The 16-gene signature derived from AUC-RF based variable selection.

Entry ID Approved
Symbol Approved Name Chromosomal

Location
Combined

Effects Size 1

7111 TMOD1 Tropomodulin 1 9q22.33 −2.16
10248 POP7 POP7 homolog, ribonuclease P/MRP subunit 7q22.1 −0.87
6442 SGCA Sarcoglycan alpha 17q21.33 −2.74
3824 KLRD1 Killer cell lectin like receptor D1 12p13 1.35
240 ALOX5 Arachidonate 5-lipoxygenase 10q11.21 1.36

57403 RAB22A RAB22A, member RAS oncogene family 20q13.32 −1.20
288 ANK3 Ankyrin 3 10q21.2 −1.92

5774 PTPN3 Protein tyrosine phosphatase, non-receptor type 3 9q31 −1.31
3003 GZMK Granzyme K 5q11.2 2.92
1191 CLU Clusterin 8p21.1 −2.17
3002 GZMB Granzyme B 14q12 2.61

23194 FBXL7 F-box and leucine rich repeat protein 7 5p15.1 −0.93
7293 TNFRSF4 TNF receptor superfamily member 4 1p36.33 1.26
9235 IL32 Interleukin 32 16p13.3 2.73

439921 MXRA7 Matrix remodeling associated 7 17q25.1 −2.19
925 CD8A CD8a molecule 2p11.2 2.83

1: Adopted from the the section of functional meta-analysis, which was independent to the biomarker selection.
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3.2. RA and OA can be Accurately Differentiated Using a 16-Gene Signature

To validate our 16-gene signature, we gathered three data sets having a roughly double number
of samples that came from the same study in set B (GSE55457, GSE55584, and GSE55235) [9]. It is of
importance to note that the authors of the previous study built their own model and obtained good
performance in these data sets, and we aimed to show that our signature, derived from a powerful
statistical learning method, could also achieve comparative results. In set B, descriptive statistics and
univariate data exploratory analysis using the Wilcoxon rank-sum test were performed. There were
59 samples in total, of which OA and RA accounted for 26 samples (44.1%) and 33 samples (55.9%),
respectively. The gene expression of all predictors was significantly different (false discovery rate
(FDR) < 0.05). The mean, median, and other values as well as the violin plots of gene expression for
the 16 predictors can be found in Data S1. Since univariate analysis could not assess the correlations
among predictors, PCA was then conducted to obtain better insights into the data. Our signature
was actually well adapted to the two merged data sets as shown in PCA analysis. The first PC
explained more than 50% variance of the data, and five major PCs cumulatively explained up to
81.9% of the variance in the data. The two classes were relatively well separated in 2D score plot PCA
(PC1 + PC2 = 62.3%). Variables having a strong positive or negative effect on PC1 can be considered
essential for classification. The three attributes with the highest absolute values were TMOD1, CLU, and
MXRA7 among the positive factors and GZMK, GZMB, and CD8A among negative factors. Moreover,
as will be shown later in this section, CLU and MXRA7 were characterized as important covariates in
prediction. Despite these clear findings, however, there was an overlapping region between the two
groups, which might make the classification of those cases greatly complicated (Figure 2a). Most of
the samples in the two groups distributed within 95% confidence regions for each group, but there
were three potential outliers, one from RA and two from OA. Heatmap analysis was also conducted
without re-organization to observe the contrasting appearance between two groups (Figure 2b).
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Figure 2. PCA and heatmap analysis of the data set with the 16-gene signature. (a) The sum of the two
principal component is 62.3%. (b) Seven genes are upregulated, and nine genes are downregulated in
RA compared to OA. PCA: Principal component analysis; RA: Rheumatoid arthritis; OA: osteoarthritis.

There were two relatively clear expression patterns in the heatmap. The gene expression levels
of ALOX5, TNFRSF4, GZMB, IL32, KLRD1, GZMK, and CD8A were generally higher in RA than in
OA. In contrast, the gene expression levels of RAB22A, PTPN3, FBXL7, MXRA7, POP7, ANK3, SGCA,
TMOD1, and CLU were generally higher in OA than in RA. For class assignment analysis, data set B
was split into training (60%) and test (40%) sets. Data partition was conducted and the balance of class
distribution remained between two comparative groups. The training process to estimate the optimal
RF model was conducted using grid search; the mtry parameter ranged from one to 16, and the 10-fold
cross-validation 5-time repeats method was used. The area under the receiver operating characteristic
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curve (AUCROC) was used to determine the optimal model. Eventually, the model that had an mtry
of 12 exhibited an excellent performance (AUCROC = 1.00) in the training set. Thereafter, we applied
the optimal RF model to the external test set. The performance of the RF model was excellent; only one
sample was misclassified (Figure 3a). RF variable importance measurement revealed that IL32, SGCA,
MXRA7, and CLU were the four most important features of the prediction model (Figure 3b).
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features of the optimal random forests model on the training set.

Local interpretable model-agnostic explanations (LIME) was applied in three representative
cases (one correctly predicted OA sample, one correctly predicted RA sample, and one OA sample
that was mistakenly predicted as RA) to demonstrate the rules that were applied to classify new
observations in the test set of the established model. The first case was confidently predicted to be
OA (probability of 0.900) with the following rules regarding gene expression levels: 8.44 < IL32 ≤ 8.74,
12.20 < MXRA7 ≤ 12.40, 7.08 < SGCA ≤ 7.64, 13.00 < CLU, GZMB ≤ 6.44, and 7.82 < PTPN3 ≤ 7.92
(Figure 4a). The second case, on the other hand, was predicted with certainty to be RA (probability
of 0.998) with the following rules: 9.34 < IL32, SGCA ≤ 6.76, MXRA7 ≤ 12.00, 12.10 < CLU ≤ 12.50,
6.77 < GZMB ≤ 7.58, POP7 ≤ 8.62 (Figure 4b). From the two typical cases, we show that the higher
expression of IL32 and GZMB as well as the lower expression of SGCA, MXRA, and CLU were
preferred for the classification of RA, and vice versa. In addition, the low expression of POP7 was a
minor supportive factor for the indication of RA. However, the contributions of minor supportive or
contradictory factors were negligible since the roles of top four major factors were prominent in all cases.
It is important to mention again that IL32 and GZMB expression levels were generally higher while
MXRA, SGCA, and CLU expression levels were generally lower in RA than in OA (Figure 2b). The third
example had high expression of IL32 (9.14) and low expression of MXRA7 (11.60). The misclassification
of this case from OA to RA likely occurred because the expression of IL32 of the sample was higher
than the upper limit of IL32 in OA (8.74) and the expression of MXRA7 was lower than the lower limit
of MXRA7 in OA (12.2). This violation was too severe because IL32 and MXRA7 were two of the top
three most important features in the prediction model. Hence, the high expression level of SGCA and
CLU as well as the low expression level of RAB22A, which supported the indication of OA, were not
enough for the classifier to correctly differentiate the sample (Figure 4c). The classification of other
samples in the test set could be explained using a similar approach as described.
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A genetic signature may be more clinically relevant if it can be applied by different machine
learning classification methods. Therefore, we introduced our 16-gene signature to four other
commonly used classifiers, kNN, naïve Bayes, C5.0, and SVM, to evaluate the robustness and
flexibility of the signature. Every model was trained using 10-fold cross-validation with 5-time
repeats and AUCROC was used to determine the optimal model. In the kNN model, the data were
treated by centering and scaling. The training model with a k value of nine was detected to be
optimal (AUCROC = 0.96). The performance in the test set was also excellent (accuracy = 0.96,
sensitivity = 0.92, specificity = 1.00). The naïve Bayes model without kernel achieved the best
performance (AUCROC = 0.98) which was similar to that of the kNN model in the test set
(accuracy = 0.96, sensitivity = 0.92, specificity = 1.00). The training process of the SVM with polynomial
kernel produced the optimal model (AUCROC = 0.98) with the following tuned parameters: degree = 3,
γ = 0.77, C = 0.16. Likewise, this model exhibited excellent performance in the test set (accuracy = 0.96,
sensitivity = 1.00, specificity = 0.90). Finally, the C5.0 model was optimized and validated. In the
training set, the model with the following parameters was optimal (AUCROC = 0.93): model = tree,
winnow = false, trials = 13. In the test set, it had the worst performance among the tested classifiers
although the accuracy was higher than 0.90 (accuracy = 0.91, sensitivity = 1.00, specificity = 0.80).
Collectively, we achieved similarly outstanding performance regarding the differentiating of RA from
OA to the rule-based method of Woetzel [9]. Confusion matrices of the abovementioned classifiers on
the test sets are shown in Figure 5a.
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Figure 5. Summarization of the classification analyses. (a) Confusion matrices of the five classifiers on
the test set of RA versus OA. (b) Prediction performances on the test sets of RA versus normalcy and
OA versus normalcy. RA: Rheumatoid arthritis; OA: osteoarthritis.

For a quick investigation to evaluate the possibilities of differentiating RA from normal synovial
tissues and OA from normal synovial tissues, we applied the class assignment analysis module
using ArrayMining [31]. The training and test sets were defined using a 60:40 ratios. We achieved
encouraging accuracies, sensitivities, and specificities on the test sets, as shown in Figure 5b. However,
the sample sizes of both experiments were small, and the results should be validated by future studies.
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3.3. Meta-Analysis of Gene Expression and Functional Analysis

To seek the differences in biological processes of RA, OA, and normalcy, we further conducted
meta-analysis of all available synovial tissue gene expression data followed by pathway enrichment
analysis. Data from synovial tissues of RA and OA, RA and normalcy, and OA and normalcy were
introduced to the gene expression meta-analysis to find the differentially expressed (DE) genes with
high confidence. Cochran’s Q test suggested the statistical heterogeneity among the input data sets;
thus, a random effects model was finally selected for the analysis.

In RA versus OA, 1026 genes were significantly upregulated, and 1421 DE genes were significantly
downregulated in RA compared to OA. Among them, 489 DE genes showed a combined effects
size of at least 1.5 or higher (236 genes with a combined effect size (cES) of 1.5 or higher in the
upregulated group and 253 genes with a cES of −1.5 or lower in the downregulated group). The three
most significantly upregulated genes (CD3D, AIM2, and IL2RG) in RA are related to the immune
processes. For instance, CD3D is one of the genes involved in T cell activation and signaling.
Other associated genes, such as CD3G, CD8B, and LCK, were also found to be highly upregulated [37].
Pathway enrichment analysis was conducted separately using the DE genes that had a cES of 1.5 or
higher for upregulated genes and of −1.5 of lower for downregulated genes in RA compared to OA.
Figure S2 shows the two protein–protein interaction networks of RA-OA for upregulated genes and
downregulated genes, respectively. Particularly, the major enriched Gene Ontology (GO) biological
processes in upregulated genes belonged to various immune responses, including the activation of
NF-kB. Similarly, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathways include,
but not limited to, natural killer cell mediated cytotoxicity, cytokine-cytokine receptor interaction,
chemokine signaling pathway, and T cell receptor signaling pathway, among others. On the other hand,
the enriched GO terms of the downregulated genes reflect the downregulation of cellular development
and differentiation. However, there were only two enriched KEGG pathways: glycerolipid metabolism
and transcriptional misregulation in cancer. Significantly enriched pathways from the GO and KEGG
pathway enrichment analysis are summarized in Table 2 and Table S2.

Table 2. Representative Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enriched pathways of differentially expressed (DE) genes between RA and OA.

ID Annotation False Discovery Rate RA versus OA

GO.0006955 Immune response 8.86 × 10−50 Upregulation
GO.0050776 Regulation of immune response 1.44 × 10−41 Upregulation
GO.0002376 Immune system process 2.64 × 10−41 Upregulation
GO.0006952 Defense response 6.94 × 10−39 Upregulation
GO.0002684 Positive regulation of immune system process 4.52 × 10−36 Upregulation
GO.0048731 System development 8.90 × 10−12 Downregulation
GO.0007275 Multicellular organismal development 3.68 × 10−11 Downregulation
GO.0044767 Single-organism developmental process 2.74 × 10−9 Downregulation
GO.0048856 Anatomical structure development 1.29 × 10−8 Downregulation
GO.0051239 Regulation of multicellular organismal process 5.14 × 10−8 Downregulation
KEGG.4650 Natural killer cell mediated cytotoxicity 1.27 × 10−16 Upregulation
KEGG.5340 Primary immunodeficiency 1.27 × 10−16 Upregulation
KEGG.4060 Cytokine-cytokine receptor interaction 3.14 × 10−16 Upregulation
KEGG.4064 NF-kappa B signaling pathway 1.26 × 10−14 Upregulation
KEGG.4062 Chemokine signaling pathway 1.33 × 10−11 Upregulation
KEGG.561 Glycerolipid metabolism 0.0142 Downregulation
KEGG.5202 Transcriptional misregulation in cancer 0.0276 Downregulation

In RA versus normal tissues, 973 genes were significantly upregulated, and 690 DE genes
were significantly downregulated in RA compared to normal synovial tissues. Among them,
539 genes showed a combined effects size of at least 1.5 or higher (383 genes with a cES of at least
1.5 in the upregulated group and 156 genes with a cES of −1.5 or lower in the downregulated
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group). The top three enriched GO terms among the upregulated genes were immune response
(GO.0006955), immune system process (GO.0002376), and defense response (GO.0006952), while the
top three enriched GO terms among the downregulated genes were regulation of protein metabolic
process (GO.0051246), cellular response to organic substance (GO.0071310), and positive regulation of
multicellular organismal process (GO.0051240). Similarly, 879 DE genes were upregulated, and 524 DE
genes were downregulated in OA compared to normal synovial tissues. Among them, 412 DE genes
showed a combined effects size of at least 1.5 or higher (274 genes with a cES of at least 1.5 in the
upregulated group and 138 genes with a cES of −1.5 or lower in the downregulated group). The top
three enriched GO terms among the upregulated genes were response to stress (GO.0006950), death
(GO.0016265), and regulation of biological quality (GO.0065008), while the top three enriched GO
terms among the downregulated genes were positive regulation of metabolic process (GO0009893),
positive regulation of macromolecule metabolic process (GO.0010604), and positive regulation of
cellular metabolic process (GO.0031325). The protein–protein interaction networks of RA-Normalcy
and OA-Normalcy were simpler than that of RA-OA. The enriched pathways from GO and KEGG
analysis of these two networks can be found in Table S3.

4. Discussion

There are standard approaches for the differential diagnosis of RA and OA. Nevertheless, their
performance may not be satisfactory in some particular cases. For instance, anti-citrullinated protein
antibodies (ACPAs) have been applied for early diagnosis of RA. Nevertheless, the test using ACPAs is
only positive in approximately 50% of patients [38]. Other biomarkers, therefore, should be developed
to assist the diagnosis in ACPA-negative patients. Recently, serum connective tissue growth factor was
reported as a potential diagnostic biomarker for RA [39]. In addition, 99mTc-3PRGD2 scintigraphy has
been recently suggested for the early detection of RA in rats and humans [40]. It is also of importance to
note that although blood-based tests are prominently used, the diagnostic value of synovial biopsy has
been acknowledged [41,42]. Thus, it could help assist the diagnosis RA, OA, as well as other arthritis
conditions. However, the potential of the transcriptomic signature of synovial tissue in differentiating
RA and OA remains to be explored. High-throughput gene expression has been recognized as an
important feature to facilitate personalized medicine [43]. High-throughput gene expression has been
commonly used to gain deeper insights into the cellular processes of a specific biological system [44].
Indeed, gene expression profiling has been contributing to the advancement of many fields, including
the management of cancers and other immunological disorders [45]. Specifically, the genome-wide
alterations in gene expression in RA and OA can be detected in advance [3,46]. Recently, a method
using a transcriptome-based rule set was developed to differentiate RA from OA and normal controls;
the overall assessment parameters of classification were approximately 90% or higher [9]. Similarly,
a 12-gene signature derived from CD4+ T cells of early inflammatory arthritis patients has been
shown to accurately predict subsequent development of RA from non-RA among undifferentiated
arthritis with a sensitivity of 68% and specificity of 70% [47]. These results are encouraging and worth
validating on a larger scale to assess their reproducibility. Moreover, a wide range of supervised
machine learning techniques can be employed toward the final goal, which is to classify a particular
sample. However, small sample sizes and noisy data of the microarray-based high-throughput
gene expression have become limitations since the generalization of the results is not guaranteed
and the cross-study validation often failed to replicate the results [48]. Potential solutions, such
as cross-platform normalization or cross-study normalization for multi-data integration, have been
introduced and have achieved considerable success [49,50]. In addition, conducting feature selection
prior to classification can help reduce highly noisy attributes while simultaneously improving the
prediction accuracy for the class assignment analysis [51,52]. Finally, but importantly, the current
limitations in the progress of diagnosing and determining the prognosis of RA may come from the
substantial portion of mechanism-based elucidation. An unbiased, data-driven approach emphasizing
the roles of a small subset of genes that are distinctly different between comparative conditions may
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additionally provide potential solutions for early diagnosis. In our study, 16 genes were selected
as the biomarker signature for differentiating between RA and OA using an unbiased, data-driven
method. The validity of the proposed signature was then challenged using independent data sets
with various machine learning classification algorithms. The classification performances derived from
five commonly used classifiers in the external test set suggested that RA and OA could be accurately
differentiated with an accuracy higher than 90% using our 16-gene panel and machine learning
approaches, even by ‘weak’ classifiers such as kNN. Accordingly, these genes are worth considering as
novel biomarkers for the early differential diagnosis of RA and OA. Among others—CD8A, GZMB,
and KLRD1, for instance—are strongly associated with one another in the STRING protein–protein
interaction network and are associated with lymphocyte-mediated immunity.

Although the 16-gene panel was derived using a data-driven approach, several individual
biomarkers showed a clear biological connection with the arthritis conditions (Table S4). However,
the role of TMOD1, SGCA, RAB22A, ANK3, PTPN3, FBXL7, CLU, POP7, and MXRA7 in inflammatory
diseases, especially in arthritis, has not been studied thoroughly. Further studies are needed to clarify
their biological function. Moreover, the recurrent inflammation of the synovial tissues suggests the
complexity of the immune responses in the pathobiology of RA, as also being mentioned in a recent
meta-analysis [53]. Many other biological pathways are involved in various heterogeneous processes
at different stages of the disease [54]. Unlike other forms of arthritis, destruction is the nature of RA.
Hence, early diagnosis and management are especially important. Pain, structural damage, functional
loss, comorbidity, and other complications of RA lead to the permanent disability of patients as well as
to increased socioeconomic cost [55]. On the other hand, the main pathological condition of OA is the
degradation of cartilage, which eventually results in joint dysfunction [56]. Our functional analysis
showed general agreement; thus, confirmed the previously reported differences in the mechanisms of
the two diseases and suggested novel pathways that are prominently enriched in RA compared to
OA [57–59]. From this data, further mechanistic studies are needed to obtain better insights into the
pathophysiology of RA as well as other forms of arthritis in order to improve patient management.

Our work has some limitations that should be explicitly stated. All analyses were conducted using
tissues that might not represent the best approach for RA and OA differential diagnosis. However,
synovial tissues are usually informatively rich with respect to the underlying pathological processes
of the diseases; therefore, our findings may give additional information for the improvement of the
patient management and mechanistic studies. Second, only transcriptome information of patients was
utilized for the differential analysis so the effects of confounding factors remain unknown. Additionally,
the lack of assessment using synovial fluids or serology prevented us from conducting deeper data
mining. However, we demonstrated that sophisticated algorithms are powerful in introducing and
validating potential biomarker candidates. We also illustrated an application of a human-friendly rule
set to interpret the ‘black-box’ RF model. Further investigations that take into account the patients’
bio-parameters, omics data, and statistical learning methods will greatly improve our understanding
and clinical practice to provide better care for the patients.

5. Conclusions

The differential diagnosis of RA from other forms of arthritis, especially OA, using synovial biopsy
is a novel approach. Our study introduced and successfully validated a 16-gene signature derived from
gene expression profiling data of synovial tissues that could be employed for the classification of RA
and OA. The signature may also help more specifically treat patients with RA condition. The novelty
of this investigation is based on the utility of powerful statistical learning methods for variable
selection and modeling. Moreover, we applied an explainer algorithm to interpret the rationale of the
black-box predicting algorithms. Further clinical studies are warranted to validate this biomarker for
the diagnosis of rheumatoid arthritis patients.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/1/50/s1.
Table S1: Microarray data sets employed in the current study. Table S2: GO and KEGG enriched pathways in
RA versus OA. Table S3: GO and KEGG enrichment pathways in RA versus normalcy and OA versus normalcy.
Table S4: Biological functions of 16 differential biomarker candidates. Figure S1: Principal component analysis of
two batch effects removed data sets. (a) Set A (GSE1919, GSE39340, and GSE36700), (b) Set B (GSE55457, GSE55584,
and GSE55235). Figure. S2: The STRING protein–protein interaction network of differentially expressed genes.
(a) Upregulated network. (b) Downregulated network. According to STRING, red, green, blue, purple, yellow,
light blue, and black strings demonstrated the presence of fusion, neighborhood, co-occurrence, experimental,
text mining, database, and co-expression evidence, respectively. Data S1: Descriptive analysis and visualization of
16 predictors in RA versus OA.
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