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Abstract
Myocardial infarction (MI) is the leading cause of morbidity and mortality in the world. The infarcted heart displays typical cell
death cascades characterized by a loss of cells and fibrotic scarring in the myocardium. Cardiac hypertrophy and fibrosis largely
contribute to ventricular wall thickening and stiffening, altogether defining an adverse cardiac remodeling that ultimately leads
to impaired cardiac function and subsequent heart failure. Finding a strategy to promote therapeutic, instead of detrimental,
cardiac remodeling may pose as a potent MI treatment. Accumulating evidence shows that microRNAs (miRNAs) may play an
essential role in cardiovascular diseases. In particular, microRNA-133a (miR-133a) is one of the most abundant miRNAs in the
heart. Multiple studies have demonstrated that miR-133a participates in the early pathology of MI, as well as in subsequent
cardiac remodeling. In this review, we summarize recent research progress highlighting the regulatory effects of miR-133a in
ischemic myocardial diseases, such as inhibiting angiogenesis, apoptosis, fibrosis, hypertrophy, and inflammation, while pro-
moting therapeutic cardiac remodeling. The goal is to elicit a critical discussion on the translational direction of miRNA-
mediated treatments towards a safe and effective MI therapy.
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Overview of MicroRNA-133a (miR-133a) in
the Heart

MicroRNAs (miRNAs) are endogenous, 19–22 nucleotide,

and non-coding single-stranded RNA molecules that are

important regulators of physiologic and pathologic condi-

tions of the body. MiRNAs usually play critical roles in

regulating a range of cellular processes by post-

transcriptional suppression of their target genes. Certain

miRNAs may be expressed in a tissue-specific pattern, such

as cardiac miRNAs (miR-1, miR133a, miR-208a/b, and

miR-499), which are abundantly expressed in the myocar-

dium. There is mounting evidence that these miRNAs are

involved in heart development and certain cardiovascular

diseases, including myocardial infarction (MI), in both

experimental animals and patients (Table 1)1. MiR-133 is

transcribed from the same chromosomal loci as miR-1, and

miR-1 has expression levels during cardiac hypertrophy that

change in the opposite direction during myocardial infarc-

tion1,4. Of note, miR-133a is not only associated with heart

development and disease, but is also involved in various

cancers such as breast cancer and hepatocellular carci-

noma21,22. In addition, miR-1 and miR-133a play a key role

in promoting cardiogenesis, heart function, and pathology.

While miR-1 and miR-133a predominantly control the early

stages of cardiogenesis by directing the commitment of

embryonic stem cells and mesodermal precursors to the

cardiac-specific muscle lineage, in the heart, miR-1 and

miR-133a also mediate cardiac conductance and automati-

city by regulating all phases of the cardiac action potential1.

Particularly, miR-133a is essential for proper heart develop-

ment as deletion of both miR-133a genes leads to anomalous

heart smooth muscle gene expression, deviant apoptosis and
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proliferation patterns, lethal ventricular septal defects, and

disorganized sarcomeres23. It is also interesting to note that

miR-133a and miR-1 may have opposite roles during cardiac

differentiation24, and that miR-133 inhibits apoptosis while

miR-1 promotes apoptosis and oxidative stress in damaged

cardiomyocytes1–3. Patients with MI may develop ventricu-

lar fibrillation (VF), a vital cause of death, and down-

regulating miR-133a/b may contribute to the development

of VF in patients with MI14. Furthermore, over-expression of

miR-133 improves cardiac function in a rat model of MI

such as by increasing the left ventricular ejection fraction

(LVEF) and fractional shortening (FS)25.

MiR-133a as a Potential Diagnostic
Biomarker of Acute MI

MiR-133a is down-regulated in both the infarcted region and

the border zone of the heart in MI patients, as well as in

experimental animals14,15. In contrast, the expression level

of miR-133a in serum is elevated significantly in patients

with acute myocardial infarction (AMI) or with unstable

angina pectoris5,16,17. Additionally, miR-133a levels in

serum are significantly related to all-cause mortality in acute

coronary syndrome (ACS) patients16. In 2011, Kimura et al.

first measured the levels of circulating miR-1 and miR-133a

associated with cardiovascular diseases, and demonstrated

that the levels of circulating miR-1 and miR-133a are

elevated early after the onset of chest pain when there is

no up-regulation in serum creatine phosphokinase (CK or

CPK) or cardiac Troponin T (cTnT), and that serum miR-133a

levels are sensitive to myocardial injury compared with miR-1

levels5. Increased levels of circulating miR-133a are found in

exosomes, which implies that the living myocardium may be

the source of circulating miR-133a5. Moreover, elevated levels

of circulating miR-133a are strongly associated with AMI

diagnosis. In addition to traditional markers for clinical prog-

nosis in AMI patients, the concentration of miR-133a may also

provide prognostic information, perhaps even earlier than these

traditional markers5,26. Indeed, based on their tissue specificity,

cardiomyocyte-enriched miRNAs such as miR-1, miR208a,

miR-208b, miR-133a, miR-133b, and miR-499 have been

proposed as potential diagnostic markers in patients with

AMI16,27–29. Nevertheless, circulating levels of miR-133a and

miR-423-5p have failed as useful biomarkers of left ventricular

(LV) remodeling after MI30.

MiR-133a Modulating Angiogenesis Act as
Angio-miR

The sprouting of new blood vessels by angiogenesis is key in

physiologic vascular development and pathological homeos-

tasis. Abnormal angiogenesis leads to severe pathological

conditions such as ischemia and cancer. Recently, miRNAs

have been implicated to be involved in certain angiogenic

factors and signaling pathways, and use small non-coding

RNAs to promote or suppress angiogenic processes. For

instance, the up-regulation of miR-133a induced by diabetes

mellitus impairs angiogenesis in peripheral arterial disease

(PAD) by reducing NO in endothelial cells31. Additionally,

miR-133a suppresses angiogenesis of endothelial cells includ-

ing proliferation rate, cell viability, and migration activity via

targeting of VEGFR2 and FGFR132. MiR-133a is reduced

when vascular smooth muscle cells (VSMCs) are inclined to

proliferate in vitro and following vascular injury in vivo, and

increase when VSMCs are coaxed back to quiescence in vitro

and in vivo. In addition, miR-133a interference and over-

expression experiments show that miR-133a plays a mechan-

istic role in VSMC proliferation. Among the possible targets

of miR-133a, the most reliable is the serum response factor

(SRF), which plays a critical role in muscle proliferation and

differentiation depending on its association with co-factors

such as myocardin, HOP, and Elk-133–37. Accordingly,

adeno-miR-133a suppresses while anti-miR-133a improves

VSMC proliferation and migration in vitro and in vivo, by

suppressing the expression of the transcription factor, Sp-138.

MiR-133a Reduces Hypoxia-Induced
Apoptosis in Cardiac Myocytes

Apoptosis, also called programmed cell death, plays a key

role in both the physical development and the pathology of a

Table 1. Role/Expression of MicroRNAs in the Heart.

microRNA Role/Expression

miR-1 Early cardiogenesis. Direct commitment of cells to
cardiac-specific muscle lineage. Mediate cardiac
conductance and automaticity, and cardiac action
potential. Promotes apoptosis and worsens
oxidative stress in damaged cardiomyocytes1–3.
Increased in the heart and elevated in circulation
after myocardial infarction. Down-regulated in
hypertrophic hearts4,5.

miR-133a Early cardiogenesis. Direct commitment of cells to
cardiac-specific muscle lineage. Mediate cardiac
conductance and automaticity, and cardiac
action potential1. Inhibits apoptosis in
damaged cardiomyocytes and adverse cardiac
remodeling6,7–9,10,11–13. Down-regulated in the
infarct area and increased in circulation after
myocardial infarction. Decreased in hypertrophic
hearts4,14,15–17.

miR-208a/b Late cardiogenesis. Specify slow/fast muscle fibers and
direct differentiation of cardioblasts to
cardiomyocytes. Control sarcomeric contractile
protein expression1. MiR-208a overexpression
promotes cardiac hypertrophy18. Reduced in the
heart and increased in circulation after myocardial
infarction. Up-regulated in hypertrophic hearts1,4.

miR-499 Late cardiogenesis. Specify slow/fast muscle fibers and
direct differentiation of cardioblasts to
cardiomyocytes. Control sarcomeric contractile
protein expression1. Expresses cardioprotective
properties19. Inhibit myocyte enhancer factor 2C20.
Increased in circulation after myocardial infarction1.
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variety of cells and tissues. Myocardial hypoxia is a major

cause of cardiac dysfunction as it triggers cell injury and

apoptosis39. Growing evidence indicates that miRNAs are

of vital importance in regulating cardiovascular diseases,

necessitating the demonstration of the molecular mechanism

by which miRNAs control apoptosis and the identification of

their direct and indirect targets40–43. MiR-133a is among the

most abundant of the miRNAs present in the normal heart,

and significant changes in the expression of miR-133a are

observed in response to anoxia stress44. Interestingly, miR-

133a is significantly down-regulated in hypoxic H9c2 cells,

a type of SD rat cardiomyocyte, and the over-expression of

miR-133a suppresses hypoxia-induced apoptosis and

enhances cardiomyocyte survival6,45–47. Additionally, miR-

133a is an apoptosis suppressor in myocardial ischemic post-

conditioning (IPost), inhibiting TAGLN2, HSP60, HSP70,

Apaf-1, caspase-3/8/9 expression, and promoting anti-

apoptotic protein Bcl-2 expression6,7–9. Ischemia and reper-

fusion injury (I/R injury) increases apoptosis via elevated

expression of pro-apoptotic genes like caspase-9, and

reduces miR-1 and miR-133 levels. In contrast, IPost up-

regulates miR-133a, which decreases caspase-9 expression,

and, consequently, decreases apoptosis of cardiomyocytes

under I/R injury. Thus, myo-miRNAs miR-1 and miR-

133a may play an important role in IPost protection by reg-

ulating apoptosis-related genes, such as caspase-97.

MiR-133a Over-Expression Protects
Against Cardiac Fibrosis Post-MI

The main determinants of tissue fibrosis are an activated

transforming growth factor-b (TGF-b) signaling cascade and

the accumulation of increased extracellular matrix (ECM)

proteins such as fibronectin (FN1) and collagen 1 alpha

1 V (COL4a1)48. MiR-133a, along with other transcription

factors or miRNAs, can induce myocardial transdifferentia-

tion of cardiac fibroblasts by inhibiting TGF-b signaling or

the expression of certain factors that promote fibrosis, such

as snail-1 expression49–51, as well as improve cardiac func-

tion and fibrosis by inhibiting Akt in heart failure10. Con-

nective tissue growth factor (CTGF) is another important

target of miR-133a and a key molecule in the process of

fibrosis. Thus, CTGF appears to be a potential therapeutic

target in MI, as miR-133a can potentially protect against

cardiac fibrosis by decreasing CTGF expression in the

heart52. Moreover, the SRF/CTGF/miR-133a axis plays an

important role in regulating cardiac fibrosis53 and miR-133a

could be a potential therapeutic target for diabetes-induced

cardiac fibrosis and related cardiac dysfunction48.

MiR-133a Represses Cardiac Hypertrophy

MiR-133a has potential regulatory roles in cardiac hypertro-

phy. Activation of NFAT (nuclear factor of activated T

cells)-mediated hypertrophic signaling is a key regulatory

response to hypertrophic stimuli. NFATc4, a hypertrophy-

associated mediator, is a negatively regulated target of miR-

133a54. Additionally, in vitro over-expression of miR-133 or

miR-1 could inhibit cardiac hypertrophy. In contrast, inhibi-

tion of miR-133 by ‘decoy’ sequences induces hypertrophy,

which is more pronounced than hypertrophy generated with

common inducers. In vivo inhibition of miR-133 by a single

transfection of an antagomir causes sustained and marked

cardiac hypertrophy. RhoA, a GDP-GTP exchange protein

regulating cardiac hypertrophy; Cdc42, a signal transduction

kinase involved in hypertrophy; and Nelf-A/WHSC2, a

nuclear factor implicated in cardiogenesis, have been iden-

tified as specific targets of miR-13311. In addition to MI,

circulating miR-133a could also serve as a biomarker for

predicting cardiac hypertrophy in chronic hemodialysis

patients and after valve replacement surgery in patients with

aortic stenosis12,13.

MiR-133a Promotes Regeneration and
Cardiac Programming Post-MI

Regeneration of the infarcted heart with new, functional

cardiomyocytes remains challenging, but promising. Trans-

plantation of cardiac stem cells (CSCs) or progenitor cells

has been regarded as a potential therapeutic option for myo-

cardial infarction patients. At present, cell therapy

approaches with various types of mature or stem cell patients

have produced modest improvements. Among them, resident

CSCs/CPCs are a promising option. The great beneficial

cardiac-specific effect of cardiac miRNAs including miR-

133a is very helpful for enhancing the regenerative proper-

ties and survival of transplanted stem cells and cardiac

progenitor cells, and for reprogramming mature non-

cardiac cells to cardiomyocytes1. Both miR-1 and miR-

133a progressively increase early during in vitro cardiac

differentiation of adult CPCs, but only miR-133a expression

increases under in vitro oxidative stress. miR-1 promotes

differentiation of CPCs, while over-expressed miR-133a

protects CPCs from cell death by targeting the pro-

apoptotic genes Bim and Bmf51. As a result, miR-133a-

CPCs improve cardiomyocyte proliferation post-MI. The

beneficial effects of miR-133a-CPCs seem to correlate with

the enhanced expression of various related paracrine factors

and the valid cooperative secretion of miR-133a via exoso-

mal transport51. Direct reprogramming refers to changing

mature cells from one lineage to another without passing

through a stem cell state, and cardiac reprogramming indi-

cates the conversion of other cells into cardiomyocytes. A

combination of cardiac-miRNA-1, 133, 208, and 499 are

capable of promoting the direct cardiac reprogramming of

fibroblasts to cardiomyocyte-like cells in vitro55. Therein,

miR-133 promotes cardiac reprogramming by targeting

Snai-1 and silencing fibroblast signatures50. Growing evi-

dence demonstrates that muscle specific miRNAs, also

defined as myo-miRs, function as a control center in direct-

ing diverse biological processes during myogenic prolifera-

tion and differentiation56, and the most widely studied ones

Xiao et al 833



are members of the miR-1, miR-206, and miR-133 fami-

lies33,57. Additionally, the myogenic transcription factors

myogenin and myogenic differentiation 1 (MyoD) bind to

regions upstream of the miR-1 and miR-133 stem loop,

thereby providing a molecular explanation for the observed

induction during myogenesis. An increase in the levels of

miR-1, miR-133, and miR-206 is seen during myogenesis58,

indicating miR-133’s role in the process.

The Role of miR-133a in Anti-Inflammation
Post-MI

Endomyocardial miR-133a levels correlate with myocardial

inflammation, such as macrophage infiltration59. Over-

expressing miR-133a reduces inflammatory cell infiltration

in the heart at 7 and 28 days post-MI25. In contrast, some

clinical investigations show that serum miR-133a levels

are significantly increased in critical illness and sepsis, are

correlated with the severity of the disease, and predict an

unfavorable outcome for critically ill patients60. Indeed,

miR-133a may also serve as a pro-inflammatory miRNA,

warranting more direct studies to confirm or disprove this

conclusion.

MiR-133a and Stem Cell Transplantation
in MI

Of note, transplanting stem cells into hearts afflicted with MI

may improve the outcome of the condition. Indeed, bone

marrow mesenchymal stem cells (MSCs) grafted into the

MI heart generate healthy cardiomyocytes, increase cardiac

function, promote angiogenesis, and decrease detrimental

remodeling61,62. However, ischemic conditions in the

infarcted heart hinder the survival of the transplanted stem

cells and reduce these beneficial effects. MiRNAs play

important roles in regulating cell apoptosis, differentiation,

and proliferation and appear promising in bolstering the sur-

vival and efficacy of these transplanted stem cells9. In par-

ticular, miR-133a protects CPCs against apoptosis51,

increases the proliferation of myoblasts33, and curtails car-

diac remodeling, hypertrophy, and fibrosis9. The presence or

absence of certain miRNAs such as miR-27b enables senes-

cence to be modulated in MSCs59, and miRNAs such as

miR-21 are critical for facilitating MSC-induced protection

of human bronchial epithelial cells under hypoxic condi-

tions63. Moreover, let-7-5p miR appears to be critical for

enabling extracellular vesicles derived from Wharton’s jelly

MSCs to prevent the apoptosis of neurons under perinatal

hypoxia-ischemia64. Interestingly, transplantation of MSCs

transfected with miR-133a in an MI heart enhances graft

survival and cardiac function, and reduces cardiac fibrosis

compared with transplantation with non-transfected stem

cells9 (Fig. 1). Additionally, in a rat myocardial infarct

model, injecting MSCs transfected with the miR-133a ago-

mir increases cardiac function and decreases MSC apoptosis,

inflammation, and infarct size, relative to injecting MSCs

alone. In contrast, injecting MSCs transfected with the

miR-133a antagomir increases MSC apoptosis25.

Fig 1. Therapeutic cardiac remodeling via transplantation of microRNA-133a (miR-133a) and stem cells. Myocardial infarction (MI) can lead
to adverse cardiac remodeling and promote the development of hypertrophy and fibrosis. Transplantation of stem cells transfected with
miR-133a in MI hearts can promote therapeutic cardiac remodeling to combat these detrimental effects and may be more effective than
transplantation of stem cells alone.
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Furthermore, overexpression of miR-133a promotes the dif-

ferentiation of human bone marrow-derived MSCs to cardiac

cells that express markers such as cTnT and b-MHC, and

executes these changes by targeting epidermal growth factor

receptor65. Thus, miR-133a can be utilized in stem cell

therapies for MI to augment the survival of grafted cells and

increase treatment effectiveness, possibly by enabling more

transplanted stem cells to differentiate into healthy cardio-

myocytes, or by contributing additional cardioprotective

benefits. Similarly, the survival rate and ability of trans-

planted cells to resist host-mediated immune responses may

also be strengthened by employing exosomes derived from

MSCs that overexpress indoleamine 2,3-dioxygenase 166,67.

Conclusion and Perspectives

Collectively, these lines of evidence imply the potential of

miR-133a as a promising therapeutic target in the treatment

of MI. Nevertheless, the roles of miR-133a in myocardial

infarction remain largely unknown. So far, studies have

demonstrated that miR-133a induces positive effects on

infarcted hearts in regard to angiogenesis, inflammation,

apoptosis, fibrosis, hypertrophy, and cardiac programming

(Table 2). However, we cannot conclude whether miR-133a

is completely beneficial or not to the infarcted heart. The

mechanisms of miR-133a-mediated cardiomyopathy are

extremely complex because miR-133a targets the upstream

molecules of various critical transcription factors. Moreover,

numerous studies have shown that infarcted myocardium

experience decreased miR-133a compared with normal

areas, and up-regulating miR-133a expression through

genetic manipulation techniques are beneficial for the heart

under ischemic injury. These findings indicate that certain

levels of miR-133a may be of vital importance in maintain-

ing the balance of cardiac function. Therefore, the main aim

of miR-133a intervention is to restore miR-133a levels in the

myocardium, which is influenced by cardiac stress. In addi-

tion to the intracellular function of miR-133a, increasing

evidence has revealed that circulating miR-133a can be used

as a potential MI biomarker. Thus, it may be worthwhile to

consider that miR-133a, in addition to being potential ther-

apeutic target, can also be used as a diagnostic biomarker.
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