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Protein complexes are known to play a major role in controlling cellular activity in a living being.
Identifying complexes from raw protein protein interactions (PPIs) is an important area of research.
Earlier work has been limited mostly to yeast. Such protein complex identification methods, when
applied to large human PPIs often give poor performance. We introduce a novel method called CSC to
detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity
and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other
competing algorithms for both organisms. Further, we present a framework to establish the usefulness of
CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically
considering eight major association factors.
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1. Introduction

The understanding of functional and physical interactions
among molecules in the living body is of utmost importance in
biology. Proteins are referred to as the most essential molecules
in the living body and hence determination of the interactions
among them can add to the existing domain knowledge in biology.
Certain experimental methods such as mass spectrometry [1] and
yeast-to-hybrid help identify interconnections among pairs of pro-
teins and also build the network of interacting proteins. However, a
major drawback of these methods is that they are unable to detect
presence of interactions involving more than two protein partners
[2]. From biological discoveries, we are aware that often a group of
proteins act together at the same time and place to form a protein
complex [3] and these complexes are responsible for carrying out
various activities in the body. For example, the SWI/SNF complex
is associated with remodelling of the DNA [4]. Thus, understanding
interactions among groups of proteins (i.e., protein complexes) is
more beneficial rather than emphasizing just on the interconnec-
tion between any two protein pairs. Protein complex detection
using experimental techniques is challenging as the amount of
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PPI data is increasing at a very fast rate. Thus computational meth-
ods that can go beyond pairwise analysis may be able to comple-
ment the dominant study paradigm in PPI analysis. A PPI
network is generally represented as a graph where vertices corre-
spond to proteins and edges between them correspond to interac-
tions between proteins. The task of identifying protein complexes
from the PPI network (PPIN) can be modelled as a clustering prob-
lem, where the task is to identify similar types of proteins. The sim-
ilarity between proteins can be in terms of distance, graph
similarity or any other suitable metric. Use of different metrics
results in different set of complexes. Analysis of these complexes
has always been a research issue to the biologists.

Interactions among proteins decide the molecular and cellular
functions in healthy and diseased states of organisms [5]. The
molecular basis of diseases can be explored from the PPI network
point of view, and relevant discoveries may aid in the prevention,
diagnosis and treatment of diseases. Protein complexes in a PPI
network can be used for gaining insight into genetic pathways
and may also aid in analyzing the different progression stages in
diseases [5]. Studies have also shown that disease genes tend to
lie at the periphery of the networks and that they are highly con-
nected among themselves. Careful analysis of disease networks
can prove helpful in drug design as well. Association links between
disease gene(s) and other genes in a complex can also help in pri-
oritization [6,7] of complexes to narrow down the search space for
bioinformaticists and enhance the analysis process.
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Despite the availability of numerous protein complex finding
methods, not much attention has been paid to their performance
in case of human datasets. Empirical analysis of a few of the exist-
ing methods has revealed that these methods perform well mostly
for yeast datasets. Thus, it is necessary to find a method which can
perform equally well for both yeast as well as human datasets. We
have introduced an effective method to predict complexes of high
biological significance in this paper. Further, we have established
the method in terms of well-known performance measures such
as Sensitivity, Positive Predictive Value and Accuracy for two
model organisms, i.e., yeast and human. We have also given a
framework to analyze the influence of a disease gene in a complex
both biologically as well as topologically in terms of eight associa-
tion parameters.

2. Background

The problem of protein complex finding from PPI networks can
be thought of as a machine learning problem. This can be addressed
either in a supervised or unsupervised manner. Since a protein com-
plex is a natural grouping of similar proteins, it has been handled
mostly using unsupervised approaches. A number of methods have
been proposed in the literature using only topological features. For
example, MCODE [8] uses the concept of vertex weighting to find
dense subgraphs. These dense subgraphs are referred to as protein
complexes. RNSC [9] uses a cost based search technique to find pro-
tein complexes from PPI networks. CFinder [10] and CMC[11] use a
clique merging procedure to identify complexes. ClusterONE [12]
uses a cohesion measure to find protein complexes. Recently,
researchers have started integrating GO-based knowledge for better
complex detection. Some examples are GMFTP [13] which uses a
propensity score to better predict the complexes. This score esti-
mates the affinity of a protein to belong to a complex based on GO
annotations. Another method called WCOACH [14], which is an
improved version of COACH integrates semantic similarity between
proteins to find complexes. A recent method called TINCD [15]
works using the ensemble framework. It uses information from var-
ious clustering methods and raw data sources to predict quality
complexes. Few researchers have used supervised techniques too
to find complexes from the PPI networks. They train a model using
the topological and biological properties of the available benchmark
complex sets and then use it to predict complexes. Examples include
a bayesian network based complex finding method [16]. Each of
these methods predicts complexes to the best of their ability. But
in order to analyze their performance, we need to take the help of
certain standards. The commonly used indices in machine learning
are precision, recall and f-measure but we do not use them here due
to conflicting uses by different researchers. It is not possible that a
whole set of clusters would exactly match a set of benchmark com-
plexes, and so researchers have come up with the idea of a overlap-
ping threshold. This value was earlier set to 0.2 [8], which then
changed to 0.6 or 0.75. However, in order to maintain uniformity
while considering performance using both yeast and human data-
sets, we use Sensitivity (Sn), Positive Predictive Value (PPV) and
Accuracy (Acc) [17] as performance measures. These indices con-
sider the number of common elements between the predicted clus-
ters and the benchmark complex to find the overall measure and do
not need any kind of overlapping threshold. Suppose there are s
number of benchmark complexes and t number of predicted clus-

ters. If C;; is the number of common proteins between the i bench-

mark complex and j" predicted cluster, Sensitivity (Sn) and Positive
Predictive Value (PPV) are given as

Sn— >oimaxi{Cy} PPV — > imaxi{ i}

Acc = VSn x PPV
S P 3G

A high sensitivity value indicates that a large fraction of proteins
found in real complexes is covered by those found in the predicted
clusters and a large positive predictive value indicates that a large
fraction of the predicted clusters corresponds to real complexes.
These two criteria should be used by any complex finding method.
The values of these two can be summarized by another measure
known as the Accuracy (Acc) whichis the geometric mean of the two.

Proteins in a complex can be linked via different associations.
These associations can be found using certain tools such as Gene-
MANIA [18] and STRING [19]. The associations can be physical
interactions, which predict links between two proteins only if they
are found to interact in some protein-protein interaction study. A
link among complex members can also be due to the presence of
co-expressions among their gene products, i.e,. they tend to show
similar expression values across conditions in a gene expression
study. Proteins in a complex may also be linked via predicted func-
tional relationship, i.e., these proteins may be mapped to known
interactions in some other organisms via orthology. There are some
gene coding proteins linked via pathway information which sug-
gests their involvement in the same reaction in the pathway. The
member genes may also show co-localization among themselves
suggesting their co-ocurrence in the same tissue or cell. Members
within a complex may also be linked as given by some databases
such as the metabolic pathway database or the protein complex
database, or they may be linked w.r.t. text documents where they
are assumed to be related. Thus, there may be various forms of
association among members in a protein complex. Higher the
number of such links in a complex, the better is its quality.

3. Method

The problem of protein complex finding is an unsupervised
learning problem which involves partitioning a graph into similar
natural groups. Given a graph G = (V, E) corresponding to a PPI net-
work, where V represents the set of proteins and E represents the
set of edges, the task is to find a set of subgraphs such that these
subgraphs closely correspond to the set of benchmark complexes.
In order to describe our method, we use the following concepts.

Definition 1 (HConfidence measure). HConfidence measure
between a pair of vertices (z;, ;) is given as the ratio of the
common neighbors between them to its minimum connectivity.
Mathematically,

Ny NN,

H(vi, vj) = min(deg,.deg,)

where N,,,N,, are the set of neighbors of »; and #; and deg,,i,deg,,j
are the degrees of nodes, v; and v; respectively.

Definition 2 (Seed pair). Any two nodes or proteins, (2;, ;) which
has the highest HConfidence measure, i.e., H(v;, vj) > H(vy, ),
Yog, v € {V—{v;,v;}} is a possible candidate for seed pair
selection.

Definition 3 (Connectivity). The connectivity of a node »; ¢ V to a
subgraph pC is defined as the ratio of the number of links, I, that
exists between the node and the elements of the subgraph pC to
the total degree of the node, i.e., deg,.

_ lUi

Connectivity(v;, pC) = deg,
Vi

Definition 4 (Semantic similarity). The semantic similarity
between a protein pair (;, ;) is given by the similarity of concepts
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(GO terms) with which they are associated in the corpus (GO
database):

semsim(v;, vj) = sim(GOterms;, GOterms;)

where proteins »; and ; are associated with GO terms GOterms; and
GOterms;, respectively.

Definition 5 (Reachability Index). The reachability index of a node
v; in a cluster C is given as the ratio of the total number of links its
direct neighbors have within C to the total number of edges in the
cluster:

le
RI, =
%V: tedges,

where dN is the set of direct neighbors of node z; within cluster
C, lyc is the number of links each node v, € dN has within the clus-
ter, and tedges. is the total number of links in the cluster, C.

Definition 6 (Contribution). The contribution of a subgraph, say G’
is the sum total of the reachability indices of all nodes vy, v, ... vy
in the subgraph.

k
Contribution(G') = "RI,,

i=1

Definition 7 (Non-reachable proteins). A pair of protein nodes
(vi, vj) is considered as no-reachable if there is no protein zy such
that Connectivity(vy, (v;, vj)) = o« (o =40% based on emprical
analysis(Fig. 1)).

Definition 8 (Protein complex). A subgraph G' = (V',E) of G is said
to be a protein complex if each »; € G’ is at least o connected to all
v; such that »; = {V' — v;} and Contribution(G") > Contribution(G')
where G" = G' U {vn}, um € v; is a new candidate node to be added
to G.

Definition 9 (Overlapped complex). Two protein complexes C1 and
C2 are said to overlap if intersection among the member elements
of both the sets is non-empty i.e,.

PC1NPC2 # ¢

O
«
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Fig. 1. Performance indices obtained at varying thresholds using HPRD dataset.

The proposed complex finding method follows the seed selec-
tion and expansion approach to extract the complexes from PPI
network data. The method is called CSC as it uses the concepts of
connectivity, semantic similarity and contribution during complex
extraction. CSC works in four steps. The first step involves finding
pairs of seed nodes from the PPI network to help form high quality
clusters. Seed pair selection is done using the HConfidence score
for each pair of node. At every iteration, a pair of nodes having
the highest HConfidence score is chosen as the seed pair for cluster
expansion. Once the seed nodes, say, (74, v) are selected, the pair
is inserted into the partialCluster. Then the process of cluster
expansion is performed in an unsupervised manner. A node v, with
the highest connectivity (among all nodes) with the partialCluster
is chosen as the first candidate for cluster expansion. During clus-
ter expansion, we try to make the topological and functional con-
tribution (o and g respectively) during cluster formation to be 1,
ie,

a+p=1 (M

From our experimental analysis part, we found the most suit-
able connectivity threshold (o) to be 0.4. This is explained by a per-
formance graph shown in Fig. 1, which shows stable performance
at around 40% connectivity in terms of all the three parameters,
i.e,. Sensitivity, PPV and Accuracy. The membership of node v, is
further strengthened by the semantic similarity value existing
between the nodes in the partialCluster and v.. The threshold for
semantic similarity (p) is accordingly adjusted to 0.6 for Eq. (1)
to hold. Once, these two criteria are satisfied, it is confirmed that
node . is a good choice both topologically and functionally to
form a complex with nodes v, and v, present in the partialCluster.
However, the decisive role is played by the contribution function
calculated for the partialCluster before and after adding node v,
to it. If the value of the contribution function after new node addi-
tion is greater than the old value, only then the new node v is
added to the partialCluster, else the elements in the partialCluster
are returned as outlier proteins. This process is repeated until no
further node is left satisfying all three criteria. The next complex
extraction begins by choosing another pair of candidate seed nodes
and the process is repeated to extract a set of complexes.

To establish the effectiveness of CSC method over other existing
methods, we have given a proposition here.

Proposition 1. The CSC method is capable of finding high quality
complexes.

Explanation: Initially, CSC selects candidate seed pairs with the
help of HConfidence measure. This measure involves choosing the best
possible candidate for cluster expansion depending on their topological
position in the network. Next, we use the connectivity criterion,
semantic similarity value and contribution factor to determine if a
new node can be inserted into the existing partialCluster. Two of these
criteria, viz, connectivity and contribution are topological while
semantic similarity uses corpus knowledge. This process is repeated
with new seed pairs at every iteration to generate a set of clusters
(complexes). These three criteria ensure the selection of an appropriate
protein during expansion. Hence, the proposed CSC ensures extraction
of quality complexes. [J

4. Performance evaluation

We now describe the environment used to implement the CSC
method and the datasets used for evaluating our method. In order
to evaluate our method’s performance, we have used two datasets.
One is the DIP dataset [20] and the other is the HPRD dataset [21].
DIP is a yeast dataset consisting of 17201 interactions and 4606
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proteins whereas HPRD is a human protein interaction dataset
comprising of 39209 interactions and 10080 proteins. We have
also taken the help of three benchmark complexes namely MIPS
[22], CYC2008 [23] and PCDq [24]. The first two are well known
benchmark sets for yeast and the third one is for human. We
implemented the CSC method in MATLAB running on an HP Z800
workstation with two 2.4 GHz Intel(R) Xeon (R) processors and
12 GB RAM, using the Windows 7 operating system. We have com-
pared the performance of the CSC method with some existing
methods for which Cytoscape plugins are available. For GMFTP,
we use MATLAB source code provided by the authors and for CNCM
[25], we use the MATLAB executable. We also use a very recent
method called TINCD for comparing the accuracy of the CSC
method. For this method, reported results [15] are used for com-
parison, as the source code could not be obtained. We have there-
fore, limited our comparison of CSC with TINCD only for the DIP
dataset.

0.8

= MCODE

M FAG-EC

mFT

= TFit

=0CG

macut

¥ ClusterONE

W GMFTP
CNCM

mcsc

Sensitivity

(a) Comparing Sensitivity of CSC with other algo-
rithms on DIP dataset using MIPS as benchmark.

0.7

4.1. Results on yeast dataset

Using the above three performance indices, we analyze the per-
formance of our method with nine other methods: MCODE |[8],
FAG-EC [26], FT [27], TFit [28], OCG [29]), QCUT, ClusterONE [12],
GMFTP [13], and CNCM [25]. We use two benchmark complexes,
viz., MIPS [22] consisting of 203 complexes and CYC2008 [23] con-
sisting of 408 complexes. Fig. 2 show the performance of CSC with
the other algorithms on the DIP dataset using MIPS as the
benchmark.

Sensitivity of the CSC method is around 42%, which is better
than few other methods such as MCODE, OCG, ClusterONE and
GMFTP as shown in Fig. 2(a) whereas Positive Predictive Value of
CSC is beaten by MCODE and ClusterONE only as seen in Fig. 2
(b). From Fig. 2(c), we see that accuracy of CSC is higher than all
other methods except TINCD [15]. We could not compare our
results with TINCD in terms of sensitivity and PPV as these results

W MCODE

M FAG-EC

mFT

m TFit

m0CG

macut

W ClusterONE

- WGMFTP

CNCM

mcsc

Positive Predictive Value

(b) Comparing Positive Predictive Value of CSC
with other algorithms on DIP dataset using MIPS
as benchmark.
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maQcut

¥ ClusterONE

" GMFTP
CNCM

W TINCD

mCsC

(c) Comparing Accuracy of CSC with other algorithms
on DIP dataset using MIPS as benchmark.

Fig. 2. Senstivity, PPV and Accuracy of CSC and other methods on DIP dataset with MIPS benchmark set.
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Fig. 3. Sensitivity, PPV and Accuracy of CSC and other algorithms on DIP dataset using CYC2008 as benchmark.
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Fig. 4. Comparing Sensitivity, Positive Predictive Value and Accuracy of CSC with
other algorithms on DIP dataset using CYC2008 as benchmark with varying « and
thresholds.

were not reported in the original paper [15]. It is evident from the
figure that CSC gives an accuracy of 46% whereas TINCD, the most
recent approach gives an accuarcy of 61% on the DIP dataset using
MIPS as the benchmark.

We also use CYC2008 as the benchmark dataset for comparing
the performance of our method. Fig. 3 shows the performance on
DIP dataset using CYC2008 as the benchmark dataset. In Fig. 3(a),
we see that the sensitivity of the CSC method is quite less as com-
pared to other methods except MCODE and GMFTP. The PPV of CSC
is in the third position for this benchmark set with MCODE and
ClusterONE occupying the first and second place as seen in Fig. 3
(b). The accuracy of our method is around 40%, whereas two other
methods-ClusterONE and TINCD show an accuracy 0f 50-70% as
seen in Fig. 3(c). We can fine tune these performance values by
tuning the SsT/pB threshold. This is justified by Fig. 4. However,
we have used o = 0.4 and 8 = 0.6 for our computation as suggested
in Section 3.
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Fig. 5. Sensitivity, Positive Predictive Value and Accuracy of CSC with other algorithms on HPRD dataset.

Our method performs significantly well over other methods as
can be seen in case of the DIP dataset using MIPS benchmark.
Although, it could not beat TINCD and few other methods in case
of the CYC2008 benchmark dataset with the used parameters, we
can still justify scope of improvements in these indices by tuning
the parameters.

4.2. Results on HPRD dataset

We analyze the performance of the CSC method using the big-
ger HPRD dataset [21], which is the Human Protein Reference
Dataset comprising of 39,209 interactions. Literature [30,7,31,6]
has shown that the knowledge of protein complexes can be used
in disease diagnosis, so we are keen to analyze the accuracy of
our method over the human dataset. A more accurate method
would aid the biomedical scientists in developing a better under-
standing of complexes and would prove helpful in finding their
association with diseases. We compare the performance values of
the CSC method with nine other methods: MCODE, FAG-EC, FT,
TFit, OCG, QCUT, ClusterONE, GMFTP and CNCM as shown in Fig. 5.

As seen in Fig. 5(a), the sensitivity of CSC is around 23%, which is
much higher than other methods except CNCM. The PPV of our

method is at the second position after ClusterONE (Fig. 5(b)). From
Fig. 5(c), we see that accuracy of our method emerges as the win-
ner in this dataset.

Apart from the three performance indices, we have also used
another measure called separation, which gives the isolation factor
within the predicted complexes. It is given as the product of the
fraction of complexes obtained in the predicted cluster with that
of the fraction of predicted elements found in the complex. A
higher value of separation indicates a two-way correspondence
between the predicted clusters and the complexes. Fig. 6 shows
the separation obtained from CSC and other methods using DIP
and HPRD dataset.

From Fig. 6(a), it can be seen that CSC shows better separation
value than other methods in case of MIPS whereas it is in the sec-
ond position using CYC 2008 dataset as seen in Fig. 6(b). It is
mainly because of the smaller number of larger complexes gener-
ated by MCODE in comparison to ours. From Fig. 6(c), it is seen that
CSC is at the fourth position in terms of HPRD dataset. The main
reason behind this reduced separation value is the occurrences of
high overlaps among the complexes extracted by our method. As
stated in [12], proteins tend to perform multiple functions and
hence are usually grouped into multiple complexes. For example,
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Fig. 6. Separation of CSC and other algorithms on DIP and HPRD dataset.

the CYC 2008 complex set has around 207 proteins which partici-
pate in more than one complex. The role of overlapping protein
complexes has also been established in [12].

5. Analyzing PPI complexes: a conceptual framework

In this section, we will demostrate the effectiveness of CSC from
both biological as well as topological points of view w.r.t. a given
disease query. A protein complex is nothing but a group of similar
proteins which collaboratively participate in rendering significant
cellular functions. As the literature points out [32], any mutation
in genes coding proteins in a complex may lead to certain diseases.
For example, the SWI/SNF complex is known to be associated with
Coffin-Siris syndrome and plays a role in causing cancer [6]. We
analyze a subset of complexes based on some query diseases. In
order to find this subset of complexes, we use the disease related
gene information given in Genecard [33]. We directly use gene
names given in GeneCard as there is one-to-one correspondence
between genes and proteins are named the same way as genes
[34]. We use only a single disease, so the number of disease genes
found from GeneCard is not too high. However, if we had chosen a
whole class of diseases, the number of genes would be large and as
a result, the identification of disease associated complexes would
likely be a lengthy process. In order to handle such a scenario,
we propose a framework.

5.1. The disease gene-central gene analysis framework

This section presents a conceptual framework as shown in Fig. 8
to analyze the associations of a disease gene with the central gene
(s) (chosen to represent a complex based on connectivity) of com-
plexes. The following definition and illustration are useful for fur-
ther description of the application.

Definition 10 (Central gene of a complex). A gene g; is referred to
as a central gene of a complex C;, iff the associations of g; with rest
of the genes g; € (; is highest.

ﬁ,@qg » ¥ Physical interactions
Central
gene > ¥ Co-expression
BSENEN] > ¥ Predicted
> ¢ Pathway

» ¥ Text mining
=

Fig. 7. Protein complex members along with its association links.
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Fig. 8. Disease gene-Member genes analysis framework.

For illustration, an example graph shown in Fig. 7, representing
a complex given by CSC is used. Here the nodes represent the genes
and the edges represent the associations, which may be of seven
distinct types viz., (i) physical interaction, (ii) co-expression, (iii)
predicted interaction, (iv) pathway, (v) co-localization, (vi) curated
database and (vii) text mining. However, for this complex, only five
types of associations are present as shown in the figure.

From the set of complexes given by CSC, we identify the central
gene representing each complex. Identification of the central gene
is important in order to understand the association of the disease
gene with the central gene in the complex. In order to reduce the
time taken during string comparison for finding disease associated
complexes, we map the disease genes to unique numbers by means
of a hashing technique (one-to-one mapping). This unique number
is referred to as the GenelD. Using an index search, we identify the
disease associated complexes quickly. This process outputs results
of the form < GenelD, Genename, Complexlist>. The Complexlist is a
set of those indexed complexes which have GenelD as one of the
members. This list is dynamic in nature as one disease gene can
be present in one or more complexes. Once the GenelD along with
the Complexlist is obtained, we can further analyze the associations
of central gene(s) and other genes with the disease gene(s).

To support our analysis, we use two online tools, GeneMANIA
[18] and STRING [19]. GeneMania is a web based tool which fea-
tures many functions such as analyzing a gene list, prioritization
of genes and determining gene functions. A very useful function
of this tool is the visual representation of a set of genes. This graph-
ical representation has nodes which correspond to genes and edges
which correspond to attributes such as (i) physical interactions, (ii)
co-expressions, (iii) predicted interactions, (iv) pathways, (v) co-
localization, (vi) genetic interactions and (vii) shared protein
domains. We use the first five attributes i.e., (i)-(v) for our purpose.
The other two options are not used as they mainly focus on the 3D-

structure of proteins, which is beyond the scope of this work. We
use another tool called STRING (Search Tool for the Retrieval of
Interacting Genes), which is an online database resource for anno-
tating functional interactions among proteins. This tool also gives a
visual representation of genes in a network with edges correspond-
ing to known interactions, corresponding to those experimentally
determined and those which are obtained from curated databases.
It also predicts interactions, if at all, they exist using neighborhood
information or co-occurrence information among the genes. More-
over, it also shows edge information obtained using text mining
from different literature sources and from homology considera-
tions. Among all these attributes, we use only (i) edge information
from curated databases and (iii) text mining for our purpose.

5.2. An application to Alzheimer’s disease

In this section, we consider an example disease query from the
class of neuro-degenerative diseases for analysis of complexes
given by CSC. Among all forms of mental illnesses, Alzheimer’s Dis-
ease is devastatingly common. It is the sixth leading cause of death,
especially among the elderly. Although there has been significant
development in drug design to protect people from this deadly dis-
ease, effective treatment of this form of dementia does not exist.
Therefore, PPI data analysis w.r.t. such a disease is considered a
critical research problem for bioinformaticists.

The use of a series of criteria in the CSC method have lead to a
reduced search space for the formation of clusters (complexes).
Due to this constraint, we find only two complexes associated with
the disease. We analyze the members of these two complexes
using the tools discussed above. The two disease associated com-
plexes along with their member proteins and associations among
them are given in Table 1. In Table 1, columns 5-11 show the asso-
ciation of the disease gene with the central gene as well as other

Table 1
Alzheimer associated complex (Association of disease gene with other genes in the complex).
S. Disease gene(s) Members of complex Whether Physical Co- Predicted Path Colocalization  Curated Text
No in complex (except disease gene) Central gene interaction expression interaction way database mining
1 PSENEN APH1A No Yes Yes No Yes No No Yes
TMED2 Yes No Yes Yes No No No No
TMED10 No Yes No No No No No Yes
2 TOMM40 TOMM22 No Yes Yes No No No Yes Yes
TOMM7 Yes Yes Yes No No No Yes Yes
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Table 2
Pathway associated with each member of Alzheimer associated complexes.

S.No Complex members Whether disease gene Pathway in which involved Percentage of match
(belonging to same pathway)

1 PSENEN Yes Notch signaling pathway

APH1A No Notch signaling pathway

TMED2 No Pre-notch expression and processing 75

TMED10 No mRNA processing
2 TOMM22 No Mitochondrial protein import

TOMM?7 No Mitochondrial protein import 100

TOMM40 Yes Mitochondrial protein import

complex members w.r.t. our seven chosen attributes. Another sig-
nificant characteristic of genes is determined by the pathways in
which they are involved during any cellular activity. Pathway
information can be used for analyzing the contribution of each
member within a complex. Two genes belonging to the same path-
way are functionally more similar than those belonging to different
pathways [35]. Table 2 gives the pathways with which each mem-
ber of the two disease associated complexes is associated.

We observe in Table 2 that 75% similarity is seen in the pathway
information in complex 1 and 100% similarity in pathway is
observed in complex 2. Therefore, we can say that CSC is able to
extract high quality complexes both from statistical and biological
points of view.

6. Conclusion and future work

In this work, we present a method which gives more accurate
results during the protein complex finding process. The accuracy
obtained using our method is at par with the existing methods
such as MCODE, FAG-EC, FT, TFit, OCG, QCUT, ClusterONE, GMFTP,
CNCM and TINCD in case of DIP dataset. In case of human dataset,
our method gives the best performance against the other existing
methods in terms of accuracy. We establish the biological signifi-
cance of our method empirically. We also introduce a conceptual
framework to analyze the associations of complex members with
the disease gene w.r.t. eight significant parameters. Although the
framework introduced supports analysis for a neuro-degenerative
disease, it can be extended for other diseases as well. A relational
database tool is being developed to support a large number of dis-
ease queries related to such diseases.
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