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Abstract

Accurate and sufficient water quality data is essential for watershed management and sus-

tainability. Machine learning models have shown great potentials for estimating water quality

with the development of online sensors. However, accurate estimation is challenging

because of uncertainties related to models used and data input. In this study, random forest

(RF), support vector machine (SVM), and back-propagation neural network (BPNN) models

are developed with three sampling frequency datasets (i.e., 4-hourly, daily, and weekly) and

five conventional indicators (i.e., water temperature (WT), hydrogen ion concentration (pH),

electrical conductivity (EC), dissolved oxygen (DO), and turbidity (TUR)) as surrogates to

individually estimate riverine total phosphorus (TP), total nitrogen (TN), and ammonia nitro-

gen (NH4
+-N) in a small-scale coastal watershed. The results show that the RF model out-

performs the SVM and BPNN machine learning models in terms of estimative performance,

which explains much of the variation in TP (79 ± 1.3%), TN (84 ± 0.9%), and NH4
+-N (75 ±

1.3%), when using the 4-hourly sampling frequency dataset. The higher sampling frequency

would help the RF obtain a significantly better performance for the three nutrient estimation

measures (4-hourly > daily > weekly) for R2 and NSE values. WT, EC, and TUR were the

three key input indicators for nutrient estimations in RF. Our study highlights the importance

of high-frequency data as input to machine learning model development. The RF model is

shown to be viable for riverine nutrient estimation in small-scale watersheds of important

local water security.

1 Introduction

Waterbodies must maintain a good chemical and ecological status to protect human health

and safeguard natural ecosystems. Nutrients are important indicators that affect water quality,

watershed health, and biological processes [1,2]. As key constituents of riverine nutrients, high

concentrations of nitrogen (N) and phosphorus (P) may lead to eutrophication and anoxia in

coastal waters [3], thereby not only affecting the living environment of human beings but also

the biodiversity [4]. Therefore, it is crucial to master accurate water quality data and elucidate
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riverine N and P dynamics for effective watershed water management, particularly for small

watersheds with limited water quality monitoring but significant local water-security.

Conventional field sampling is usually conducted to examine the dynamics of N and P in

fresh water [5]. However, the sampling is typically too infrequent (i.e., weekly or monthly) to

fully characterize lotic nutrient conditions and to accurately estimate nutrient loading [6,7].

Additionally, the field-sampling method involves laboratory analysis to determine the concen-

trations of water-quality parameters, which is labor- and cost-intensive, time-consuming, and

limited in terms of spatial coverage [8].

Over the past few years, with the development of online water-quality monitoring technol-

ogy, the use of sensors that directly measure water quality has changed the approach to water-

shed research [9]. Compared to lower-frequency field sampling, higher-frequency (e.g.,

hourly, minutely) water quality monitoring can well capture short-term water quality dynam-

ics and extremes. Conventional water-quality indicators, such as water temperature (WT),

hydrogen ion concentration (pH), electrical conductivity (EC), dissolved oxygen (DO), and

turbidity (TUR), can be monitored using probes continuously and frequently. Research meth-

ods have gradually migrated from conventional field sampling with lab analyses to online

monitoring with advanced in situ sensors [10]. However, for many key nutrient indicators

(i.e., permanganate index, Chlorophyll a, or the components of N and P), it is still difficult

and/or uneconomically monitored in situ with high-frequency [11,12]. Moreover, there are

hidden dangers and problems, such as abnormal indications caused by probe damage and sen-

sor failure, and high maintenance costs [13,14]. The low frequency of field sampling makes it

difficult to capture the instantaneous variability of water quality, and the high price of sensors

prevents them from being densely deployed, thus the spatial variability of watershed water

quality is difficult to capture. Insufficient water quality data caused by these problems is usually

not conducive to riverine health assessment and water management.

Machine learning models have shown great potentials for estimating water quality parame-

ters. They can solve highly nonlinear problems [15,16] and supplement mechanism models

[17]. Machine learning algorithms do not consider physical processes [18], and a large number

of data are often required to operate them [19]. Many studies have adopted surrogate regres-

sion to enhance the rapid generation of data input based on in situ measurements and to sim-

plify resource-intensive laboratory experimentation. According to this method, the

concentration of riverine nutrients can easily be estimated using alternative indicators.

Researchers have used a variety of machine learning algorithms, such as neural networks

(NNs; [20–22], support vector machines (SVM; [23–25], and random forest (RF; [26–29], to

estimate water environment related indicators. It was found that machine learning algorithms,

especially RF, have great potential and are more frequently applied for this purpose [30]. For

example, different machine learning algorithms were used to compare the estimation accuracy

of nutrient concentrations, and the results showed that RF was significantly more accurate

than other conventional algorithms when estimating all six levels of water quality (I, II, III, IV,

V, and worse than V [WV]), which are based on the National Environmental Quality Stan-

dards for surface water of China (GB3838-2002) [31]. The RF, gradient boost regression, and

AdaBoost regression have been used to simulate the daily suspended sediment load in the Mis-

sissippi River, and the result show that RF is slightly ahead in prediction performance [32].

It is well known that uncertainty is inherent in model development [33]. Many studies were

devoted to exploring the causes of uncertainty in machine learning models to improve estima-

tion accuracy [34,35]. Sharafati et al. [35] used a Monte Carlo simulation model to quantify

estimation uncertainties. The results showed that the model structures were more influential

than the input indicators for estimating effluent quality parameters. Noori et al. [36] used the

percentage of observed data bracketed by 95% predicted uncertainties (95PPU) and the
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bandwidth of 95% confidence intervals (d-factor) to analyze the uncertainties brought by SVM

hyperparameters. They found that the model was more sensitive to the capacity parameter (C)

than to kernel parameters (Gamma) and error tolerance (Epsilon). Not just hyperparameter

and model structure, data input associated with different sampling frequencies might also

induce uncertainties and influence estimation accuracy [37]. Derot et al. [2] demonstrated that

the different sampling frequency datasets directly impact the forecast performance of an RF

model. According to their findings, the accuracy of phytoplankton bloom forecasts for a

20-min time step was higher than that of the 1-day time step. It appears from these studies that

there are many kinds of factors that affect the estimation accuracy and associated uncertainty.

Among those factors, the model uncertainty caused by the frequency of data input might be

more worthy of discussion with the increasing popularity of automatic monitoring sensors.

The estimation accuracy of nutrient concentration depends not only on the model structure

but also on the amount and type of data input [31]. Many researchers used multiple types of

indicator inputs for estimation [38] or indicators having high correlation with the substances

to be tested as inputs. Some even used one nutrient to estimate another type of nutrient.

Although desired estimation results can be achieved, these methods are difficult to implement

in reality because some of the input indicators (chemical oxygen demand, nitrate, and nitrite,

etc.) are not readily available in a high temporal resolution [39]. Therefore, it is crucial to

develop a convenient as well as accurately model of nutrient concentration estimation that the

input indicators are easier available.

Despite that many studies have been focused on machine learning in different fields, few

researches have combined machine learning methods with high-frequency monitoring data

and evaluate model uncertainty caused by frequency of data input. To develop a model that

can estimate riverine nutrient (total phosphorus [TP], total nitrogen [TN], and ammonia

nitrogen [NH4
+-N]) concentrations easily and accurately, as well as evaluate the uncertainty

caused by the sampling frequency, thus helpful to water management in a small-scale water-

shed, we developed an RF model using datasets of only five monitoring water-quality indica-

tors (i.e., WT, pH, EC, DO, and TUR) from the unique online multi-parameter water-quality

sensor located in the outlet of the watershed (sensor type can be seen in S1 Text, Supporting

information). Concurrently, we constructed an SVM and a back-propagation neural network

(BPNN) for performance comparison. All these three machine learning models are widely

used, and with well estimation accuracy. Specifically, the main objectives of this study are (1)

to compare the estimative performance of different machine learning models for riverine

nutrient concentrations, and (2) to evaluate the accuracies and uncertainties of the models

with datasets of different sampling frequencies (i.e., 4-hourly, daily, and weekly). The findings

of this study would be helpful to easily estimating riverine nutrient concentrations in small-

scale watersheds and evaluating the contributions of high-frequency data to estimation accu-

racy. The proposed model strategy can be used in other small-scale watersheds with scarce

data on nutrients but easily available and high frequency chemical/physical indicators to

improve the efficiency of machine learning models used for water-quality estimation.

2 Data and methodology

Herein, a data-driven methodology based on machine learning is proposed to measure uncer-

tainties due to three different sampling frequencies while estimating the riverine nutrient con-

centrations. As shown in Fig 1, this technique route comprises three components: (1) data

preparation, (2) model development, and (3) accuracy and uncertainty analyses. The methods

and formulations involved are described exhaustively in the following sections.
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2.1 Data preparation

The Aitoutan (ATT) watershed is located in Tong’an District, Xiamen, China. Since China

launched environmental regulations (e.g., “River Chief”) in 2016, water quality in the ATT

watershed has been significantly improved. In recent years, the main pollutant faced by the

watershed is TP, and the sensor-monitoring data at the outlet of the watershed shows that the

concentration of TP frequently exceeds the level III based on National Environmental Quality

Standards for surface water of China (higher than 0.2 mg/L) (Fig 2). Thus, water quality is still

a concern for local governments.

The data of the monitoring site in the study area was acquired by sensors in the surface

water, and the other monitoring indicators except nutrients are used as the input indicators of

the machine learning models. The dataset in this study comprises five physical/chemical indi-

cators used as inputs of machine learning models, namely WT, pH, EC, DO, and TUR, and

three nutrients being estimated, namely TP, TN, and NH4
+-N, which covers the period from

January 1, 2019, to March 31, 2021, and was provided by the Xiamen Environmental Publicity

and Education Center (specific information can be seen in S6 Text, Supporting information).

The outliers (each water quality indicator value lower than/equal to 0 and the null value) were

eliminated from this dataset. This dataset has a temporal resolution of four hours, which

denotes that the water-quality indicators were automatically monitored by an interval of four

hours from midnight daily. We resampled this 4-hourly frequency monitoring dataset to

mimic both daily and weekly monitoring schemes. The water-quality indicators at 8 a.m. each

day were extracted as a daily dataset, and the indicators at 8 a.m. each Monday were extracted

as a weekly dataset. The three datasets of sampling frequency scenarios have the same temporal

span. The 4-hourly dataset includes 4,209 samples of water quality indicators (five physical/

chemical indicators and three nutrients as described above), whereas the daily dataset includes

803 samples; the weekly dataset has 115 samples. The samples in each dataset are at the same

time step, that is, there is no time lag in the input samples in this study.

As summarized in Table 1, the descriptive statistics of these five input indicators and three

nutrients with the 4-hourly frequency showed that the indicators having the highest coeffi-

cients of variation (CV) were TUR and NH4
+-N, and the most stable indicator was pH. The

CVs of WT and DO as well as TUR and NH4
+-N were similar in pairs. The standard deviation

(SD) was used to measure the data deviation from the mean value. CV is the mean normalized

SD, and it represents the statistical dispersion of data. Before model development, the input

indicators and nutrients of training set of the 4-hourly dataset will undergo Spearman’s test of

Fig 1. Flowchart of the proposed methodology.

https://doi.org/10.1371/journal.pone.0271458.g001
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rank correlation to determine whether the correlation between the five input indicators and

nutrients are too high.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN

i¼1
ðOi �

�OÞ2
r

ð1Þ

Table 1. Descriptive statistics of input indicators and output nutrients from the monitoring site located in the outlet of Aitoutan (ATT) watershed.

Parameter Max Min Mean SD CV (%)

WT (˚C) 35.83 13.00 24.27 4.58 18.88

pH 8.96 6.03 7.16 0.28 3.92

EC (μS/cm) 227.95 49.80 146.44 42.24 28.84

DO (mg/L) 14.79 3.17 7.66 1.56 20.40

TUR (NTU) 162.97 1.90 16.70 17.94 107.41

TP (mg/L) 0.59 0.03 0.13 0.08 64.82

TN (mg/L) 5.81 0.38 1.66 0.69 41.28

NH4
+-N (mg/L) 1.92 0.01 0.16 0.19 113.55

Notes: CV = “coefficient of variation”; SD = “standard deviation”.

https://doi.org/10.1371/journal.pone.0271458.t001

Fig 2. The 4-hourly variation of sensor readings from January, 2019, to March, 2021, for the water quality indicators in the outlet of the Aitoutan (ATT)

watershed. The red dotted lines represent the boundary of environmental quality standards for surface water in China. The water quality levels gradually

deteriorate from level Ⅰ to level Ⅴ and the value of indicators exceeding the level Ⅴ is defined as “worse than Ⅴ”. For DO, the higher value represents the better

water quality level, and for TP and NH4
+-N, the higher value represents the worse water quality level.

https://doi.org/10.1371/journal.pone.0271458.g002
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CV% ¼
SD
�O
� 100 ð2Þ

where n is the number of input samples, Oi is the observations, and �O represents the mean val-

ues of the observations.

2.2 Model development

MATLAB 2019b was used in this study to develop the RF, BPNN, and SVM model. To prevent

overfitting of the models and ensure the generalization ability of the model, 80% of the dataset

was randomly selected as the training set first, and the remaining 20% was selected as the test-

ing set. The training set was then divided into a training-validation set based on a 10-fold

cross-validation [40,41]. In this study, the training set was used for model fitting, the validation

set was used to pick the optimal hyperparameter combination, both training set and validation

set here were in 10-fold cross-validation phase, and we determined the optimal hyperpara-

meters by the average of the statistical metrics of the validation set under 10-fold cross-valida-

tion. Then we iterated the optimal hyperparameter combination to three machine learning

models, fit the models with the initially divided training set, and test the generalization ability

of the models in the testing set. We selected the optimal model from three machine learning

models (Section 3.2) and evaluate the estimation accuracy and uncertainty of the selected

model with three sampling frequency scenarios (Section 3.3).

2.3 Accuracy evaluation and uncertainty analysis

The three machine learning models were evaluated for the estimation accuracy of cross-valida-

tion step under the 4-hourly frequency scenario, and the model with the best performance of

validation set would be selected for the next phase (accuracy and uncertainty analysis due to

different sampling frequencies). Several statistical metrics were selected to evaluate the estima-

tion accuracy and uncertainty of the models proposed in this study. The coefficient of determi-

nation (R2), Nash-Sutcliffe efficiency (NSE), root mean squared error (RMSE), and mean

absolute error (MAE) were used to assess the goodness of fit between the observed nutrient

concentrations and those estimated by three models.

R2 ¼
½
Pn

i¼1
ðOi �

�OÞðPi �
�PÞ�2

Pn
i¼1
ðOi �

�OÞ2
Pn

i¼1
ðPi �

�PÞ2
ð3Þ

NSE ¼ 1 �

Pn
i¼1
ðOi � PiÞ

2

Pn
i¼1
ðOi �

�OÞ2
ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

1
ðOi � PiÞ

2

r

ð5Þ

MAE ¼
1

n

Xn

1
jðOi � PiÞj ð6Þ

where n is the samples of training/validation/test sets in 4-hourly/daily/weekly frequency sce-

nario; Oi and Pi are respectively the observations and model estimations for each set; �O and �P
respectively represent the mean values of the observations and model estimations for each set.
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Usually, R2 and NSE values closer to 1 while RMSE and MAE values closer to 0 denote higher

accuracy.

In this phase, to evaluate the estimation accuracy and uncertainty caused by sampling fre-

quencies, we first selected the model with the highest estimation accuracy from the three

machine learning models. We resampled the 4-hourly dataset to extract daily and weekly sets

according to the pattern in Section 2.1 and nine scenarios (i.e., three nutrients × three sam-

pling frequencies) were designed. The testing set of the 4-hourly scenario has 842 samples

(20% previously split from the 4-hourly dataset). The datasets of daily and weekly sampling

frequency scenarios were all used as training-validation sets for their respective models based

on the k-fold cross-validation. In order to equally evaluate and compare the impact of three

sampling frequency scenarios on the estimation accuracy of RF, we chose the testing set of

4-hourly scenario, and from it we randomly selected 20% of the total samples of daily/weekly

scenario as the testing sets for the daily/weekly scenarios. Therefore, the training set of the

daily scenario has 803 samples and the testing set has 161 samples; the training set of the

weekly scenario has 115 samples and the testing set has 23 samples. We performed 30 replicate

estimations under this dataset division, and evaluated the model accuracies and uncertainties

in testing sets under three sampling frequency scenarios. The statistical metrics for estimation

accuracies of testing sets were used for the one-way analysis of variance (ANOVA) test to eval-

uate whether there is a significant difference in the estimation accuracy between the three sam-

pling frequencies.

One of the main advantages of RF is that it can assess the importance of the input indicators

used in the modeling processes [42]. It is vital to identify some key water indicators when

model developing. To further optimize the machine learning model and improve the compre-

hensive management of watersheds, the RF model was selected to analyze the relative impor-

tance of the input indicators. For each nutrient, the weights and relative importance of the

input indicators were ranked and analyzed. The calculation method of the importance of each

indicator in RF is as follows: (1) For each decision tree in the RF model, the out-of-bag (OOB)

data are used to calculate OOB error, denoted as OOBE1. (2) Redistribute all the original N

samples of each indicator through permutation, the OOB error is calculated again and

recorded as OOBE2. (3) Assuming that there are N trees in the RF model, the relative impor-

tance for each indicator can be shown in Eq (7):

RIi ¼

Pn
1

PN

1
ðOOBE2i � OOBE1iÞ

N

� �

n
ð7Þ

where RIi refers to the relative importance of each indicator, N denotes the amounts of tree of

RF model, and n is the number of indicators.

3 Results

3.1 Correlation analysis of water quality indicators

Based on Spearman’s test of rank correlation, there was a large number of high statistically-

significance (i.e., p < 0.01) among the nutrients and input indicators (Fig 3). As shown in this

figure, TUR is strongly positively correlated with all three nutrients, DO is positively correlated

with all three nutrients, EC is weakly positively correlated with TP and TN and weakly nega-

tively correlated with TN, pH is positively correlated with TP and TN and negatively correlated

with NH4
+-N, and WT is weakly positively correlated with TP and NH4

+-N and negatively

correlated with TN. The correlation analysis of the nutrient concentrations showed that TP
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was strongly positively correlated with TN and NH4
+-N, while the correlation between TN

and NH4
+-N was relatively low.

3.2 Evaluation of estimation accuracy among three machine learning

models

The sampling frequency of data we used in this phase was the 4-hourly scenario, and the three

models used the same division rules for the dataset. Different machine learning models using

the same dataset for estimation may have different performances. The hyperparameter

Fig 3. Correlation analysis for the input and output indicators. The statistical significance of rank correlations is denoted by asterisks for p< 0.05 (�) and p< 0.01

(��) (lower left). The different sizes and colors of circles represent the strength of the correlation between the indicators (upper right).

https://doi.org/10.1371/journal.pone.0271458.g003
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selections of three machine learning models can be found in S2, S3, and S4 Text in Supporting

information. The performances of testing set can be seen in Table 2. For each nutrient, the R2

and NSE obtained by RF are higher than SVM and BPNN, whereas the RMSE and MAE of RF

are the lowest among three models.

This study uses Taylor diagrams to make visual comparisons of results obtained by the

three models (Fig 4). Model performance is represented by a point, where the most accurate

model has the closest distance to the point of observation, which is shown by the dark-grey

point in the diagrams. Based on the principle of the Taylor diagram (i.e., correlation, standard

deviation, and RMSE), the RF model has higher correlations with observed nutrient concen-

trations and a lower RMSE compared with the two other models. Fig 4 confirms that the RF

model provides the highest accuracy when estimating TP, TN, and NH4
+-N concentrations.

Moreover, the BPNN model has the weakest performance compared with the other models.

3.3 Evaluation of model accuracy with different sampling frequency scenarios

We chose the RF model that had the highest R2 and NSE and the lowest RMSE and MAE val-

ues in testing step under 4-hourly scenario (Table 2) for subsequent use. The hyperparameter

Table 2. Comparison of the average estimation accuracy of the three machine-learning models (4-hourly fre-

quency, testing step, n = 842).

Model Statistical metric Nutrient

TP TN NH4
+-N

RF R2 0.801 0.859 0.759

NSE 0.785 0.853 0.748

RMSE 0.039 0.284 0.087

MAE 0.024 0.189 0.057

SVM R2 0.737 0.811 0.720

NSE 0.734 0.810 0.717

RMSE 0.044 0.316 0.095

MAE 0.025 0.219 0.054

BPNN R2 0.668 0.757 0.616

NSE 0.666 0.754 0.602

RMSE 0.049 0.361 0.113

MAE 0.031 0.268 0.072

https://doi.org/10.1371/journal.pone.0271458.t002

Fig 4. Comparison of the models’ performances by Taylor diagrams. RF = “random forest”; SVM = “support vector machine”; BPNN = “back-propagation

neural network”; TP = “total phosphorous”; TN = “total nitrogen”; and NH4
+-N = “ammonia-nitrogen”.

https://doi.org/10.1371/journal.pone.0271458.g004

PLOS ONE Estimation of riverine nutrient and associated uncertainties caused by sampling frequencies

PLOS ONE | https://doi.org/10.1371/journal.pone.0271458 July 13, 2022 9 / 21

https://doi.org/10.1371/journal.pone.0271458.t002
https://doi.org/10.1371/journal.pone.0271458.g004
https://doi.org/10.1371/journal.pone.0271458


selections of RF were consistent with Section 3.2. We performed 30 replicate estimations for

each of nine scenarios (i.e., three nutrients × three sampling frequencies) as described in Sec-

tion 2.3. The mean results of testing phase are presented in Table 3. Among them, the rank of

R2 and NSE values of the RF model under three sampling frequency scenarios is

4-hourly > daily > weekly. When the sampling frequency was increased from weekly to

4-hourly, the R2 and NSE obtained by the RF model is greatly improved (TP 30%, TN 30%,

and NH4
+-N 25% for R2; TP 36%, TN 31%, and NH4

+-N 34% for NSE). Regarding RMSE and

MAE, there is no such pattern. Among the average estimation results of the RF model with

three sampling frequency scenarios, the values of RMSE and MAE do not change much com-

pared with R2 and NSE.

The scatterplots can characterize the relationship between observed values (i.e., three nutri-

ents with three sampling frequencies) and the average estimation results of the RF model in

the testing phase (Fig 5). Results show that as the sampling frequency increases, the slope of

the fitted line between the estimated value and the observed value constantly approach 45˚

(slope = 1), which also results in the increase of model estimation accuracy. For different nutri-

ents, the slope of the fitted line can also prove the rank of model estimation accuracies

(TN> TP> NH4
+-N). When the actual values (i.e., observed nutrient concentrations) are

lower than half of their maximum values, overestimation and underestimation by RF exist

simultaneously; however, when the actual values are higher than half of their maximum value,

the RF tends to underestimate, which is more obvious at the peak of observations. The error

between observations and estimations at the peak (especially underestimation) may be the

main reason to affect the slope.

The 30 replicate estimation results under various scenarios are also displayed in a violin

plot (Fig 6). This representation not only shows the quantile, but it also provides the kernel

density curve of the data. In view of the results in which the variation of RMSE and MAE are

minimal compared with R2 and NSE, we only chose R2 and NSE to evaluate the performance

of different sampling frequencies. As shown in Fig 6, for all nutrients, the mean values of R2

and NSE after 30 RF estimations under the 4-hourly frequency are higher than those of the

daily frequency. The weekly one has the lowest R2 and NSE. It can be observed from the inside

boxes that R2 and NSE values obtained by RF with via 4-hourly sampling frequency scenario

have the smallest changes under each scenario. Thus, they maintain a high level. For compari-

son, the estimation accuracy of RF under the weekly scenario fluctuates greatly, and the high

Table 3. Comparison of the average estimation accuracy of the RF model with three sampling frequencies (testing step).

Sampling frequency Statistical metric Nutrient

TP TN NH4
+-N

Four-hourly (n = 842) R2 0.785 0.840 0.749

NSE 0.781 0.837 0.747

RMSE 0.038 0.285 0.087

MAE 0.023 0.187 0.057

Daily (n = 161) R2 0.692 0.761 0.676

NSE 0.667 0.735 0.668

RMSE 0.041 0.301 0.093

MAE 0.026 0.196 0.065

Weekly (n = 23) R2 0.602 0.658 0.598

NSE 0.574 0.639 0.559

RMSE 0.044 0.318 0.101

MAE 0.029 0.201 0.068

https://doi.org/10.1371/journal.pone.0271458.t003
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Fig 5. Scatterplots of the observations and average estimations with three sampling frequency scenarios. The x-axis represents the observations while the y-

axis represents the estimations. The grey dashed line represents the 1:1 fitted line of observations and estimations under ideal conditions. The red line

represents the fitted line of observations and estimations in actual situation.

https://doi.org/10.1371/journal.pone.0271458.g005
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(e.g., R2 and NSE about 0.7) and the low (R2 and NSE about 0.4) accuracies appear at the same

time. Hence, the mean values are the lowest in the end. Regarding the comparison of estima-

tion accuracies among the different nutrients, driven by the same sampling frequency data

input, TN always obtains the highest R2 and NSE values, whereas NH4
+-N is always the lowest.

An ANOVA test was performed to confirm whether the uses of dataset with different sam-

pling frequencies cause significant differences in the estimation accuracy of the RF model. The

results are presented in Table 4. For each group (one nutrient × one statistical metrics), the dif-

ferences of three sampling frequencies are significant. The estimation accuracy of the RF

model under the 4-hourly frequency is significantly better than that of the daily frequency, and

the daily frequency is also significantly better than the weekly one. On the other hand, the

higher frequency of data input reduces the fluctuation of RF estimation accuracy (i.e., the

smallest SD with 4-hourly and biggest SD with the weekly frequency). In summary, for one

nutrient, a higher sampling frequency typically causes the RF to yield a higher estimation

accuracy.

3.4 Relative importance of input indicators

To clarify the relative importance of the five alternative inputs and find the key indicators in

the nutrient concentration estimations, the RF with the 4-hourly sampling frequency scenario

Fig 6. Estimated R2 and Nash-Sutcliffe efficiency (NSE) values for the random-forest (RF) model under different sampling frequency scenarios. The

width of the violin shape indicates the frequency at which R2 and NSE appear at this value.

https://doi.org/10.1371/journal.pone.0271458.g006
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was used. As shown in Fig 7, EC, TUR, and WT are the three most important indicators. TUR

shows the highest relative importance in controlling the estimation accuracy of TP and NH4
+-

N, while EC is the most important indicator for the estimation of TN. Comparatively, pH and

DO are the two least important indicators of nutrient estimation. Based on the relative impor-

tance analysis, we found the three key indicators that affect the nutrient concentration dynam-

ics among the five conventional water quality indicators.

4 Discussion

4.1 Uncertainty of model estimation

Machine learning models have large uncertainties associated with their unique structures,

hyperparameter adjustment requirements, and data input [36,43]. The division rules of train-

ing and testing sets and the addition or deletion of input indicators can also cause fluctuations

of estimation accuracy [44]. The same machine learning algorithm mentioned in different

studies will perform differently due to the above-mentioned factors. Different machine learn-

ing algorithms will also perform differently even if be in the same study area and using the

same dataset (specific information can be seen in the Table in S5 Text, Supporting informa-

tion). There is no single algorithm that works best under all conditions. [45]. Firstly, we com-

pared the estimation accuracy of three widely used machine learning models in our study area.

In addition to the differences of the model, we controlled other variables to maintain consis-

tency. The results of the testing step showed that the estimation accuracy of the RF model was

the highest among the three models. The RF had the highest R2 and NSE values (R2 = 0.801,

0.859, and 0.759 for TP, TN, and NH4
+-N; NSE = 0.785, 0.853, and 0.748 for these three nutri-

ents) and the lowest RMSE and MAE values (RMSE = 0.039, 0.284, and 0.087 for TP, TN, and

NH4
+-N; MAE = 0.024, 0.189, and 0.057 for these three nutrients) (Table 2). The Taylor dia-

grams (Fig 4) also supported this finding. In these diagrams, the RF model was always the clos-

est to the point represented by the observation, whereas the BPNN was the farthest from

observation.

Many studies compared the performance of different models under the same conditions.

Some of them reached the same conclusion as ours, that the RF model may be a more viable

tool than other models for estimating water quality [31,32,46]. We also found that the estima-

tion accuracy of the SVM was higher than BPNN, which is also found in other studies [47,48].

On the other hand, the number of input indicators affects the estimation accuracy of the

machine learning model [49]. Attention should be paid to the overfitting caused by excessive

types of input indicators [38,50]. Simultaneously, the difficulty of data acquisition must be

Table 4. Results of the analysis-of-variance (ANOVA) test.

Nutrient Statistical metric Sampling frequency (n = 30) F

Weekly (Mean ± SD) Daily (Mean ± SD) Four-hourly (Mean ± SD)

TP R2 0.602 ± 0.057 c 0.692 ± 0.026 b 0.785 ± 0.013 a 182.08��

NSE 0.574 ± 0.042c 0.667 ± 0.026 b 0.781 ± 0.013 a 354.99��

TN R2 0.658 ± 0.065 c 0.761 ± 0.023 b 0.840 ± 0.009 a 150.21��

NSE 0.639 ± 0.059 c 0.735 ± 0.024 b 0.837 ± 0.009 a 205.18��

NH4
+-N R2 0.598 ± 0.062 c 0.676 ± 0.025 b 0.749 ± 0.013 a 107.29��

NSE 0.559 ± 0.069 c 0.668 ± 0.025 b 0.747 ± 0.012 a 131.95��

Note: Statistical significance in the ANOVA test is denoted by asterisks for both p< 0.05 (�) and p< 0.01 (��). The F value denotes the ratio of the mean square between

groups to the mean square within groups. The larger F value represents the larger difference between the groups. The different letters (a-c) after the numbers

(Mean ± SD) indicated the significant differences between three sampling frequencies, while the same letters indicated that there are not significant differences.

https://doi.org/10.1371/journal.pone.0271458.t004
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considered [39,51]. For the simplicity and feasibility of the model, the input indicators must be

at a sufficiently small scale to make estimations [52]. For the convenience of data acquisition,

we only selected five water-quality parameters that can be measured easily in situ. Manual sam-

pling and experiments or automatic sensor monitoring can be the method to obtain model

Fig 7. Relative importance analysis results of five input indicators in the random-forest (RF) model.

https://doi.org/10.1371/journal.pone.0271458.g007
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input data, and the obtained data can be used as input indicators for subsequent nutrient con-

centration estimations according to the proposed methodology.

Different sampling frequencies influence estimation accuracy when using machine learning

methods [31,53]. Generally speaking, the higher sampling frequency means that a larger

amount of data can be obtained in the same time period, which will cause the machine learn-

ing model to use more data to improve its learning ability and obtain better estimation perfor-

mance. Thomas et al. [54] found that the R2 for phytoplankton estimation decreased from 0.89

at a resolution of 4-hourly to 0.74 at a 1-month resolution. Our study also showed that a higher

sampling frequency led to higher accuracy (Figs 5 and 6 and Tables 3 and 4). Moreover, high-

frequency data input also plays an important role in improving the estimation performance of

the mechanism model. Jiang et al. [55] used two frequencies data input and catchment hydrol-

ogy model named HYPE to estimate nitrate and evaluate uncertainty. They found that HYPE

model better captured nitrate dynamics when using daily data than fortnightly data, and daily

data produced smaller predictive uncertainty. However, Liu and Lu [56] compared the estima-

tion accuracies of TP and TN concentration by the SVM and artificial neural network (ANN)

models under monthly, bimonthly, and trimonthly sampling frequencies from January, 2005,

to December, 2010. And they drew a different conclusion: a higher sampling frequency some-

times does not lead to improvements of estimation accuracy, which may even cause accuracy

degradation (for example, using SVM and ANN to estimate the concentration of TP and TN

under different sampling frequencies, the order of accuracy was that bimonthly > trimonthly

> monthly). Their conclusions indicated that increasing the sampling frequency does not nec-

essarily increase the estimation accuracy though the sampling frequency they selected was not

the “high frequency”.

To evaluate the model performance due to sampling frequency, we used the high-frequency

dataset to construct different sampling frequency scenarios, and we analyzed the changes in

estimation accuracy. The ANOVA test showed that the mean accuracy of 30 replicate estima-

tions with the 4-hourly sampling frequency data input (R2 = 0.785, NSE = 0.781 for TP; R2 =

0.840, NSE = 0.837 for TN; R2 = 0.749, NSE = 0.747 for NH4
+-N) was significantly higher than

that of the daily (R2 = 0.692, NSE = 0.667 for TP; R2 = 0.761, NSE = 0.735 for TN; R2 = 0.676,

NSE = 0.668 for NH4
+-N) and weekly (R2 = 0.602, NSE = 0.574 for TP; R2 = 0.658,

NSE = 0.639 for TN; R2 = 0.598, NSE = 0.559 for NH4
+-N) data (Table 4). One reason for this

may be that more data inputs can lead to a better understanding of hidden patterns [57]. Alter-

natively, the 4-hourly frequency may better represent the actual situation (e.g., concentration

mutations) than the daily and weekly frequencies. This indicates that when other conditions

are consistent, the larger number of data input could help the model better reflect the patterns

of change in the values estimated, leading to higher performance [58,59]. With the develop-

ment of technology, high-frequency water-quality monitoring equipment are deployed to riv-

ers worldwide, which helps society better grasp the water-quality change information needed

to complete model simulations more accurately [6,60]. This ideal situation cannot be easily

realized with low-frequency sampling methods and laboratory experiment. Therefore, we

strongly recommend using high-frequency data to develop the RF model to grasp the dynamic

changes of riverine nutrient concentration.

4.2 Different estimation accuracies among three nutrient concentrations

In this study, the RF model showed the highest estimation accuracy for TN and the lowest esti-

mation accuracy for NH4
+-N. During the period from January 2019 to March 2021, the CV of

TN was the lowest, whereas that of NH4
+-N was the highest (Table 1), which is consistent with

the ranked estimation accuracy of the three nutrients. Owing to its active chemical properties,
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NH4
+-N can be easily converted to nitrites and nitrates [61]. The data used in this study were

collected using an automatic monitoring sensor located at the outlet of the watershed. Point-

source emissions might lead to a sudden increase of nutrient concentrations in a short time,

owing to rapid urbanization [62]. These factors make the variation in riverine nutrient concen-

trations larger and more difficult to estimate [60], especially for NH4
+-N. We identified three

key indicators (WT, EC and TUR) through the relative importance analysis in Section 3.4.

They have always been the top three important in the estimation of TP, TN and NH4
+-N con-

centrations. Interestingly, except TUR, there are only weak correlations between WT as well as

EC and nutrients. These indicated that WT, EC and TUR have a great impact on the modeling

of nutrient concentration dynamics, and the importance could not be fully reflected in the

results of correlation analysis. In future research, we may verify our findings above by using

different combinations of input indicators. Also, we may evaluate the changes of model esti-

mation accuracy by leaving out relatively less important indicator (such as pH or DO) to

develop a more simplified model with minimal impact on model accuracy.

The RF model underestimated higher concentrations. This underestimation occurs frequently

when using a machine learning algorithm to estimate numerous variables [4,19,57,60,63]. There

are several reasons leading to the model underestimation of the peak nutrient concentration: the

occasionally unusual observations or the fact that the five inputs selected for this study did not

fully include the indicators affecting nutrient concentrations. Or some peaks were mistakenly

removed as outliers when performing the outlier elimination operation.

4.3 Limitations and future agenda

Notwithstanding the success of machine learning in water-quality estimations, some limita-

tions continue to hamper its wider use and impact. One limitation is the model interpretability

[64]. Although machine learning models can fit observations well, it is difficult to trace their

mechanism of temporal and spatial changes. The main purpose of this study was to develop a

regression model that could accurately estimate nutrient concentrations; hence, the physical

mechanism of nutrient changes was omitted. We instead explored the uncertainty induced by

the sampling frequencies. Therefore, the uncertainties caused by different models were briefly

evaluated and without cross-validation. Furthermore, there was only one automatic monitor

at the outlet of the watershed studied. Thus, we used the so far water quality indicators only

from one location for modelling and analysis. This may not sufficiently reflect all hydrological

processes in the watershed.

Considering the continuous implementation of the follow-up work in our study area, this

study only used five easily available indicators as data input, which eliminated the need for lab-

oratory experiments. The input indicators can be obtained by sampling and measuring using a

portable water-quality monitor along rivers and creeks, or by the sensor located in the outlet of

the watershed. However, the convenience of the proposed methodology means that some

important physical and chemical parameters (i.e., precipitation, flow, point source discharge,

non-point source pollution, some water quality parameters, etc.) that affect the changes of

nutrient concentrations were discarded. This is an inevitable problem due to the scarcity of

data and the inconsistent time resolution of data from different sources. In subsequent work,

we may consider adding more parameters related to the process mechanism as the input data

to enhance the interpretability of the machine learning models. In addition, the good estima-

tion results of this study were realized by the excellent fitting ability of machine learning algo-

rithms and high-frequency data. In the future, the model should be continuously optimized or

coupled with data-denoising algorithms, such as wavelet transforms, for performance

improvement.
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5 Conclusions

We developed the RF model to estimate the concentrations of TP, TN, and NH4
+-N using only

five easily obtainable water-quality indicators (i.e., WT, pH, EC, DO, and TUR) as surrogates.

We built SVM and BPNN models for comparison to RF, and the results showed that RF per-

formed best. We evaluated the estimation uncertainties related to the sampling frequencies

(i.e., 4-hourly, daily, and weekly). There was a significant improvement of model accuracy

when the frequency of data input was increased. When using the 4-hourly sampling frequency

dataset, RF explained the dynamic variation in TP (79 ± 1.3%), TN (84 ± 0.9%), and NH4
+-N

(75 ± 1.3%). We attribute the accurate estimation of nutrient concentrations to the availability

of high-frequency monitoring data, which has shown great potential in water-quality indicator

estimations that cannot otherwise be easily realized by daily/weekly sampling routines. Fur-

thermore, EC, TUR, and WT were identified as the key indicators to the estimation of TP, TN,

and NH4
+-N. The RF model is an effective alternative for estimating riverine nutrient concen-

trations when using high sampling frequency data, which is essential for sustainable water

management in watersheds producing scarce water-quality data.
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