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Abstract

Early, ideally pre-symptomatic, recognition of common diseases (e.g., heart disease, can-

cer, diabetes, Alzheimer’s disease) facilitates early treatment or lifestyle modifications, such

as diet and exercise. Sensitive, specific identification of diseases using blood samples

would facilitate early recognition. We explored the potential of disease identification in high

dimensional blood microRNA (miRNA) datasets using a powerful data reduction method:

principal component analysis (PCA). Using Qlucore Omics Explorer (QOE), a dynamic,

interactive visualization-guided bioinformatics program with a built-in statistical platform, we

analyzed publicly available blood miRNA datasets from the Gene Expression Omnibus

(GEO) maintained at the National Center for Biotechnology Information at the National Insti-

tutes of Health (NIH). The miRNA expression profiles were generated from real time PCR

arrays, microarrays or next generation sequencing of biologic materials (e.g., blood, serum

or blood components such as platelets). PCA identified the top three principal components

that distinguished cohorts of patients with specific diseases (e.g., heart disease, stroke,

hypertension, sepsis, diabetes, specific types of cancer, HIV, hemophilia, subtypes of men-

ingitis, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease, mild cognitive

impairment, aging, and autism), from healthy subjects. Literature searches verified the func-

tional relevance of the discriminating miRNAs. Our goal is to assemble PCA and heatmap

analyses of existing and future blood miRNA datasets into a clinical reference database to

facilitate the diagnosis of diseases using routine blood draws.

Introduction

Many devastating diseases, including heart disease, cancer, diabetes, Alzheimer’s disease (AD)

and other dementias, are partially preventable through lifestyle interventions such as diet and

physical activity [1]. Patients with, or at risk for, many of these diseases would benefit from

earlier diagnosis, especially if therapies or lifestyle modifications are available that improve
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outcome (S1 Reference). Because blood samples are easily accessible and can be repeatedly

sampled, detection and assessment of circulating biomarkers would allow an individualized

approach to early disease management [2]. Regulatory microRNAs (miRNAs), which are sta-

ble in blood and other circulating biofluids, represent potential non-invasive, disease-specific

biomarkers [3].

In 2014, NIH director Francis Collins described the potential value of archived datasets in

publicly accessible databases and suggested that mining existing ‘Big Data’ (genetic, pheno-

typic and clinical) could identify new predictive markers of disease risk [4]. One such database

includes thousands of blood miRNA datasets maintained at the National Center for Biotech-

nology Information’s (NCBI) Gene Expression Omnibus (GEO) database. However, mining

these complex datasets has typically required expertise in statistics, mathematics, bioinformat-

ics, and machine learning techniques [5].

One solution to the mining of big datasets is to use established data reduction techniques,

such as principal component analysis (PCA), that effectively reduce a large set of variables into

a smaller, easier-to-analyze set without losing the meaningful information contained in the

large set [6]. In our studies of humans with Traumatic Brain Injury (TBI), we found that PCA

of blood miRNA profiles clearly distinguished patients with TBI from uninjured subjects, even

TBI patients that suffered as long as 32 years previously [7]. This demonstrated that circulating

miRNAs could serve as stable biomarkers of human disease. Here, we extend those observa-

tions using a commercially available bioinformatics program, Qlucore Omics Explorer (QOE),

which executes dynamic, interactive PCA. Using QOE, we found that a broad spectrum of

human diseases are characterized by significant alterations in circulating miRNAs in blood or

blood components. Literature searches validated the functional relevance of discriminating

miRNA markers in the pathology of each disease. Here, we present a series of bioinformatic

analyses demonstrating that one of the obstacles to personalized medicine, the management

and analysis of big datasets, can be addressed using PCA and heatmap analyses of miRNA

expression in blood samples. We also show evidence that the discriminating miRNA variables

identified in these analyses can serve as diagnostic and prognostic biomarkers of specific

diseases.

Methods

Principal component analysis of miRNA datasets using Qlucore Omics

Explore

Principal component analysis is a way to identify strong patterns in large, complex datasets.

This widely used data reduction technique captures the essential information in high-dimen-

sional data by identifying a few principal components that account for most of the variability

in the dataset; PCA finds the maximum variance in each variable (how far each value in the

dataset is from the mean) and then projects the variance of these many variables into a smaller,

easier-to-analyze set of linearly uncorrelated principal components. For example, observing a

group of people from a substantial distance, differences in height, body habitus and hair length

would permit generally accurate identification of men and women. In such a group, these vari-

ables (height, body habitus and hair length) would represent the first, second and third princi-

pal components, respectively.

Qlucore Omics Explorer (Qlucore, Lund, Sweden) is a data analysis and data mining soft-

ware tool built on state-of-the-art mathematical and statistical methods (a general linear statis-

tical model based on R), that combines speed and advanced analytics for interactive

exploration and instant visualization of high-dimensional data. The user interface instantly

responds to the adjustment of statistical parameters to represent the three principal
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components that are most responsible for the variance in a dataset. The display is intuitive and

easily understandable, regardless of one’s depth of familiarity with data analytics or statistics.

The sum of the three principal components in a PCA plot provides valuable information about

the significance of the discriminating data, for instance in the Fig 1A hierarchical clustering

Fig 1. (A) Principal component analysis (PCA) and hierarchical clustering heatmap of miRNA expression in platelets of patients

affected by first acute myocardial infarction (FAMI) and in platelets from normal controls (GEO accession # GSE24548). The 37

miRNAs that distinguish the two groups account for 98% of the variance in the dataset. (B) PCA and hierarchical clustering heatmap

of patients with favorable (1–2) vs poor (3–5) cerebral performance category (CPC) neurological outcome after cardiac arrest

(GSE34643) shows that four miRNAs, that account for 98% of the variance in the dataset, can clearly distinguish the patients with

poor or favorable outcomes. (C) PCA and hierarchical clustering heatmap of premature coronary artery disease (CAD are a young

age) vs healthy controls (GSE28858) shows that six miRNA variables distinguish the CAD from healthy control groups. These six

miRNAs represent 97% of the variance in the miRNA dataset.

https://doi.org/10.1371/journal.pone.0234185.g001
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heatmap, the top three principal components are represented by 37 miRNA variables that col-

lectively represent 98% of the variance in the entire dataset; that is, these 37 miRNAs together

are sufficient to distinguish the patients from the healthy subjects.

The workflow for downloading and analyzing blood miRNA datasets in QOE is shown in

S1 Table. The program assembles the data matrix, calculates the means, subtracts the means

from the data matrix, calculates the covariance matrix which captures the information about

the spread of the data, and calculates the Eigen vectors and Eigen values of the covariance

matrix. The first principal component is the Eigen vector corresponding to the largest Eigen

value, the second principal component is the Eigen vector corresponding to the second largest

Eigen value, etc. As statistical parameters are adjusted to appropriate significance levels, the

PCA plots are instantly generated and updated. Hierarchical clustering is an algorithm that

groups similar variables into clusters represented by a dendrogram (tree diagram). In QOE,

hierarchical clustering heatmaps are instantly updated with their corresponding PCA plots.

Following QOE’s identification of patients, we examined the discriminating variables (signifi-

cant miRNAs) shown on the heatmaps that result from the PCA plots and performed literature

searches on the discriminating miRNA variables to determine their functional relevance.

Results

Data are grouped by related themes for ease of presentation. The seven figures represent: 1)

heart disease, 2) hemodynamic diseases, e.g. stroke, hypertension and sepsis-induced acute

kidney injury (AKI), 3) diabetes, 4) cancer subtypes, 5) diseases for which the discriminating

miRNA variables in the heatmap analyses reveal pro-survival mechanisms, 6) two nervous sys-

tem disorders with similar phenotypes and 7) brain disorders. All datasets in this study are

identified by unique GEO accession numbers which are provided in the figure legends. Each

GEO submission file contain a brief summary of the experimental paradigm and if available, a

link to the published report. We observed that many GEO submissions are not published. The

complete data files are publicly available and can be downloaded into bioinformatic programs

or saved in Excel for further study.

PCA and hierarchical clustering heatmap analyses identified patients with

or at risk for heart disease

We performed PCA so that the top three principal components and the resulting discriminat-

ing miRNA variables displayed on the hierarchical clustering heatmaps represented 80–100%

of the variance in each dataset. For example, PCA of blood miRNA datasets identified patients

diagnosed with first acute myocardial infarction (FAMI; Fig 1A), patients with favorable (1–2)

vs poor (3–5) cerebral performance category (CPC) neurological outcome after cardiac arrest

(Fig 1B) and patients with coronary artery disease (CAD; Fig 1C). In FAMI, 98% of the vari-

ance in the entire dataset is represented by three principal components consisting of 37 dis-

criminating miRNA variables. In CPC outcome after cardiac arrest, four miRNAs represent

100% of the variance. In CAD, six miRNAs represent 97% of the variance. PCA of miRNA

profiles also clearly identified patients with unstable angina pectoris (S1 Fig).

Investigation of the functional roles of the discriminating miRNAs from the hierarchical

clustering heatmaps provided key mechanistic insights; the majority of the miRNAs have roles

in inflammation and immune regulation. Across all three datasets, miRNAs that showed ele-

vated expression in healthy control subjects are associated with good cardiac function [8–10]

or limited cardiac dysfunction after myocardial infarction [11]. Increased miRNAs in acute

myocardial infarction (AMI) have been identified as potential biomarkers of heart disease [12]

or modulators of heart function such as miR-200a [13] and miR-24 [14].
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The functional roles of the identified miRNAs from Fig 1 correspond with current under-

standing of mechanisms underlying heart disease and other diseases with shared pathophysiol-

ogy. Six examples are: 1) reduced circulating levels of miR-199 and miR-223 are associated

with heart failure and atherosclerosis [15]; 2) miR-219-5p, which is elevated in healthy subjects

and downregulated in AMI patients, promotes recovery from spinal cord injury by inhibiting

inflammation and oxidative stress [16]; 3) miRNAs such as miR-223 limit inflammation in

other diseases such as cancer [17]; 4) elevated miR-26b is associated with attenuated micro-

glial-mediated inflammation [18]; 5) miR-29 has a role in reducing inflammation and fibrosis

after liver injury [19]; and, 6) lower expression of heart disease-associated miRNAs, such as

miR-20, is found in other inflammatory diseases such as rheumatoid arthritis [20]. An interest-

ing association between heart disease and hypertension involves members of the miR-17 fam-

ily. MiR-17 is downregulated in AMI and associated with CAD [21], as well as kidney disease

with hypertension [22]. Upregulated expression of miR-574-5p is found in patients after car-

diac arrest and also is associated with increased severity of CAD [23]. CAD-related miRNAs

are associated with other forms of heart disease as well as other diseases; miR-1247 is associ-

ated with cardiac fibrosis and cell death [24] and miR-1236 [25], miR-548 [26] and miR-551b

[27] are linked to inflammation and immune activation. Furthermore, deficiencies of specific

miRNAs may result in pathology. Deficiency of miR-33 in mice (also decreased in FAMI) pro-

motes obesity, insulin resistance and hyperlipidemia [28].

In some instances, the association of the miRNA with the underlying molecular function

has been directly described. One example is miR-101 which is upregulated in SH-Sy5y cells in

response to increased expression of TNF-α leading to increased inflammation [29]. This study

by Han et al. showed that myocardial infarction associated transcript 2 (Mirt2) suppresses

miR-101 indirectly through suppression of TNF-α, resulting in anti-inflammatory effects [29],

thus demonstrating a direct role for miR-101 in inflammation. In our study of FAMI we found

miR-101 to be highly expressed in the healthy subjects (Fig 1A), highlighting the complexity of

the roles of miRNAs which can mediate both dysfunctional (i.e. inflammatory) and protective

(i.e. anti-inflammatory) cellular responses. In this case, we infer that the protective effects of

low miR-101 expression in FAMI patients are insufficient to counter the pro-inflammatory

effects of the other miRNA changes.

Our analysis revealed more suggestive evidence that changes in miRNA expression associ-

ated with disease or healthy subjects can be protective responses. Both miR-30a (high in

FAMI) and miR-326 (high in healthy subjects) resolve inflammation by targeting and reducing

the expression of inflammatory mediators such as IL-1α [30, 31]. High levels of miR-342-3p

(higher in FAMI) suppress inflammation and lipid uptake in human macrophages [32]. Thera-

peutic inhibition of miR-34a (decreased in healthy controls) leads to atherosclerosis regression

and reverses diet-induced metabolic disorders [33]. Interestingly the anti-inflammatory effects

of drugs have been shown to be mediated, in part, by miRNAs, e.g. dexmedetomidine reduces

neuroinflammation via upregulation of miR-340 [34]. The cardioprotective effects of the flavo-

noid nobiletin are attributed to its reduction of lipid accumulation and secretion of proinflam-

matory cytokines via its upregulation of miR-590 [35].

PCA accurately detects stroke, hypertension, and sepsis-induced acute

kidney injury

The expression of only three miRNAs, similarly expressed in men and women, is sufficient to

discriminate patients with ischemic stroke from those with hemorrhagic stroke and from

healthy subjects [Fig 2A; each column represents four pooled blood samples from males (blue)

or females (red)]. Two miRNAs (miR-1228 and miR-215) that help distinguish between the
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Fig 2. (A) Principal component analysis (PCA) and hierarchical clustering heatmap of pooled blood plasma miRNA

expression profiles in intracerebral hemorrhage and ischemic stroke patients and in healthy controls (GSE43618)

shows that differential expression of three miRNAs, similarly expressed in males (blue) and females (red), can

distinguish the three groups from each other. (B) PCA and hierarchical clustering heatmap of renal medulla miRNA

expression in hypertensive and normotensive patients (GSE28344) shows that one miRNA, miR-208b) is sufficient to

discriminate between the two groups. (C) PCA and hierarchical clustering heatmap shows that the majority of sepsis-

induced acute kidney injury (AKI) patients (GSE94717) can be distinguished from sepsis patients and from healthy

subjects.

https://doi.org/10.1371/journal.pone.0234185.g002
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intracerebral hemorrhage and ischemic stroke patients and each disease from healthy subjects,

are linked to stroke [36]. Increased expression of miR-215 was shown to be neuroprotective

against ischemic injury [37]. Hierarchical clustering heatmap analysis showed that miR-215 is

upregulated in healthy control subjects while it is downregulated in both the ischemic and

hemorrhagic stroke groups. Because high blood pressure increases risk of stroke and heart dis-

ease, we performed PCA on a dataset comparing hypertensive (HT) and normotensive (NT)

patients. A single miRNA, miR-208b, which clearly distinguished HT from NT (Fig 2B), is

highly expressed in the NT group, and is known to target Bax, a gene involved in apoptosis.

Bax protects against hypoxia-induced apoptosis, and thus cardiovascular disease [38]. In data

comparing sepsis and sepsis-induced AKI (Fig 2C), three miRNAs, miR-195 [39] miR-449c

[40] and miR-3181 [41], which discriminate between sepsis and sepsis-induced AKI, are linked

to regulation of inflammation and oxidative stress. Increased levels of miR-21, which is highly

expressed in the healthy subjects, protect against sepsis-induced AKI [42] as well as oxidative

stress [43] and miR-188, which is also high in healthy subjects, inhibits inflammation and ath-

erosclerosis [44] and is implicated in cardiac remodeling [45]. Dysregulated levels of miR-4299

are also found in other diseases including amyotrophic lateral sclerosis (ALS) [46].

PCA and hierarchical clustering analyses provide mechanistic insight into

diabetes and heart disease and dementia risk in diabetic patients

Death of pancreatic beta cells is a major factor in the pathogenesis of type 1 diabetes (T1D)

[47]. We found that miR-1225, is upregulated in healthy subjects and downregulated in TID

patients (Fig 3A). Increased expression of miR-1225 was shown to inhibit apoptosis of pancre-

atic cancer cells, potentially allowing cell proliferation and promoting cancer [48]. Thus,

decreased expression of miR-1225 in T1D suggests increased apoptosis of pancreatic cells,

potentially promoting the development of diabetes, by increasing destruction of beta cells. Fur-

thermore, high levels of miR-16, which are seen in T1D patients, are also found in women

diagnosed with gestational diabetes mellitus [49] and are involved in insulin sensitivity [50].

Other discriminating miRNAs such as miR-26a are linked to autoimmune dysfunction in dia-

betes [51]. High levels of miR-26a and miR-30a found in T1D have functional roles in diabetic

nephropathy [52], while miR-320 regulates glucose-induced gene expression in diabetes [53].

In a comparison of blood miRNA profiles among men with impaired fasting glucose (IFG),

type 2 diabetes (T2D) and healthy subjects, we found that the IFG profile is exactly opposite

that of healthy profiles and the T2D profile shows an intermediate miRNA signature (Fig 3B).

The functional roles of the discriminating miRNAs in T2D are concordant with their biologi-

cal relevance. For instance, mir-144, which distinguishes IFG and T2D from heathy subjects,

impairs insulin signaling [54] and is linked to cognitive dysfunction. Given this context, it is

relevant that T2D patients are at increased risk for AD and vascular dementia, and that metfor-

min, a diabetes drug, protects against AD [55]. The two miRNAs, miR-144 and miR-30, that

discriminate among the IFG, T2D and control groups, are the same miRNAs that identify the

AD and mild cognitive impairment (MCI) patients (see Fig 7). Together, this information sug-

gests two important ideas: 1) the dysregulation of a common set of miRNAs is evidence that

there is a mechanistic link between the diseases; and 2) miRNAs may be useful blood biomark-

ers for diagnosis as well as monitoring the course of a disease and the response to treatment.

PCA and hierarchical clustering analyses identified distinct cancer

subtypes

Cancer is the second leading cause of death (1 in 6 deaths) globally [56]. Earlier diagnosis

increases the chance of survival. Circulating miRNAs can identify different types of cancer
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[57]. In men, analysis of blood miRNA profiles of two common cancers, colon and prostate

cancer, showed that patients with each cancer type can be clearly distinguished from healthy

subjects. In fact, these two cancers can be distinguished from each other by two miRNAs

(miR-636 and miR-92a) but they also display similar expression of a set of miRNAs (miR-197,

miR-328, miR-885-5p) that are also found dysregulated in other cancers (Fig 4A and 4B). Pre-

vious studies showed that miR-197 is dysregulated in colorectal [58] and prostate cancer [59].

Inhibition of miR-328, which is minimally expressed n healthy patients, impairs proliferation

of cancer stem cells and inhibits metastasis [60] and miR-636 is a marker of pancreatic cancer

[61]. MiR-885, which is highly expressed in both prostate and colon cancers, is also linked to

liver cancer [62]. Many of the miR-92a family members may serve as diagnostic biomarkers of

a variety of cancers [63].

The central role of miRNAs in human disease was first demonstrated in chronic lympho-

cytic leukemia, a cancer of blood-forming tissues [64]. Our analysis showed that PCA can dis-

criminate between quiescent and proliferating chronic lymphocytic leukemia (Fig 4C). High

levels of miR-720, which has been shown to promote the migratory and invasive phenotype of

triple negative breast cancer cells [65] and low levels of miR-150, which is linked to aggressive

B-cell malignancies, clearly distinguish the proliferating fraction of chronic lymphocytic leuke-

mia B-cells [66]. Differentiating cancer subtypes is often a diagnostic challenge. For example, it

is difficult to differentiate between Burkitt lymphoma (BL) and diffuse large B-cell lymphoma

(DLBCL) [67]. Nonetheless, using PCA we confirmed a previous study that showed that these

Fig 3. (A) Principal component analysis (PCA) and hierarchical clustering heatmap of peripheral blood mononuclear cell miRNA expression profiles

in type 1 diabetes patients and normal controls (GSE55099) shows that a set of seven miRNAs can identify the majority of the diabetes patients. (B)

PCA and hierarchical clustering heatmap of blood miRNA expression in patients with impaired fasting glucose (IFG), type 2 diabetes (T2D) and

healthy controls (GSE21321) shows that differential expression of two miRNAs (miR-144 and miR-30d) can distinguish the three groups from each

other. In the heatmap, each miRNA is represented by four probes.

https://doi.org/10.1371/journal.pone.0234185.g003
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Fig 4. Principal component analysis (PCA) and hierarchical clustering heatmap of blood serum miRNA expression

profiles from various types of cancer patients (GSE16512) shows that patients with colon (A) and prostate (B) cancers,

which have been shown to be part of the same tumor spectrum, can be discriminated form normal controls and that

these related cancers display similar differential expression of a common set of three miRNAs (miR-197, miR-328 and

miR-885-5p). (C) PCA and heatmap analysis clearly distinguished between quiescent and proliferating chronic

lymphocytic leukemia (GSE53235). Only two miRNAs are sufficient to distinguish the proliferating from quiescent

fractions in chronic lymphocytic leukemia B-cells. (D). Analysis of miRNA levels in tissues of Burkitt lymphoma and

Diffuse large B-cell lymphoma patients (GSE22420)- these are challenging to distinguish based on heatmap alone-

shows that PCA can clearly identify the majority of patients in these cancers. (E) PCA can clearly distinguish patients

in other cancers such as bladder cancer (GSE113486).

https://doi.org/10.1371/journal.pone.0234185.g004
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two subtypes are distinct via miRNA profiling [68]. The complex hierarchical clustering heat-

maps of these and other cancers (S2, S3 and S4 Figs) illustrate the difficulty of a differential

diagnosis based purely on a heatmap alone. However, PCA enabled a clear identification of the

majority of patients diagnosed with either subtype (Fig 4D) as well as bladder cancer (Fig 4E).

PCA and heatmap analyses shed light on pro-survival mechanisms

Although HIV can be detected by a blood test, differentiating patients who will or will not

progress to acquired immune deficiency syndrome (AIDS) would be helpful in planning and

monitoring treatment. PCA and heatmap analyses of miRNA profiles of chronic HIV (CHI),

Long-term Non-progressors (LTNP; infected individuals who have not progressed to AIDS)

and healthy subjects differentiated these three groups (Fig 5A and 5B). Insight into disease

resistance came from understanding the functional role of a single miRNA, miR-378�. This

miRNA, which discriminates the majority of LTNPs from CHI patients and healthy subjects,

targets the HIV envelope protein [69]. Moreover, miR-378� regulates glucose and lipid homeo-

stasis by modulating hepatic insulin signaling [70] suggesting potential mechanisms for how

LTNP can remain asymptomatic despite being infected with HIV. In these patients, miR-378�

levels might be interfering with the utilization of metabolic substrates by the infecting virus.

PCA and heatmap analyses are also helpful in discriminating hemophilia A patients with

endogenous inhibitors (neutralizing anti-FVIII antibodies) from those hemophilia A patients

without inhibitors as well as clearly distinguishing both hemophilia A groups from healthy

subjects (Fig 5C). Interestingly, miR-107 which distinguishes both types of hemophilia A

patients from healthy subjects, is also known to be a potential biomarker of AD [71] and has

been shown to mediate the effects of opioid and AD drugs [72, 73]. We found that PCA and

heatmap analyses aids in diagnosis of diseases, such as viral and tuberculous meningitis, that

are difficult to differentiate clinically (Fig 5D) [74]. We identified specific pro-survival miR-

NAs, such as miR-1273, that are associated with the less serious (viral) form of this disease.

And miRNAs that identify both types of meningitis, such as miR-4707, are also implicated in

other brain disorders [75] and cancer [76]. We further confirmed that the dysregulation of

blood miRNAs associated with chronic inflammation distinguish the majority of patients with

disorders such as sickle cell disease and chronic obstructive pulmonary disease (COPD) (S5

and S6 Figs). Across all the datasets we repeatedly observed that the functional roles of miR-

NAs, such as miR-182 in COPD, are consistent with their altered expression in each disease

[77].

PCA and heatmap analyses distinguished between similar nervous system

disorders

In the early stages, both multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) show

similar symptoms such as muscle weakness and fatigue [78]. Early diagnosis of MS and ALS is

complicated by similarities to other neurological disorders. Several studies report evidence for

blood biomarkers for ALS [79], including miRNAs [80]. PCA enabled clear identification of

the patients with each disease (Fig 6A and 6B, S7 Fig). We confirmed the published observa-

tion that miR-145 was the single best discriminating blood miRNA marker for patients with

relapsing-remitting MS vs healthy subjects [81]. The upregulation of miR-145 is potentially a

protective response [82] but its inhibition is also shown to be neuroprotective [83]. The sur-

prising finding from our analysis is that two other miRNAs, miR-186 and miR-20b, that are

associated with immune regulation, could also serve as discriminating markers of MS; miR-

186 is involved in autoimmunity [84] and miR-20b, which inhibits inflammation, is downre-

gulated in many MS patients [85]. Similar to MS, in PCA of ALS, we found that three
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Fig 5. (A) Principal component analysis (PCA) and hierarchical clustering heatmap of blood monocyte miRNA

expression profiles in chronic HIV (CHI), Long-term non-progressor (LTNP, HIV positive but asymptomatic)

patients and healthy subjects (GSE38556). One miRNA, miR-378 (miR-378� is a lower level expressed form of the

same miRNA) discriminates most of the HIV patients from controls and (B) also discriminates the majority of

asymptomatic LTNP individuals from the chronic HIV group. (C) PCA and hierarchical clustering heatmap clearly

distinguish hemophilia patients (GSE65581) from healthy controls and discriminates hemophilia A patients with

inhibitors (development of neutralizing anti-FVIII antibodies) from those hemophilia A patients who did not develop

inhibitors. (D) PCA and heatmap analysis aids in diagnosis of diseases, such as viral and tuberculous meningitis

(GSE131708), that are difficult to differentiate clinically and identifies specific pro-survival miRNAs, i.e. miR-1273 that

are associated with the less serious (viral) form of this disease.

https://doi.org/10.1371/journal.pone.0234185.g005
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upregulated miRNAs (miR-1236, miR-1298, miR-378), mitigate inflammation in healthy sub-

jects [25, 86, 87]. In contrast, downregulation of miR-550 is associated with increased inflam-

mation in ALS patients [88]. In other diseases such as atherosclerosis, inhibition of miR-103,

which is downregulated in healthy controls, attenuates inflammation [89].

Fig 6. Principal component analysis (PCA) and hierarchical clustering heatmap of blood miRNA expression profiles

in (A) multiple sclerosis patients [MS] (GSE17846), and spinal cord homogenate miRNA expression in (B)

amyotrophic lateral sclerosis patients [ALS] (GSE52670) shows that PCA analysis of blood or tissue miRNA profiling

has diagnostic potential for degenerative diseases. (C) PCA and hierarchical clustering analysis of blood monocyte

miRNA expression in MS and sporadic ALS patients and healthy controls (GSE39643) shows that patients of these

diseases, which in the early stages present with similar symptoms, can be clearly distinguished from each other as well

as the control group. The discriminating miRNAs are prominently linked to inflammation and immune function.

https://doi.org/10.1371/journal.pone.0234185.g006
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The underlying pathological mechanisms can be inferred through the analysis of a third

dataset comparing healthy controls with MS and sporadic ALS patients (Fig 6C). Interestingly,

all the miRNAs that identify sporadic ALS are expressed in the opposite direction in healthy

subjects and show intermediate expression levels in MS patients. A distinct set of miRNAs

involved in regulating immune function and cell death or survival were differentially expressed

in all three groups supporting findings in previous genome-wide studies [90]. Both miR-101

and miR-30b contribute to inflammatory cytokine-meditated cell dysfunction [91], miR-374

[92] and miR-379 are also involved in MS pathology [93], and miR-361 is implicated in MS

[94]. Since miR-93 has been shown to relieve inflammation [95], presumably by upregulating

anti-inflammatory target genes, it is notable that it is expressed at low levels in only the healthy

controls and it is highly expressed in both the MS and sporadic ALS patients. Although there is

no cure for either disease, a blood test that accurately identified these patients, using these

miRNAs as biomarkers, would improve quality of life for patients with these disorders since

there are specific drugs that could alleviate symptoms of immune dysfunction (MS) [96] or

help manage symptoms (ALS) [97].

Blood miRNAs can identify neurodegenerative and other brain disorders

Studies report that distinct panels of plasma miRNAs may be biomarkers of MCI [98] and AD

[99]. Altered levels of miRNAs were also found in the cerebrospinal fluid of patients diagnosed

with young-onset AD [100]. PCA of blood miRNA datasets (Fig 7A and 7B) showed that three

miRNAs, miR-144, miR-30 and miR-151, were expressed similarly in AD and MCI patients,

suggesting common pathological mechanisms. MiR-144, decreased in most of the AD and

many of the MCI patients, is associated with AD [101]. High levels of miR-30 have been linked

to presenilin mutations in AD patients [102] and are high in both AD and MCI cohorts. The

third miRNA, miR-151, is involved in memory processing (long-term potentiation), and is

associated with AD [103]. The heatmap shows that levels of miR-151 are low in most normal

subjects and high in subjects with AD or MCI. We observed that miR-144 and miR-30 are also

dysregulated in patients with T2D (see Fig 3). Considering that cardiovascular disease, hyper-

tension, stroke and diabetes are risk factors for AD and vascular dementia, miRNAs that are

dysregulated in T2D patients as well as those with MCI and AD may reflect that risk. On the

other hand, we also found that high levels of miR-144 may be a potential biomarker of healthy

aging, because it is highly expressed in healthy aging subjects and differentiates young from

old muscle (Fig 7C). Several subjects with the MCI miRNA signature were diagnosed as phe-

notypically normal, a known phenomenon, suggesting that these patients are disease resistant.

Identifying unique features in this resistant population could determine which cell signaling

pathways could be therapeutically targeted to treat MCI and AD. On a final note, another

brain disorder, autism spectrum disorder (ASD) is difficult to diagnose due to the heterogene-

ity of ASD [104] but PCA and heatmap analyses clearly differentiated those with ASD (Fig

7D).

The common thread among these brain disorders is inflammation and dysregulated

immune responses [105–107], which have a causal role in AD and other dementias [108, 109].

Understanding these mechanisms has already proven beneficial; for example, diabetes drugs

that have anti-inflammatory properties protect against AD [55]. Demographic characteristics

and analysis results of GEO datasets are summarized in Table 1.

Discussion

Using PCA, a powerful data reduction method, we characterized patient cohorts from down-

loaded GEO datasets of peripheral blood miRNA representing a broad spectrum of human
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Fig 7. (A) Principal component analysis (PCA) and hierarchical clustering heatmap of blood miRNA expression profiles in Alzheimer’s disease (AD)

patients vs healthy controls (GSE46579) shows that four discriminating miRNAs can identify the majority of the AD patients. (B) PCA and hierarchical

clustering heatmap of blood plasma miRNA expression profiles in patients with mild cognitive impairment (MCI) (GSE90828) shows that most of the

MCI patients can be identified via expression of four discriminating miRNAs. Note in both heatmaps that patterns of differential expression of three

miRNAs (miR-144, miR-151 and miR-30) are very similar in the AD and MCI cohorts. (C) PCA and hierarchical clustering heatmap analysis of

miRNA expression in aging and young muscle biopsies (GSE23527) shows that miR-144 is also a differentiating marker of aging. (D) PCA and

hierarchical clustering heatmap analysis also facilitates the diagnosis of other brain disorders such as autism spectrum disorder (ASD); peripheral blood

miRNA levels clearly distinguish ASD patients from healthy controls.

https://doi.org/10.1371/journal.pone.0234185.g007
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Table 1.

Fig. Nbr. Disease/Disorder Gene Expression

Omnibus

accession

number

p-value q-value‡ Nbr. of patients:

healthy controls

(P:C)

Sample Discriminating miRNA variables (hsa-

miR-?)

1A Acute myocardial

infarction

GSE24548 0.0047 0.037 4P†:3C† Platelets 101, 106b, 140-5p, 142-3p, 142-5p, 15a�, 17�,

199a-5p, 19a, 200a, 20a�, 20b, 21, 21�, 219-

5p, 223, 24–1�, 26b, 29b, 29c, 301a, 30a�,

30e, 32, 324-5p, 326, 33a, 33b, 340, 342-3p,

34a, 421, 454, 545, 548a-5p, 590-5p, 598

1B Cardiac arrest GSE34643 3.90E-04 0.07 5P†:5C† Plasma 574-5p, 1914�, miRBrightCorner30

1C Premature coronary

artery disease

GSE28858 8.00E-06 7.30E-04 12P:12C Platelets 548g, 1247, 1236, 526b, 551b�, 1278

2A Intracerebral

hemorrhage

GSE43618 0.0024 n/d 4P†:2C† Plasma 1228, 215, 516a-5p

2B High blood pressure GSE28344 5.80E-04 0.29 5P:3C Renal medulla 208b

2C Sepsis-induced acute

kidney injury

GSE94717 6.50E-04 0.02 12P:3C Venous blood 195-5p, 449c-5p, 4299, 3181, 3689f, 4704-5p,

21-3p, 188-3p, 1292-5p

3A Type 1 diabetes GSE55099 0.002 0.2 12P:10C Peripheral blood

mononuclear

cells

1225-3p, 16, 26a,30a, 320a, 320b, 617

3B Type 2 diabetes GSE21321 1.48E-04 0.04 16P:10C Whole blood 144 (4 probes), 30d (4 probes)

4A Colon cancer GSE16512 4.35E-05 8.20E-04 9P:14C Serum 197, 328, 885-5p

4B Prostate cancer GSE16512 5.40E-06 4.20E-04 6P:14C Serum 197, 328, 636, 885-5p, 92a

4C Chronic lymphocytic

leukemia

(proliferating vs

quiescent)

GSE53270 3.45E-04 4 Proliferating: 4

Quiescent

Whole blood 150, 720

4D Diffuse large B-cell

lymphoma(DLBCL) /

Burkitt lymphoma

(BL)

GSE22420 7.00E-25 1.58E-23 86DLBCL:64BL Tumor cells miRNA list available in PMID: 21701491

4E Bladder cancer GSE113486 1.00E-

139

5.60E-139 392P:100C Serum miRNA list available in PMID: 30382619

5A Chronic HIV patient GSE38556 9.20E-04 0.1 8P:8C Blood monocytes 378. 315c

5B Chronic HIV patient

/ Long-term

nonprogressor

GSE38556 5.30E-04 0.1 8HIV:8LTNP Blood monocytes 378�

5C Hemophilia A w/ and

w/o inhibitors

GSE65581 9.60E-05 n/d 9P:5C Whole blood Multispecies miRNAs:

ENSG00000252834_st gga-miR-107_st

hp_mmu-mir-331_st mne-miR-107_25

5D Viral meningitis /

tuberculous

meningitis

GSE131708 1.66E-04 0.06 8P:4C Peripheral blood

mononuclear

cells

1273g-3p, 150-5p, 4707-5p, 520f, 5584-5p

6A Multiple sclerosis

(MS)

GSE17846 8.60E-08 1.60E-05 20P:21C (partial

heatmap shown)

Whole blood 145, 186, 20b

6B Amyotrophic lateral

sclerosis (ALS)

GSE52670 2.80E-04 0.026 10P:10C Spinal cord

homogenate

(post-mortem)

1236, 1298, 378e, 520a-3p, 550b-3p, 595,

885-3p

6C MS vs ALS vs healthy

control

GSE39643 4.80E-07 4.40E-06 16P:8C Blood monocytes 7a, 101, 103, 106b, 142-5p, 16, 19b, 24, 26a,

30b, 361-5p, 374a, 374b, 379, 518f, 93

7A Alzheimer’s disease GSE46579 1.35E-08 1.65E-06 48P:22C (partial

heatmap shown)

Whole blood 112, 144-5p, 151a-3p, 30d-5p

7B Mild cognitive

impairment

GSE90828 4.55E-05 0.007 23P:30C (partial

heatmap shown)

Plasma 126�, 144, 151-3p, 30c

7C Old / young muscle GSE23527 8.30E-04 0.22 17 old:19 young

(partial heatmap

shown)

Skeletal muscle 144, 7–2�

(Continued)
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diseases. PCA, in all its variations (e.g. Factor Analysis, Singular Value Decomposition, Singu-

lar Spectrum Analysis) is considered an unbiased, hypothesis-generating tool because it creates

a statistical mechanistic platform for modeling biological changes without strong a priori
assumptions [110]. Investigating the published literature on the discriminating miRNA vari-

ables from the hierarchical clustering heatmaps for each disease, showed that the miRNAs

have functional roles relevant to the pathophysiology of each disease. This survey of PCA and

heatmaps of blood/ biofluid miRNA datasets provided four key insights.

First, a universal blood test is possible. Since circulating miRNAs are dysregulated across a

diverse spectrum of diseases, a universal blood test from a routine blood sample is a realistic

goal. The ability to measure the changes in expression of miRNAs linked to specific diseases

would provide a new diagnostic tool. For a universal blood test to be effectively utilized in clin-

ical settings, it would be important to construct a comprehensive reference database of PCA

plots and heatmaps representing the entire spectrum of known human diseases. The present

analysis suggests that this is an attainable goal.

Second, the functional roles of the disease-discriminating miRNAs validated our findings.

Inflammation surfaced as a key mechanistic underpinning of multiple chronic diseases. Pub-

lished evidence supports the central role of chronic inflammation in heart disease, diabetes

and AD, and also as a contributing factor to MS and ALS [111]. Additionally, in all datasets

examined, literature searches showed that the functional, posited role of discriminating miR-

NAs correlated with their expression in patients or healthy controls. For instance, in the sep-

sis-induced AKI dataset, miR-195, which inhibits inflammation [112] is highly upregulated

only in the healthy control group.

For some diseases, earlier diagnosis could be life changing because there are drug therapies

that could improve the quality and duration of life, such as riluzole (Rilutek, S1 Reference) for

MS and ALS. Furthermore, the finding that chronic inflammation is the common underlying

mechanism of many diseases has important implications. For example, a recent study by Lavin

et al, showed that although a pro-inflammatory blood and muscle profile is associated with

aging, life-long exercise positively impacted muscle heath in aging by promotion of anti-

inflammatory gene and protein expression in skeletal muscle [113].

Third, miRNA changes shared by divergent diseases indicate a mechanistic link or common

underlying pathology that could be therapeutically addressed with common drugs; for exam-

ple, a common set of miRNAs, including miR-144, are found to be dysregulated in diabetes,

MCI and AD. Two miRNAs, miR-144 and miR-30, which discriminate among the IFG, T2D

and control groups, are the same miRNAs that identify the AD and MCI groups, suggesting

that these miRNAs may be linked to the common finding of dementia and cognitive dysfunc-

tion in these diseases. These distinctly different diseases may be treated by one drug, for exam-

ple, since T2D patients are at increased risk of AD and vascular dementia, it is notable that

Table 1. (Continued)

Fig. Nbr. Disease/Disorder Gene Expression

Omnibus

accession

number

p-value q-value‡ Nbr. of patients:

healthy controls

(P:C)

Sample Discriminating miRNA variables (hsa-

miR-?)

7D Autism spectrum

disorder (ASD)

GSE67979 0.005 n/d 5P:5C Whole blood 122-3p, 4270, 4430, 4697-5p, 5091

n/d = no data.
‡ False discovery rate.
† pooled samples.

https://doi.org/10.1371/journal.pone.0234185.t001
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metformin–a glucose-lowering drug–protects against AD [55]. Since modification of diet and

lifestyle have reduced or delayed onset of AD (S1 Reference), earlier diagnosis of MCI, the first

stage of dementia, could prompt similar interventions. Changes in miRNA expression levels

could also serve as biomarkers of effective responses to treatments for these diseases.

Fourth, current evidence supports using disease-altered miRNA panels as predictive and

diagnostic markers of heart disease [114], MCI [115] and AD [116]. PCA of serum miRNA

expression was recently shown to predict dementia in AD patients [117]. Although our objec-

tive was not to identify and validate miRNA biomarkers, it is evident that, in future transla-

tional studies, the discriminating miRNAs that result from PCA and heatmap analysis of these

studies may prove to be robust biomarkers of each of these diseases. In addition, recent studies

showed that blood miRNAs can serve as potential biomarkers of complex psychiatric disorders

such as schizophrenia [118]. The identification of potential blood biomarkers via PCA and

heatmap analyses could facilitate a computational biology approach to drug discovery for

neurodegenerative disorders [119]. In addition, some of the miRNA markers found in AD and

MCI are also dysregulated in aging muscle [120]. This supports previous reports that periph-

eral blood miRNAs can serve as biomarkers of normal aging as well as age-related diseases

[121]. The idea of using publicly available data of miRNA-seq profiles for diagnosis of AD has

been recently proposed [116].

On a cautionary note, this analysis did not permit estimates of sensitivity, specificity or pos-

itive or negative predictive value of these PCA and heatmap analyses. We also observed that

the discriminating miRNA variable lists were often different from published analyses of the

data [122]. This could be attributed to differences in statistical and machine learning algo-

rithms used in the analysis of miRNA datasets by different investigators. Because many of

these datasets were lacking a peer-reviewed publication, we could not compile a comprehen-

sive comparison of our discriminating miRNA lists with the ones in each GEO submission.

However, our PCA analysis was clear and unequivocal in identifying the patient populations

in all these GEO datasets. Using the same data reduction algorithm, we correctly identified

those patients previously identified by different diagnostic methods specific for each disease.

With currently available in silico target prediction algorithms, the biological significance (i.e.,

disease mechanisms), of the discriminating miRNA variables is not always clear [80]. How-

ever, as we have shown, in most of these PCA/heatmap sets, we found an association of some

of the discriminating miRNAs with known disease mechanisms; for instance, the increased

expression of miR-378�, which inhibits production of the HIV envelope protein and viral rep-

lication in HIV infected individuals who do not show disease symptoms.

There is ongoing progress in defining whole transcriptome blood miRNA profiles (miR-

Nome) of human diseases; Keller et al., showed consistently deregulated miRNA profiles for a

broad spectrum of 14 human diseases [123]. This will result in a massive accumulation of

blood profiling data that can be interrogated for diagnostic purposes. Given the concordance

of the public data with our PCA analysis, we suggest that a searchable database of PCA and

heatmap analyses of blood miRNA expression data, obtained from a variety of platforms,

could be used together with other evidence-based measures to identify patients with specific

diseases and facilitate personalized medicine.

Supporting information

S1 Table. Summary of principal component analysis (PCA) workflow in Qlucore Omics

Explorer.

(PDF)
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S1 Fig. Principal component analysis and hierarchical clustering heatmap of miRNA

expression in pooled blood plasma miRNA expression profiles clearly distinguish patients

with unstable angina pectoris from healthy subjects (GSE94605).

(PDF)

S2 Fig. Principal component analysis (PCA) and hierarchical clustering heatmap of

miRNA expression in tissues of Burkitt lymphoma and Diffuse large B-cell lymphoma

patients (GSE22420) shows that PCA of miRNA expression data in disease-associated tis-

sues (if available from patient populations) can also facilitate identification of the patient

cohort despite the complexity of the miRNA dataset which is reflected in the hierarchical

clustering heatmap.

(PDF)

S3 Fig. Principal component analysis of serum miRNA expression clearly distinguishes

392 bladder cancer patients from 100 non-cancer controls (GSE113486).

(PDF)

S4 Fig. Peripheral blood miRNA profiles of 14 different diseases (GSE31568) were ana-

lyzed via microarray analysis by Keller et al., 2011 (Nature Methods). In all diseases, blood

miRNA profiles were found dysregulated. For example, principal component analysis and

hierarchical clustering heatmap analysis clearly identified prostate cancer patients from

healthy controls.

(PDF)

S5 Fig. Principal component analysis and hierarchical clustering heatmap of miRNA

expression in circulating platelets from sickle cell disease patients (SCD) and control sub-

jects (GSE41574) shows that only three discriminating miRNAs can identify the majority

of the SCD patients.

(PDF)

S6 Fig. Principal component analysis and hierarchical clustering heatmap analysis shows

that four blood miRNAs, associated with inflammation, help identify the majority of

chronic obstructive pulmonary disease [COPD] patients from healthy controls

(GSE31568).

(PDF)

S7 Fig. Principal component analysis and hierarchical clustering heatmap analysis of mul-

tiple sclerosis (MS) blood miRNA expression profiles (GSE31568) shows that three circu-

lating miRNAs, associated with inflammation and immune function, can identify the

majority of MS patients.

(PDF)

S1 Reference.

(PDF)
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