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Abstract

To infer a causal relationship between two traits, several correlation-based causal direction

(CD) methods have been proposed with the use of SNPs as instrumental variables (IVs)

based on GWAS summary data for the two traits; however, none of the existing CD methods

can deal with SNPs with correlated pleiotropy. Alternatively, reciprocal Mendelian randomi-

zation (MR) can be applied, which however may perform poorly in the presence of

(unknown) invalid IVs, especially for bi-directional causal relationships. In this paper, first,

we propose a CD method that performs better than existing CD methods regardless of the

presence of correlated pleiotropy. Second, along with a simple but yet effective IV screening

rule, we propose applying a closely related and state-of-the-art MR method in reciprocal

MR, showing its almost identical performance to that of the new CD method when their

model assumptions hold; however, if the modeling assumptions are violated, the new CD

method is expected to better control type I errors. Notably bi-directional causal relationships

impose some unique challenges beyond those for uni-directional ones, and thus requiring

special treatments. For example, we point out for the first time several scenarios where a bi-

directional relationship, but not a uni-directional one, can unexpectedly cause the violation

of some weak modeling assumptions commonly required by many robust MR methods. We

also offer some numerical support and a modeling justification for the application of our new

methods (and more generally MR) to binary traits. Finally we applied the proposed methods

to 12 risk factors and 4 common diseases, confirming mostly well-known uni-directional

causal relationships, while identifying some novel and plausible bi-directional ones such as

between body mass index and type 2 diabetes (T2D), and between diastolic blood pressure

and stroke.

Author summary

Inferring causal relationships between two traits based on observational data is one of the

most important as well as challenging problems in scientific research. The potential

impact of such an application on and beyond genetics/genomics is significant, such as in
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prioritizing molecular, clinical and behavioral targets for therapeutic and behavioral inter-

ventions. However, this problem, especially on a possibly bi-directional causal relation-

ship between a pair of traits (in which the causal direction may be from either trait to the

other, and both causal directions may be present at the same time), had been largely

neglected until very recently. The increasing availability of large-scale GWAS summary

data of various traits has popularized the development and application of Mendelian ran-

domization (MR) methods for such a purpose. We point out some severe limitations with

the current methods, mainly due to some new and unique challenges facing inference of

bi-directional relationships as compared to that of uni-directional relationships that has

been more commonly and exclusively considered in MR. By combining two basic ideas of

bidirectional (or reciprocal) MR and Steiger’s correlation-based screening methods, we

develop two new approaches based on constrained maximum likelihood (cML) and

GWAS summary data to infer causal effects (as in typical MR) and SNP-trait correlations

(as in Steiger’s method), called MR-cML and CD-cML respectively, demonstrating their

similar effectiveness and more importantly their advantages over existing methods

through extensive simulations, real data examples and statistical theory. In particular, our

proposed two methods are robust to violations of all three valid IV assumptions, including

presence of correlated pleiotropy.

1 Introduction

It is of great interest to infer causal relationships between pairs of complex traits or diseases

such as for treatment/intervention development and drug repurposing [1, 2], which however

is quite challenging and had barely been touched until recently. The availability of large-scale

GWAS summary data and the use of SNPs as instrumental variables (IVs) in Mendelian ran-

domization (MR) have made it possible for such inference [3–5]. However, most MR methods

and analyses are based on a critical and strong assumption that there is only a uni-directional

relationship between two traits and the direction is known; that is, by treating one trait as the

exposure and the other as the outcome, one assumes that the causal relationship, if exists, can

be only from the exposure to the outcome. To infer the causal direction between two traits

(under the uni-directional assumption), recently several methods based on comparing correla-

tions between SNPs/IVs and each trait have been proposed, including Steiger’s method based

on a single SNP (that is assumed to be a valid IV) [6], CD-Ratio and CD-Egger based on multi-

ple SNPs, which can be more powerful than Steiger’s method [7]. CD-Egger, similar to Egger

regression in MR [8], is also more robust than the other two methods by allowing invalid IVs

under the InSIDE assumption; that is, CD-Egger allows invalid IVs with uncorrelated pleiot-

ropy, but not correlated pleiotropy [9]. The first goal here is to develop a correlation-based

causal direction (CD) inference method based on constrained maximum likelihood, called

CD-cML, and show its higher power and robustness than the above methods, especially in the

presence of correlated pleiotropy. Given the wide-spread pleiotropy [10, 11], it is of utmost

importance for any method to be robust to pleiotropy, especially correlated pleiotropy that is

more challenging to deal with. However, the above CD methods are applicable to infer only

uni-directional, but not bi-directional, causal relationships. In a bi-directional relationship,

each of the two traits may be causal to the other at the same time. In practice, there may be bi-

directional causal relations between some traits (e.g. between insomnia and some major psy-

chiatric disorders [12]), or at least we may not be able to exclude a priori the possibility of such

bi-directional relationships.
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Alternatively, reciprocal (also called bidirectional) MR can be applied by treating each of

the two traits as the exposure while the other as the outcome [13, 14]. However, as shown in

[7, 15], bidrectional MR (with the use of many MR methods) does not perform well due to

some reasons, including the below one: assuming the true causal direction is from X to Y for

two traits X and Y, if an SNP is causal to X (and the sample sizes are large enough), the SNP is

associated with both X and Y, and thus may be considered as a candidate IV for both traits;

when the SNP is used as an IV for direction X to Y, it will confirm the causal association; how-

ever, if it is used as an IV for direction Y to X, it will also yield a non-zero estimate of the causal

effect of Y on X, leading to an incorrect conclusion. A naive remedy is to remove any SNP

associated with both traits, but it leads to not only loss of power (with fewer SNPs as IVs), but

also biased inference (e.g., towards the causal direction X to Y if the truth is Y to X and if the

GWAS sample size or power for X is much larger than for Y) [16]. Here we adopt a simple but

effective screening/filtering rule based on a simple heuristic: no SNP will be used as an IV for

both traits, because no SNP can be valid for both traits. If an SNP is associated with both traits,

by Steiger’s method, we use it only for the trait with which its absolute correlation is larger

than that with the other trait (because it is more likely to be a valid IV for the chosen trait)

[16]. Furthermore, there are some new MR methods, such as constrained maximum likelihood

(MR-cML) [17], that are more robust to both uncorrelated and correlated pleiotropy. Our sec-

ond goal here is to show that, by incorporating MR-cML and the IV screening rule in recipro-

cal MR, the resulting method, still called MR-cML for simplicity, performs well, in fact almost

identically to CD-cML if their modeling assumptions hold; otherwise, CD-cML controls type I

error better and is more conservative.

With the two robust and powerful methods, we show their application to infer bi-direc-

tional relationships, which has been largely neglected in the literature. It is notable that infer-

ring bi-directional causal relationships is far more challenging than uni-directional ones: for

example, for the first time we point out that a bi-directional causal relationship generates a few

new scenarios, in which either the InSIDE assumption or the plurality condition required by

many existing robust MR methods will be violated (e.g. IVW (random effect), Egger regression

[8] and RAPS [18] for the former; our cML methods, MR-ContMix [19], MR-Mix [20],

MR-Lasso [21] and MR-Weighted Mode [22] for the latter). We applied the methods to 48 risk

factor-complex disease pairs with 12 cardiometabolic risk factors, 3 cardiometabolic diseases

(T2D, Stroke and CAD), and asthma (more as a negative control), identifying some interesting

bi-directional causal relationships, such as between diastolic blood pressure and Stroke, and

between body mass index and T2D [23].

2 Results

2.1 Overview of methods

Given two traits, X and Y, and two independent GWAS datasets for the two traits, our goal is

to infer their possibly bi-directional causal relationship. One of the most challenging issues is

that we have a hidden (i.e. unobserved) confounder (or equivalently, an aggregate of many hid-

den confounders) denoted by U, which is associated with both X and Y with effect sizes θUX
and θUY respectively. There are three possible sets of candidate SNPs to be used as IVs: (1) {gX}

is the set of valid IVs for X, having direct effects α’s only on X; (2) {gY} is the set of valid IVs for

Y, having direct effects β’s only on Y; (3) {gB} is the set of invalid IVs directly influencing both

X and Y, and possibly U, with direct effects γ’, η’s, and ξ’s respectively. Fig 1 illustrates a true

causal model, in which θXY and θYX are the causal effects between the two traits, the unknown

parameters of interest.
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Define the (population) Pearson correlations between each candidate SNP/IV g and two

traits as ρXg = corr(X, g) and ρYg = corr(Y, g). It is shown in Methods that

rYg ¼ KXY � rXg þ bXYg; rXg ¼ KYX � rYg þ bYXg; ð1Þ

with KXY ≔ yXY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ=varðYÞ

p
and KYX ≔ yYX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ=varðXÞ

p
.

If there exists causal direction from X to Y, we have |KXY|< 1 (under a suitable condition

shown in Methods) and KXY 6¼ 0, which can be used to infer the causal direction of X to Y.

Similarly, we use |KYX|< 1 and KYX 6¼ 0 to infer the causal direction of Y to X. The idea is simi-

lar to that used by other CD methods, i.e. Steiger’s method based on a single valid IV, CD-Ra-

tio on multiple valid IVs and CD-Egger on multiple possibly invalid IVs without correlated

pleiotropy (i.e. when the InSIDE assumption holds) [6, 7].

Since KXY and KYX are unknown, we propose a constrained maximum likelihood, called

CD-cML, to infer the two parameters and thus the causal direction. Briefly, based on the given

GWAS (summary) data, we calculate the sample (Pearson) correlations between each candi-

date SNP/IV and each trait, say rYg and rXg, which are asymptotically normal and consistent

for the (population) correlations ρYg and ρXg; with Eq (1), we can write down the normal-

based log-likelihood under the constraint that the number of invalid IVs is equal to a given

integer, say mI� 0. We try each possible value of mI, then consistently select the best one

based on the Bayesian Information Criterion (BIC). The resulting constrained maximum like-

lihood estimates (cMLEs), say K̂XY and K̂ YX , are consistent for KXY and KYX respectively, and

are asymptotically normal. Hence we can construct a normal-based confidence interval for

KXY and KYX respectively, thus drawing inference on the two possible causal directions from X
to Y and from Y to X.

Fig 1. The true causal model with two traits X and Y of interest. U is a hidden confounder (or an aggregate of hidden confounders). The IVs in {gX}

and {gY} are valid for X and Y respectively, and the IVs in {gB} are invalid ones. The true classification of {gX}, {gY} and {gB} is unknown and needs to be

estimated. The arrows give the directions of the direct causal effects (with the effect sizes shown). In particular, θXY and θYX are the causal effects from X
to Y and from Y to X respectively, and are parameters of interest.

https://doi.org/10.1371/journal.pgen.1010205.g001
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A similar method, called MR-cML, has been used to estimate θXY or θYX in the framework

of MR [17]. It is noted that MR-cML performs well under correlated pleiotropy. Here we also

propose applying MR-cML to reciprocal MR to infer both θXY and θYX, and thus infer a possi-

bly bi-directional causal relationship between X and Y; for simplicity, we still call such a recip-

rocal MR as MR-cML.

It is noted that MR and CD methods are related but different: For example, for direction of

X to Y, MR methods are based on inferring whether θXY = 0; in contrast, CD methods are

based on whether both KXY = 0 and |KXY|< 1. Accordingly, because of the second constraint,

we expect that sometimes CD-cML will be more conservative than MR-cML in terms of yield-

ing smaller type I error and lower power.

We also propose a simple but yet effective method for SNP/IV screening based on a simple

heuristic: none of SNPs can be a valid IV for both X and Y. Thus, if an SNP is (marginally)

associated with both traits, we will use it only for the trait with which it is more correlated than

with the other trait. This screening rule is just a simple application of Steiger’s method [6], and

was mentioned in [16]. This screening rule is especially useful in the presence of bi-directional

causal relationships. For example, when inferring whether there is a causal direction from X to

Y in Fig 1, if θYX 6¼ 0, all IVs in set {gY} are associated with trait X and thus are candidate IVs,

though they are all invalid IVs; the screening rule will eliminate them as IVs (because they will

be more highly correlated with trait Y than with trait X; see Methods). Now we consider what

happens if they are indeed used as IVs. Assuming the set size |{gY}| is larger than that of the

valid IV set, |{gX}|, the invalid IV set {gY} forms the largest (i.e. plurality) group in (incorrectly)

estimating θXY as 1/θYX (asymptotically); in other words, they lead to the violation of the plu-

rality condition required by cML (and several other MR methods, such as MR-ContMix [19],

MR-Mix [20], MR-Lasso [21] and MR-Weighted Mode [22]). In addition, they will also lead to

the violation of the InSIDE assumption: it is easy to verify that for any g 2 {gY}, its effect size

on trait X is βXg = θYX βYg, which is clearly correlated with βYg, its direct effect on Y.

There is another source leading to the violation of the InSIDE assumption, in addition to

the more widely recognized one with ξ 6¼ 0 (i.e. some IVs are correlated with the hidden con-

founder) and the one pointed above. It is due to bi-directional causal relationships, again dem-

onstrating that it is more challenging to deal with bi-directional relationships than with uni-

directional ones. Consider the causal direction of X to Y: even if ξ = 0 but if θYX 6¼ 0, any SNP g
2 {gB} would lead to the violation of InSIDE, because its association strength with X and its

direct effect size on Y respectively would be γ + ηθYX and η, which are clearly correlated. The

violation of the InSIDE assumption will lead to biased inference by several popular random-

effects model-based methods (that treat direct effects as random effects), such as IVW (ran-

dom effect), Egger regression [8] and RAPS [18].

Finally we apply the data perturbation (DP) scheme of [17] for better finite-sample infer-

ence: it accounts for uncertainty in selecting invalid IVs in CD- and MR-cML, leading to better

control of type I errors. We suffix a method with “-DP” and “-S” to refer its use of data pertur-

bation and IV screening respectively. See Section 4.6 for a summary of different methods.

2.2 Simulations

2.2.1 Main simulations. We generated simulated data following the true causal model in

Fig 1 for two continuous traits X and Y. There were 15, 10 and 10 SNPs/IVs in sets {gX}, {gY}

and {gB}, respectively, with effect sizes α1 to α15, β1 to β10, γ1 to γ10, and η1 to η10 ranging in

(−0.3, −0.2) and (0.2, 0.3) (from the corresponding uniform distributions) respectively. For

more correlated pleiotropy, we generated ξ’s from a uniform distribution in the range of (−0.2,

0.2); otherwise, we set ξ’s at 0. The MAFs of the SNPs were 0.3. The random errors �X and �Y

PLOS GENETICS Robust inference of bi-directional causal relationships in presence of correlated pleiotropy
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were independently drawn from N(0, 1), and �U was from N(0, 2). We considered various

combinations of the true causal effect sizes of θXY and θYX in the range from 0 to 0.3. For each

set-up, we generated 500 pairs of two independent GWAS samples, one for each of the two

traits and each of sample size n = N1 = N2 = 50000. We also studied the scenarios with at least

one of X and Y being binary. To generate binary traits, we generated the continuous X and Y
first, then dichotomized one or both of them by setting the largest 30% of their values to be 1

and the other 70% as 0. For each dataset, we first generated individual level data, then calcu-

lated the summary statistics with marginal linear regression for a continuous trait and mar-

ginal logistic regression for a binary trait. We set the significance cutoff at 0.05/35 to select

relevant IVs for both traits before applying any CD and MR methods.

We summarize the main results in terms of (empirical) type I error and power in Figs 2–5.

Figs 2 and 4 show the results for both X and Y being continuous, while Figs 3 and 5 for both X
and Y being binary; the results were similar regardless of the traits being continuous or binary,

though it was slightly more powerful to use the continuous traits than the binary traits (due to

the loss of information by dichotomizing a continuous trait). The top-left panels (for “θXY = 0,

X to Y”) show (empirical) type I error for the direction of X! Y; when θYX = 0 in the right

panels, it shows type I error for the direction Y! X; otherwise, it is for (empirical) power. In

Fig 2. Empirical type-I error and power (y-axis) for both X and Y continuous, ξ = 0 (i.e. no correlated pleiotropy), θXY = 0 (top panels) and θXY =

0.3 (bottom) for various values of θYX (x-axis). The left panels show results for the direction X! Y, the right ones show results for the direction Y!
X.

https://doi.org/10.1371/journal.pgen.1010205.g002
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general, MR-cML-DP-S and CD-cML-DP-S performed almost identically: they could control

type I error satisfactorily while having high power. In contrast, all other methods, namely

CD-Ratio, CD-Egger and combining (single-SNP-based) Steiger’s method over multiple IVs

(by majority voting, “-MV”), could not control type I error, and might have low power. Inter-

estingly, CD-Egger had largely inflated type I error rates even when none of the IVs were cor-

related with the hidden confounder (i.e. ξ = 0) unless both θXY = θYX = 0 as shown in Figs 2

and 3. This might sound surprising, but convincingly showed that detecting bi-directional

causal relationships is much more challenging than detecting uni-directional ones. As

explained in Methods, even if ξ = 0, in the presence of correlated pleiotropy the InSIDE

assumption required by Egger regression could be violated. On the other hand, when the SNPs

from {gB} were correlated with the hidden confounder (with ξ 6¼ 0), the InSIDE assumption

would always be violated, leading to inflated type I error of CD-Egger as shown in Figs 4 and

5. Notably, both MR-cML-DP-S and CD-cML-DP-S did not suffer from any of these

problems.

Figs 6–9 show the empirical distributions of the parameter estimates from the methods

under various simulation set-ups for both X and Y being continuous. It is confirmed that both

MR-cML-DP-S and CD-cML-DP-S always gave (almost) unbiased estimates of the causal

parameter (θ) and the correlation ratio parameter K) respectively. In contrast, CD-Egger was

Fig 3. Empirical type-I error and power (y-axis) for both X and Y binary, ξ = 0 (i.e. no correlated pleiotropy), θXY = 0 (top panels) and θXY = 0.3

(bottom) for various values of θYX (x-axis). The left panels show results for the direction X! Y, the right ones show results for the direction Y! X.

https://doi.org/10.1371/journal.pgen.1010205.g003
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biased except when the InSIDE assumption held (i.e. ξ = 0 and no causal effect from the other

direction), while CD-Ratio was in general biased in the presence of invalid IVs. Furthermore,

CD-cML-DP-S and MR-cML-DP-S were much more efficient in yielding estimates with much

smaller variances than those of CD-Ratio and CD-Egger.

We also illustrate the significant role of the IV screening rule: without it both MR-cML-DP

and CD-cML-DP could be biased. As shown in Figs 8 and 9, when considering the direction of

Y to X with θXY 6¼ 0, without screening rule, some SNPs would be used as invalid IVs, thus esti-

mating θYX as 1/θXY incorrectly. It is also noted that, in these situations, the estimated K’s were

much larger than 1, leading to much smaller type I error (and lower power) of CD-cML-DP

than MR-cML-DP.

More results for the methods with or without data perturbation and/or IV screening are

provided in the S1 Text.

2.2.2 Secondary simulations. The recently proposed Latent Heritable Confounder MR

(LHC-MR) method [24] aims to infer bi-directional causal relationships as well, so we com-

pare our proposed methods with LHC-MR through simulations. Since LHC-MR requires the

use of genome-wide GWAS summary data, not just those for significant SNPs as required by

our and most other methods, we cannot apply LHC-MR in our previous simulations. Instead,

we generated new simulated data for LHC-MR as described in the original LHC-MR paper

Fig 4. Empirical type-I error and power (y-axis) for both X and Y continuous, ξ from a uniform distribution (i.e. with correlated pleiotropy,

implying InSIDE violated), θXY = 0 (top panels) and θXY = 0.3 (bottom) for various values of θYX (x-axis). The left panels show results for the

direction X! Y, the right ones show results for the direction Y! X.

https://doi.org/10.1371/journal.pgen.1010205.g004
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[24]. In each simulation, we generated 50000 LD-independent SNPs, and two independent

samples each of size n = 50000. We set polygenicity parameters as πu = 0.0015, πx = 0.002, πy =

0.0025, and set variances of non-zero direct effects as s2
u ¼ 0:1, s2

x ¼ 0:1, s2
y ¼ 0:1. Then for

i = 1, � � �, 50000, we generated the effects from each SNP to X, Y and U independently as in

Equations (14), (15), (16) in [24],

gi ¼ zXi � kXi; with zXi � Nð0; s2
xÞ and kXi � BernoulliðpxÞ;

Zi ¼ zYi � kYi; with zYi � Nð0; s2
yÞ and kYi � BernoulliðpyÞ;

xi ¼ zUi � kUi; with zUi � Nð0; s2
uÞ and kUi � BernoulliðpuÞ:

ð2Þ

We set the effects from U to X and Y as θUX = 0.3 and θUY = 0.25 respectively, then calcu-

lated the total effects of the SNPs on X and Y as in Equations (10) and (11) in [24], denoted by

βXi and βYi as

bXi ¼
ðyUX þ yYX � yUYÞxi þ yYXZi þ gi

1 � yYXyXY
; bYi ¼

ðyUY þ yXY � yUXÞxi þ yXYgi þ Zi
1 � yXYyYX

: ð3Þ

Fig 5. Empirical type-I error and power (y-axis) for both X and Y binary, ξ from a uniform distribution (i.e. with correlated pleiotropy, implying

InSIDE violated), θXY = 0 (top panels) and θXY = 0.3 (bottom) for various values of θYX (x-axis). The left panels show results for the direction X! Y,

the right ones show results for the direction Y! X.

https://doi.org/10.1371/journal.pgen.1010205.g005
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Instead of generating GWAS individual level data, following [20], we directly generated

GWAS summary statistics b̂Xi and b̂Yi as b̂Xi � NðbXi; 1=nÞ and b̂Yi � NðbYi; 1=nÞ. Then we

applied LHC-MR and our proposed methods to simulated data. We tried 4 different combina-

tions (θXY, θYX) 2 {(0,0), (0,0.3), (0.3,0), (0.3,0.3)}; for each combination we did 200

Fig 6. Empirical distributions of the estimates of the correlation ratio K for CD methods and the causal effect θ for MR method with both X and

Y continuous, true θXY = 0 and θYX = 0. The top and bottom panels show the results for ξ = 0 (i.e. no correlated pleiotropy) and ξ from a uniform

distribution (i.e. with correlated pleiotropy, implying InSIDE violated), respectively. The left panels show the estimates for the causal direction of X!
Y, while the right ones show that for Y! X. The horizontal dashed lines are for the true values of K or θ. The two rows of the numbers under each

panel give the sample mean and standard deviation of the estimates from each method.

https://doi.org/10.1371/journal.pgen.1010205.g006
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simulations (due to the slow speed of LHC-MR: as a comparison, in [24] the simulations were

replicated only 50 times for each setup).

Table 1 gives the simulation results: in each cell we show the proportion of the significant

results with p-value less than 0.05; when θXY (or θYX) is 0, it shows the empirical type-I error

Fig 7. Empirical distributions of the estimates of the correlation ratio K for CD methods and the causal effect θ for MR method with both X and

Y continuous, true θXY = 0 and θYX = 0.3. The top and bottom panels show the results for ξ = 0 (i.e. no correlated pleiotropy) and ξ from a uniform

distribution (i.e. with correlated pleiotropy, implying InSIDE violated), respectively. The left panels show the estimates for the causal direction of X!
Y, while the right ones show that for Y! X. The horizontal dashed lines are for the true values of K (in blue) and θ (in black). The two rows of the

numbers under each panel give the sample mean and standard deviation of the estimates from each method.

https://doi.org/10.1371/journal.pgen.1010205.g007
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for X to Y (or Y to X); when θXY (or θYX) is 0.3, it shows the empirical power for X to Y (or Y to

X). We could see that MR-cML-DP-S and CD-cML-DP-S again performed almost identically:

they were a little conservative with the type-I error rates smaller than the nominal level 0.05;

however, they were less conservative and much more powerful than LHC-MR.

Fig 8. Empirical distributions of the estimates of the correlation ratio K for CD methods and the causal effect θ for MR method with both X and

Y continuous, true θXY = 0.3 and θYX = 0. The top and bottom panels show the results for ξ = 0 (i.e. no correlated pleiotropy) and ξ from a uniform

distribution (i.e. with correlated pleiotropy, implying InSIDE violated), respectively. The left panels show the estimates for the causal direction of X!
Y, while the right ones show that for Y! X. The horizontal dashed lines are for the true values of K (in blue) and θ (in black). The two rows of the

numbers under each panel give the sample mean and standard deviation of the estimates from each method.

https://doi.org/10.1371/journal.pgen.1010205.g008

PLOS GENETICS Robust inference of bi-directional causal relationships in presence of correlated pleiotropy

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010205 May 16, 2022 12 / 28

https://doi.org/10.1371/journal.pgen.1010205.g008
https://doi.org/10.1371/journal.pgen.1010205


2.3 Real data examples

We studied possibly bi-directional causal relationships between 12 cardiometabolic risk factors

and 4 common diseases, and between pairs of the 4 common diseases, including 3 cardiometa-

bolic diseases, namely coronary artery disease (CAD) [25], Stroke [26], type 2 diabetes (T2D)

[27], and asthma (largely serving as a negative control) [28]. The 12 risk factors are

Fig 9. Empirical distributions of the estimates of the correlation ratio K for CD methods and the causal effect θ for MR method with both X and

Y continuous, true θXY = 0.3 and θYX = 0.3. The top and bottom panels show the results for ξ = 0 (i.e. no correlated pleiotropy) and ξ from a uniform

distribution (i.e. with correlated pleiotropy, implying InSIDE violated), respectively. The left panels show the estimates for the causal direction of X!
Y, while the right ones show that for Y! X. The horizontal dashed lines are for the true values of K (in blue) and θ (in black). The two rows of the

numbers under each panel give the sample mean and standard deviation of the estimates from each method.

https://doi.org/10.1371/journal.pgen.1010205.g009
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triglycerides (TG), low-density lipoprotein cholesterol (LDL), hight-density lipoprotein cho-

lesterol (HDL) [29], Height [30], body-mass index (BMI) [31], body fat (BF) [32], birth weight

(BW) [33], diastolic blood pressure (DBP), systolic blood pressure (SBP) [34], fasting glucose

(FG) [35], Smoke and Alcohol [36]. Based on the existing literature, [9] partitioned the 48 risk

factor-disease pairs into four groups, representing likely “causal”, “correlated”, “unrelated”

and “non-causal” relationships.

We used R package TwoSampleMR to extract and pre-process the GWAS summary statis-

tics. For each pair of traits X and Y, at the p-value cutoff 5 × 10−8, we first extracted all SNPs

significant with X, denoted by IX, and all SNPs significant with Y, denoted by IY. Let IU = IX [
IY be the combined set of the significant SNPs for at least one of the two traits, then we

extracted the summary statistics for all SNPs in IU. For each SNP in IU, we defined its com-

bined p-value across the two traits as pc = pX � pY, where pX and pY were the p-values for the

two traits. We applied function clump_data for clumping, using its default setting with dis-

tance 10000kb, r2 = 0.001, the European population as the reference panel, and pc’s as p-values

for the SNPs. After clumping, we obtained a set of approximately independent SNPs, for

which we had their GWAS summary statistics b̂X, SE(b̂X) and b̂Y , SE(b̂Y).

We input the summary statistics into each CD or MR method, drawing conclusions accord-

ing to the decision rules (see Methods). For cML, we used 10 random starting points to find

cMLEs. For data perturbation, we set the number of perturbations T = 100. For all methods

except Steiger’s method, for both directions, we used the Bonferroni-corrected significance

level 0.05/96� 0.0005 to construct confidence intervals. For Steiger’s method we show the

results as (Proportion, Majority Vote). For example, as shown in S1 Text, for TG to CAD

50.5% SNPs were significant, for CAD to TG 18.4% SNPs were significant, and the rest 31.1%

SNPs were not significant for either direction; Steiger-MV would conclude that TG to CAD as

TRUE, and CAD to TG as FALSE. See S1 Text for detailed results.

For LHC-MR, we downloaded the whole genome GWAS summary data for the 16 traits

from IEU GWAS database [37], which are the same as the data included in R package Two-
SampleMR, ensuring a fair comparison. Then we applied LHC-MR with R package lhcMR
as described in [24] to make inference about bi-directional causal relationships between any

pairs of traits.

As shown in Fig 10, many of the well-accepted causal relationships from a risk factor to a

disease were confirmed by most of the methods, such as from TG to CAD, and LDL to CAD.

There were also some interesting findings about causal effects from diseases to risk factors, for

example, T2D to BMI, and T2D to FG identified by MR-cML-DP-S, CD-cML-DP-S, CD-Ra-

tio-S and LHC-MR; and Stroke to DBP by MR-cML-DP-S, CD-cML-DP-S and LHC-MR.

Between MR-cML-DP-S and CD-cML-DP-S, they gave mostly consistent results except for

two pairs: MR-cML-DP-S, but not CD-cML-DP-S, identified two well-accepted causal rela-

tionships from BMI and FG to T2D. In both cases, the two methods gave the relatively wider

Table 1. Empirical type I error and power in the secondary simulations comparing MR-cML-DP-S, CD-cML-DP-S and LHC-MR.

(θXY, θYX)

Methods MR-cML-DP-S CD-cML-DP-S LHC-MR

X! Y Y! X X! Y Y! X X! Y Y! X

(0,0) 0.01 0.015 0.015 0.015 0 0

(0,0.3) 0.015 1 0.015 1 0 0.15

(0.3,0) 1 0.02 1 0.02 0.115 0

(0.3,0.3) 1 1 1 1 0.3 0.165

https://doi.org/10.1371/journal.pgen.1010205.t001
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CIs with that of CD-cML-DP-S covering K = 1, indicating perhaps its lack of power and/or its

being more conservative as discussed earlier. Finally, both CD-Ratio-S and LHC-MR sug-

gested a few more causal relationships, including some from a disease to a risk factor, which

however need to be further investigated, especially for those given by the former due to its

strong assumption of all valid IVs.

Following [9], we can classify each of the 48 risk factor-disease pairs (from risk factor to dis-

ease) into four groups, including one as established causal relations. Fig 11 shows the numbers

Fig 10. Causal relationship of 48 risk factor-disease pairs. As shown in the legends, the size, color and direction of a

triangle represent the statistical significance, method being used, and the direction/sign of the estimated effect. In each

cell, the first row is for the causal direction from the risk factor to the disease, and the second row is for the reverse; the

background color represents the classification of the relationship from the risk factor to the disease.

https://doi.org/10.1371/journal.pgen.1010205.g010
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of significant causal effects from risk factors to diseases detected by different methods at the p-

value cutoff 0.0005. It is clear that LHC-MR detected most (13) causal relations as well as

incorrectly including more non-causal relations (4) as causal; CD-Ratio-S included the same

number of non-causal relations as LHC-MR, but fewer true causal relations (10); in contrast,

our proposed MR-cML-DP-S detected second most (11) true causal relations with few non-

causal ones (2); CD-cML-DP-S detected fewer (9) true causal relations but the same number

(2) of non-causal ones. On the other hand, perhaps due to its low power, CD-Egger-S detected

the smallest numbers of both causal (8) and non-causal (1) ones.

In the S1 Text we show the detailed results between any two of the four diseases. Based on

the Bonferroni-adjusted significance cutoff of 0.05/12� 0.004, all five methods identified two

causal relationships: from CAD to Stroke, and from T2D to CAD. All methods except

LHC-MR identified a causal relationship from T2D to Stroke [23]. On the other hand,

CD-Ratio-S, CD-Egger-S and LHC-MR suggested a reverse causation from Stroke to CAD,

which might be questionable. Finally, we note that MR-cML-DP-S and CD-cML-DP-S yielded

consistent results.

3 Discussion

Inference for bi-directional causal relationships is far more challenging than for uni-direc-

tional ones, which has been the focus in the literature. In particular, in most MR analyses, a

uni-directional causal relationship is assumed to be known and thus pursued. There are a few

exceptions, though many considered bi-directional ones under the unrealistic assumption of

having only valid IVs [7, 38]. The new LHC-MR method of [24] aimed for the same problem

as considered here. However, there are some major differences. Foremost, although the two

true causal models are similar, the technical approaches are substantially different: they esti-

mate all the parameters related to various direct and indirect effect sizes among IVs, the hidden

confounder and the two traits in the model, requiring much stronger modeling assumptions,

such as the normality assumption on the distribution of the effect sizes, leading to not only a

more complex estimation procedure (with a Bayesian approach), but also some non-identifia-

bility for parameter estimation. In contrast, except for the few key parameters of interest, such

Fig 11. Numbers of significant causal effects from risk factors to diseases detected by different methods at p-value cutoff 0.0005.

https://doi.org/10.1371/journal.pgen.1010205.g011
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as the causal effect sizes, we treat the majority of the other parameters as nuisance ones that are

combined into two intercept parameters in our model (1), leading to a much simpler estimation

procedure without any distributional assumption on these nuisance parameters. In addition,

LHC-MR requires the availability of genome-wide GWAS summary data, while cML requiring

only that for the subset of significant SNPs. Although we have shown some numerical compari-

sons, more studies are needed to investigate their relative performance in practice. We also note

that the major assumption in our cML method is the “plurailty condition” (that the valid IVs

form the largest/plurality group in estimating the same causal parameter as their estimand),

which is relatively weak because it does not even require the majority of the IVs to be valid.

Nonetheless, for bi-directional causal relationships, it will always be violated for one trait if no

screening is applied: since the valid IVs for one trait are invalid for the other trait, we have either

an equal or even a larger number of invalid IVs to or than the number of valid IVs; the former

set of invalid IVs correspond to the same (incorrect) causal estimand, implying that the set of

valid IVs will not form the largest group in estimating the same (correct) causal estimand; that

is, the plurality condition will be violated. In addition, this problem will be catastrophic to other

methods based on modeling direct effects of invalid IVs as random effects, such as Egger regres-

sion, IVW-RE and RAPS, because it leads to the violation of the InSIDE assumption required

by these methods. The simple screening rule based on the Steiger’s method is surprisingly effec-

tive in eliminating (or at least alleviating) such a problem.

Although we have mainly focused on the robustness of the cML methods to correlated and

uncorrelated pleiotropy (i.e. violation of IV Assumptions 2 and 3), as shown in Theorem 1 and

its following discussion, we also allow the presence of some invalid IVs that are irrelevant

(with the IV Assumption 1 violated) as long as the plurality condition holds. Hence, the cML

methods are robust to a large extent to the violations of all three IV assumptions. In addition,

we have shown that the proposed cML methods performed well for both quantitative traits

and binary traits. In particular, we have proposed a general framework justifying the applica-

tion of both CD and MR methods to binary traits as both exposures and outcomes.

The recent popularity of Steiger’s method may suggest that correlation-based CD methods

should be more effective than MR in determining causal directions. Surprisingly, as shown here,

equipped with the same screening rule and the same robust cML estimation method, we do not

see better performance of CD-cML over MR-cML when their modeling assumptions, mainly of

the plurality condition, hold. A possible explanation is the following: CD methods exploit the key

relationship characterizing the correlations between each trait and each SNP/IV as defined by

the K parameter, which however is derived from the same causal model used by MR. In fact,

since K is proportional to the causal parameter θ, according to the invariance property and the

asymptotic optimality of the maximum likelihood estimator, there should be no advantage in

estimating either one over the other, thus their large-sample inference and the corresponding

conclusions should be (asymptotically) equivalent if their modeling assumptions hold. However,

since CD methods exploit the key condition |K|< 1, they are less likely to make type I errors

(albeit with lower power) than MR when their modeling assumptions are violated, as shown in

our simulations (Figs 8 and 9). Therefore, as evidenced in our real data application, given no

guarantee of the validity of all modeling assumptions, including the plurality condition, for any

given problem, CD-cML can serve as a more conservative alternative to MR-cML.

There are a few limitations with the current study. First, we have only considered the two-

sample design with two independent GWAS datasets for the two traits. It will be useful to extend

the methods to the case with overlapping individuals in the two GWAS datasets, or to the one-

sample design with only one GWAS dataset for both the traits [9, 24]. Second, in our real data

examples the SNPs/IVs were selected from the same two GWAS datasets for the two traits,

which might introduce selection bias. Alternatively, we can use an independent GWAS dataset
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for SNP selection for each trait [39], or analytically account for selection effects [40–42]. Third,

as usual in MR we only considered linear models, while non-linear modeling may be more flexi-

ble and gain power [43, 44]. Finally, and most importantly, any analysis method comes with its

modeling assumptions, especially in causal inference with observational data. Although we feel

that our modeling assumptions for our proposed CD- and MR-cML, mainly the plurality condi-

tion, are relatively weak, they may or may not hold in practice. It would be useful to develop

model checking techniques, or apply alternative methods under different modeling assumptions

for triangulation [45]. Only more real data applications can shed light on how likely these

modeling assumptions, especially the plurality condition, would hold in practice.

4 Methods

4.1 Model

The true causal model depicted in Fig 1 can be expressed as

U ¼ x � gB þ �U ;

X ¼ yYX � Y þ a � gX þ g � gB þ yUX � U þ �X;

Y ¼ yXY � X þ b � gY þ Z � gB þ yUY � U þ �Y ;

ð4Þ

where the random errors �U, �X and �Y are independent with each other, and for simplicity of

notation we omit the intercepts (which are used in practice). The reduced form of the true

model is

X ¼
1

1 � yXYyYX
a � gX þ yYXb � gY þ ðgþ yYXZÞ � gB þ ðyUX þ yUYyYXÞUþð

�X þ yYX � �YÞ

¼
1

1 � yXYyYX
a � gX þ yYXb � gY þ ðgþ yYXZþ yUXxþ yUYyYXxÞ � gBþ½

ðyUX þ yUYyYXÞ�U þ �X þ yYX � �Y �;

Y ¼
1

1 � yXYyYX
yXYa � gX þ b � gY þ ðyXYgþ ZÞ � gB þ ðyUY þ yUXyXYÞUþð yXY � �X þ �YÞ

¼
1

1 � yXYyYX
yXYa � gX þ b � gY þ ðyXYgþ Zþ yUYxþ yUXyXYxÞ � gBþ½

yUY þ yUXyXYÞ�U þ yXY � �X þ �Y �:ð

ð5Þ

First, for an IV g in {gX}, its (population) correlations with X and Y are

rXg ¼
covðX; gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ � varðgÞ

p ;

rYg ¼
covðY; gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ � varðgÞ

p ¼
yXY � covðX; gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ � varðgÞ

p :

ð6Þ
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We have

rYg ¼ KXY � rXg with KXY ≔ yXY �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p : ð7Þ

Under the key assumption y
2

XY � varðXÞ < varðYÞ, we have |KXY|< 1. More discussions on

why this assumption is often reasonable and how to empirically check this assumption are

given in [7].

Second, for an IV g in {gY}, its correlations with X and Y are

rXg ¼
covðX; gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ � varðgÞ

p ¼
yYX � covðY; gÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ � varðgÞ

p ;

rYg ¼
covðY; gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ � varðgÞ

p :

ð8Þ

We have

rXg ¼ KYX � rYg with KYX ≔ yYX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p : ð9Þ

Again under the key assumption y
2

YX � varðYÞ < varðXÞ, we have |KYX|< 1.

Third, for an IV g in {gB}, its correlations with X and Y are

rXg ¼
covðX; gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ � varðgÞ

p ¼
1

1 � yXYyYX

ðgþ yYXZþ yUXxþ yUYyYXxÞvarðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ � varðgÞ

p ;

rYg ¼
covðY; gÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ � varðgÞ

p ¼
1

1 � yXYyYX

ðyXYgþ Zþ yUYxþ yUXyXYxÞvarðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ � varðgÞ

p :

ð10Þ

We have

rYg ¼ KXY � rXg þ bXYg with bXYg ¼
ðZþ yUYxÞvarðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðYÞ � varðgÞ

p ;

rXg ¼ KYX � rYg þ bYXg with bYXg ¼
ðgþ yUXxÞvarðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ � varðgÞ

p ;

ð11Þ

where KXY and KYX are defined as before, and satisfying |KXY|< 1 and |KYX|< 1 under each of

the two key assumptions respectively.

Note that ξ 6¼ 0 induces correlations between ρXg and bXYg, and between ρYg and bYXg,
through the shared term ξ, leading to the violation of the InSIDE assumption, as expected.

However, even if ξ = 0, that θYX 6¼ 0 or θXY 6¼ 0 would still induce a correlation between ρXg
and bXYg (through the shared term η), or between ρYg and bYXg (through shared γ), respec-

tively, again leading to the violation of InSIDE. Furthermore, for g 2 {gY}, if θYX 6¼ 0, from Eq

(9) we have

rYg ¼
1

KYX
� rXg; ð12Þ

which means that if g 2 {gY} is used as an IV to infer the causal direction from X to Y, it would

incorrectly estimate KXY as 1/KYX. In particular, if the set size |{gY}| is larger than that of the

valid IV set, |{gX}|, it implies that the plurality condition will be violated when the SNPs in {gY}
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are used as candidate IVs; this problem, completely due to considering a bi-directional rela-

tionship (i.e. when considering direction X to Y while allowing a causal direction of Y to X),

can be avoided or alleviated by applying the IV screening rule to be discussed later. In sum-

mary, these various scenarios showcase unique challenges with analysis of bi-directional

relationships.

Eq (12) can be rewritten as

rYg ¼ KXY � rXg þ
1

KYX
� rXg � KXY � rXg

� �

≔ KXY � rXg þ bXYg:

Hence, combining all possible cases for g 2 {gX} [ {gY} [ {gB}, Eq (11) holds and can serve

as a general model for statistical estimation.

Finally, it is noted that KXY 6¼ 0 (or KYX 6¼ 0) if and only if θXY 6¼ 0 (or θYX 6¼ 0). Accord-

ingly we can infer causal directions based on whether KXY and KYX are non-zero and whether

their absolute values are less than 1. Similarly, based on whether θXY and θYX are 0 or not, we

can infer causal directions. Since these are unknown parameters, next we propose how to esti-

mate them.

4.2 Constrained maximum likelihood

From a GWAS summary dataset with sample size N1 for trait X, for each g in {gX} [ {gY} [

{gB}, we have its estimated effect size b̂Xg with standard error SE(b̂Xg); as discussed in [7], we

calculate the sample correlation rXg between X and g as

rXg ¼
b̂Xg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b̂2
Xg þ ðN1 � 2Þ � SEðb̂XgÞ

2
q ; ð13Þ

asymptotically we have rXg � NðrXg; s2
XgÞ, and the standard deviation σXg is estimated as

SEðrXgÞ ¼
1 � r2

Xg
ffiffiffiffiffiffi
N1

p : ð14Þ

Similarly, for trait Y, we obtain its sample correlation rYg � NðrYg; s2
YgÞ and SE(rYg).

For causal direction X! Y, based on the consistency and asymptotic normality of the sam-

ple correlations r’s and approximating their true standard deviations by SE(r)’s, with general

model (14), we write down the log-likelihood as

LXYðKXY ; frXg; bXYgg; frXg; rYg; SEðrXgÞ
2
; SEðrYgÞ

2
gÞ

¼ �
1

2

X

g2fgXg[fgYg[fgBg

ðrXg � rXgÞ
2

SEðrXgÞ
2
þ
ðrYg � KXY � rXg � bXYgÞ

2

SEðrYgÞ
2

 !

:

ð15Þ

We apply the constrained maximum likelihood method [17]:

ðK̂XYðmIÞ; fr̂XgðmIÞ; b̂XYgðmIÞgÞ

¼ arg max
ðKXY ;frXg ;bXYggÞ

LXYðK; frXg; bXYgg; frXg; rYg; SEðrXgÞ
2
; SEðrYgÞ

2
gÞ

subject to
X

g

IðbXYg 6¼ 0Þ ¼ mI;

ð16Þ
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where mI is a specified number of invalid IVs with pleiotropy (i.e. non-zero bXYg). Since mI is

unknown, we try mI 2M ¼ f0; 1; . . . ;m � 2g, where m is the total number of the IVs being

used, then use the Bayesian Information Criterion (BIC) to select the best mI. The BIC with mI

is

BICðmIÞ ¼ � 2LXYðK̂XYðmIÞ; fr̂XgðmIÞ; b̂XYgðmIÞg;

frXg; rYg; SEðrXgÞ
2
; SEðrYgÞ

2
gÞ þ logðnÞ �mI;

ð17Þ

where n can be an any integer between N1 and N2, the sample sizes for the two GWAS for X
and Y respectively, though we recommend using n = min(N1, N2). We select

m̂I ¼ argminmI2M
BICðmIÞ, and estimate the set of invalid IVs as

B̂XYðm̂IÞ ¼ fg : b̂XYgðm̂IÞ 6¼ 0g.

Under the plurality condition (i.e. that the valid IVs form the largest group giving the same

(asymptotic) estimate of KXY) and that the two GWAS sample sizes are comparable, as in [17],

we can consistently select mI (as the true number of invalid IVs), and the resulting constrained

maximum likelihood estimate (cMLE) K̂XY ≔ K̂ XYðm̂IÞ is consistent for the true value of KXY
and (asymptotically) normally distributed, as shown below.

Assumption 1. (Plurality condition.) Suppose that B0
XY ¼ fgYg [ fgBg is the index set of the

invalid IVs with pleiotropy for direction X! Y, i.e. with bXYg 6¼ 0 if and only if g 2 B0
XY ;

jB0
XY j ¼ m0

XY . For any B� {1, � � �, m} and jBj ¼ m0
XY , if B 6¼ B0

XY , then there does not exist any
constant ~K such that bXYg ¼ ~K � rXg for all g 2 B

c.

Assumption 2. (Orders of the variances and sample sizes.) There exist positive constants lX,

lY, lN and uX, uY, uN such that we have lX/N1� SE(rXg)2� uX/N1, lY/N2� SE(rYg)2� uY/N2,

and lN � N2� N1� uN � N2 for g = 1, � � �, m.

Theorem 1 Under Assumptions 1 and 2, if m0
XY 2M, we have Pðm̂I ¼ m0

XYÞ ! 1 and
PðB̂XYðm̂IÞ ¼ B0

XYÞ ! 1 as N1, N2!1. Furthermore, the cMLE K̂XY ≔ K̂XYðm̂IÞ is consistent
and asymptotically normal:

ffiffiffiffi
V
p
ðK̂XY � KXYÞ!

d Nð0; 1Þ; as N1;N2 !1;

where

V ¼
X

g2ðB0
XY Þ

c

r2
Xg

s2
Xg � K2

XY þ s
2
Yg

:

In practice, we can consistently estimate V with

V̂ ¼
X

g2ðB̂XY ðm̂I ÞÞ
c

r2
Xg � SEðrXgÞ

2

SEðrXgÞ
2
� K̂ 2

XY þ SEðrYgÞ
2
:

The proof for the selection consistency of BIC is similar to that for MR-cML [17], while that

for the consistency and asymptotic normality of the cMLE parallels the proof of Theorem 3.3

in [18], for which the conditions are satisfied, including that here we consider only a fixed/

finite m. See S1 Text for proof of Theorem 1. As in [17], we can also use the information matrix

to consistently estimate the variance of K̂XY ; this alternative estimator for V was used through-

out this paper. At the end, based on the asymptotic normality, we can construct a normal con-

fidence interval (CI) for KXY (or calculate a p-value). We can similarly estimate KYX and draw

inference.
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Note that Theorem 1 states only consistent selection of the invalid IVs with pleiotropy (i.e.

with bXYg 6¼ 0) violating IV Assumptions 2 and/or 3, but not the invalid IVs that are irrelevant

(i.e. violating IV Assumption 1). As discussed in Section 3.4.2 of [18], including irrelevant IVs

will not affect the validity of the asymptotic normality of K̂ XY , but it will decrease the estima-

tion efficiency with the variance of K̂XY increased.

We note that our proposed the cML method, called CD-cML here, is similar to MR-cML in

[17]. The main difference is that in MR-cML, the effect size estimates b̂Xg and b̂Yg replace the

sample correlations rXg and rYg to estimate the causal effect θXY or θYX, instead of KXY or KYX;

all other aspects remain the same.

4.3 Data perturbation

Similar to extending MR-cML to MR-cML-DP in [17], we apply CD-cML with data-perturba-

tion to account for invalid IV selection uncertainties with finite sample sizes of GWAS

datasets and weak pleiotropic effects. For t = 1, � � �, T, we generate perturbed samples rðtÞXg �

NðrXg; SEðrXgÞ
2
Þ and rðtÞYg � NðrYg; SEðrYgÞ

2
Þ for g 2 {gX} [ {gY} [ {gB}. Here T is the number of

perturbations, we suggest setting it to be at least 100. With perturbed data we solve the con-

strained problem similar to Eq (16) as

ðK̂ ðtÞXYðmIÞ; fr̂
ðtÞ
XgðmIÞ; b̂

ðtÞ
XYgðmIÞgÞ

¼ arg max
ðKXY ;frXg ;bXYggÞ

LXYðK; frXg; bXYgg; fr
ðtÞ
Xg ; r

ðtÞ
Yg ; SEðrXgÞ

2
; SEðrYgÞ

2
gÞ

subject to
X

g

IðbXYg 6¼ 0Þ ¼ mI;

and get the corresponding maximum likelihood as

LðtÞXYðmIÞ ¼ LXYðK̂
ðtÞ
XYðmIÞ; fr̂

ðtÞ
XgðmIÞ; b̂

ðtÞ
XYgðmIÞg; fr

ðtÞ
Xg ; r

ðtÞ
Yg ; SEðrXgÞ

2
; SEðrYgÞ

2
gÞ:

Then we average over the T perturbed estimates to get

K̂DP
XYðmIÞ ¼

PT
t¼1
K̂ ðtÞXYðmIÞ

T
; LDPXYðmIÞ ¼

PT
t¼1
LðtÞXYðmIÞ

T
; ð18Þ

and estimate standard error of K̂DP
XYðmIÞ as

SE K̂DP
XYðmIÞ

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1
ðK̂ ðtÞXYðmIÞ � K̂DP

XYðmIÞÞ
2

T � 1

s

: ð19Þ

We construct BICDPðmIÞ ¼ � 2LDPXYðmIÞ þ logðnÞ �mI and select m̂I with the smallest

BICDP(mI), obtaining the corresponding DP estimate K̂DP
XYðm̂IÞ together with SEðK̂DP

XYðm̂IÞÞ,

then make inference about KXY. Similarly. we apply data-perturbation and make inference

about KYX. This method is called CD-cML-DP.

Next we show that the proposed data perturbation scheme is consistent for CD-cML; we

have a similar result for MR-cML as shown in the S1 Text. The technical details and proof are

relegated to the S1 Text.

Theorem 2. Under Assumptions 1 and 2, conditional on the original GWAS summary data,
ffiffiffiffi
V
p
ðK̂ ðtÞXY � K̂XYÞ!

w:P:Nð0; 1Þ as N1, N2!1.
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4.4 IV screening

For direction X! Y we identify the initial set of the significant SNPs associated with X,

denoted by IX; for direction Y! X we identify the initial set of the significant SNPs with Y,

denoted by IY. Then for each SNP in the intersection, g 2 IX \ IY, if |rXg|� |rYg| we keep SNP g
in IX and remove it from IY; if |rXg|< |rYg| we keep it in IY and remove it from IX.

4.5 Other methods and decision rules

We will compare the proposed CD-cML with MR-cML and other CD methods: Steiger’s

method, CD-Ratio (like MR-IVW) and CD-Egger (like MR-Egger) [7]. Since Steiger’s method

is based on a single SNP/IV, we propose a majority voting (MV) method to combine its results

across multiple SNPs/IVs. Each IV would conclude with one of three possible results: (1) no

causal relationship between X and Y; (2) X has a causal effect on Y; (3) Y has a causal effect on

X. We would go with the conclusion reached by the majority of the IVs (and randomly break

the ties if any), called Steiger-MV. It is clear that Steiger-MV cannot detect bi-directional rela-

tionships. In the S1 Text, we show the proportions of the IVs in the three conclusion groups

respectively, called Steiger-Prop.

For any MR method, we first estimate ŷXY and SE(ŷXY) for X! Y, and get a p-value pXY;

for a given significance cutoff α, if pXY< α we conclude X has a causal effect on Y, otherwise

we do not. Similar we make a conclusion on whether there is a causal relationship of Y! X.

For any CD method except Steiger’s, for direction X! Y, we estimate K̂ XY and SE(K̂ XY),

for X! Y, then for a given significant cutoff α then we construct a (1 − α) confidence interval

of KXY as CIXY ¼ ðK̂XY � za=2SEðK̂ XYÞ; K̂XY þ za=2SEðK̂ XYÞÞ, here zα/2 is the upper α/2 quantile

of the standard normal distribution. If CIXY is completely within (-1,0) or (0,1), we conclude

that X has a causal effect on Y, otherwise X does not. Similarly, we make a conclusion about

Y! X.

4.6 Summary of different methods

In summary, we applied 15 different methods for inferring bi-directional causal relationships.

They are in two groups denoted as CD and MR respectively. In the first group, Steiger-Prop

and Steiger-MV are based on Steiger’s Method [6], CD-Ratio and CD-Egger are from [7],

CD-Ratio-S and CD-Egger-S are the two methods with IV screening, CD-cML and CD-

cML-DP are our newly proposed methods described in Section 4.2, so are CD-cML-S and CD-

cML-DP-S with IV screening. In the second group, MR-cML (which does not use data-pertur-

bation) and MR-cML-DP (which uses data-perturbation) are from [17], MR-cML-S and MR-

cML-DP-S are the two methods with IV screening introduced here, and LHC-MR is from

[24].

4.7 Main simulation setups

We independently generated 15 IVs in {gX} with α1, � � �, α15 from a uniform distribution Unif

((−0.3, −0.2) [ (0.2, 0.3)); 10 IVs in {gY} with β1, � � �, β10 from Unif((−0.3, −0.2) [ (0.2, 0.3));

and 10 IVs in {gB} with γ1, � � �, γ10 from Unif((−0.3, −0.2) [ (0.2, 0.3)), and η1, � � �, η10 from

Unif((−0.3, −0.2) [ (0.2, 0.3)). We generated ξ’s in two ways: i) set ξ’s = 0 for no correlations

with the confounder; ii) generated ξ’s from Unif(−0.1, 0.1) or Unif(−0.2, 0.2) for correlations

with the confounder.

The MAFs of the SNPs/IVs were all set as 0.3. We generated continuous traits X and Y fol-

lowing the true causal model in Fig 1; �X, �Y were independently drawn from N(0, 1), and �U

from N(0,2). We also studied the scenarios with at least one of X and Y being binary. To
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generate binary traits, we generated the continuous X and Y first, then dichotomized one or

both of them by setting the largest 30% of their values to be 1 and the other 70% as 0. We tried

different combinations of (θXY, θYX) 2 {0, 0.02, 0.1, 0.2, 0.3 } × {0, 0.02, 0.1, 0.2, 0.3}.

We generated two independent samples each of size n = N1 = N2 = 50000 from the reduced

form (5) of the causal models for the two traits. Then we calculated and used subsequently the

summary statistics for the two traits X and Y respectively. We set the significance cutoff at

0.05/35 to select relevant SNPs/IVs for both directions, and applied all methods for

comparison.

4.8 A justification for binary traits

As shown in our simulations, both MR-cML and CD-cML performed well for binary traits,

which was not coincident. This might seem surprising because our derivations for CD-cML

are based on linear models. Although linear models are applicable to binary traits, often one

would like to apply logistic regression as done in our simulations. Here we offer some explana-

tions on why CD-cML, and more generally MR, work for binary traits in a general framework

of bi-directional causal relationships in the presence of invalid IVs, which, to our knowledge,

appears to be new. A key assumption is that a binary trait is obtained by dichotomizing a latent

Normal (liability) trait. In addition, we assume that each SNP’s genetic effect is small, which is

reasonable for complex traits.

Now consider a latent quantitative trait X as specified in Eq (5) with a shortened notation:

X ¼ mXg þ �Xg;

where the error term �Xg (combining �U, �X and �Y) is independent of SNP g; we further assume

�Xg � Nð0; s2
XgÞ. A binary trait X� is defined as: X� = 1 if X> C for some constant cut-off C,

and X� = 0 otherwise. Hence, conditional on the SNP g, we have

EðX�Þ ¼ PðX > CÞ ¼ Pð�Xg > C � mXgÞ ¼ FððmXg � CÞ=sXgÞ

� H
1:7

sXg
ðmXg � CÞ

 !

� H
1:7

sXg
ðm0

Xg � CÞ

 !

þ H0
1:7

sXg
ðm0

Xg � CÞ

 !

ðmXg � m
0
XgÞ

¼ m0Xg þ CXg � mXg;

where F(.) is the cumulative distribution function of the standard Normal N(0, 1); the first

approximation is well known as given in [18] with H(.) = expit(.) being the inverse logit func-

tion, and the second approximation is based on a Taylor expansion of μXg at m0
Xg , the value of

μXg when all the genetic effects are 0. Accordingly, we can express X� as a linear model

X� � m0Xg þ CXg � mXg þ �X�g ;

sharing the same functional form as X in Eq (5) (except with an intercept term μ0Xg and a scal-

ing factor CXg being newly added). Therefore, we can derive ρX� g and K’s as before.

The above formulation also explains why it is fine to fit either a linear model or a logistic

regression model to estimate the marginal association between SNP g and the binary trait X�.
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To be concrete, let’s consider a valid IV g 2 {gX} for the causal direction of X to Y:

EðX�Þ � H
1:7

sXg
ðmXg � CÞ

 !

¼ H
1:7

sXg
ðb0;Xg þ bXg � gÞ

 !

� m0Xg þ CXg � bXg � g:

By Eqs (13) and (14), we see that we would obtain the same estimate rXg and its SE no mat-

ter whether we use 1:7=sXg � b̂Xg or CXg � b̂Xg , obtained from the marginal logistic regression or

linear regression respectively.

Although MR has been widely applied to both quantitative traits and binary traits, the usual

justification for MR is based on linear models for quantitative traits; while there are some dis-

cussions on the use of a binary exposure or a binary outcome [18, 46], we are not aware of any

systematic treatment of both a binary exposure and/or a binary outcome in the general frame-

work of bi-directional relationships with possibly invalid IVs. Our above formulation offers a

justification for the use of MR to binary traits in the general context. Again consider the causal

direction from binary X� to continuous Y: with a valid IV g 2 {gX}, we have

EðYÞ ¼ bYg � g;

then the causal parameter is defined either as θX� Y = βYg/[1.7/σXg � βXg] or θXY = βYg/[CXg �
βXg], depending on whether a logistic regression model or a linear model is used for X�. In fact,

θX� Y may be also defined based on the association parameters between g and the latent X (and

between g and Y). This is in agreement with [46]: if there is a discrepancy between the regres-

sion model being used in the definition of the causal parameter and the actual use of the model

to analyze the binary exposure X�, the resulting MR estimate will be biased; nevertheless, there

will be no discrepancy if there is no causal effect of X� on Y: we will always have θX� Y = 0,

regardless of its specific definition, if βYg = 0, thus it is always consistent to test for the presence

of a causal relationship using any of the definitions or regression models. We can have a simi-

lar treatment for a binary Y�.

Supporting information

S1 Text. Supplementary file with additional simulation results, detailed real data analysis

results, and more theoretical results and proofs.

(PDF)
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