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A B S T R A C T   

Nuclear magnetic resonance (NMR) is a powerful analytical tool which can be used for authenticating honey, at 
chemical constituent levels by enabling identification and quantification of the spectral patterns. However, it is 
still challenging, as it may be a person-centric analysis or a time-consuming process to analyze many honey 
samples in a limited time. Hence, automating the NMR spectral analysis of honey with the supervised machine 
learning models accelerates the analysis process and especially food chemistry researcher or food industry with 
non-NMR experts would benefit immensely from such advancements. Here, we have successfully demonstrated 
this technology by considering three major sugar adulterants, i.e., brown rice syrup, corn syrup, and jaggery 
syrup, in honey at varying concentrations. The necessary supervised machine learning classification analysis is 
performed by using logistic regression, deep learning-based neural network, and light gradient boosting ma
chines schemes.   

1. Introduction 

Honey is a most valued natural sweetener produced by honey bees 
and is composed of several sugars, varied compositions of organic acids, 
amino acids, enzymes, and minerals (Missio da Silva et al., 2016). The 
therapeutic and nutritional value of honey is known to be significant, 
and that has increased its consumption among people. However, un
fortunately, honey is also observed to be one of the most adulterated 
foods (Fakhlaei et al., 2020). In honey, the possible adulterations are of 
many types, which include, deliberate addition of C4 (corn/cane 
sugars), C3 (rice syrups), and invert sugars. Often, feeding sugars to 
honey bees in off-seasons, fermentation caused due to improper storage 
conditions, and sometimes processing also cause changes in the chem
ical constituent proportions. Thus, adulterations damage the authentic 
benefits of honey. Therefore, there is a significant demand for screening 
the authenticity of honey using various analytical chemistry tools and 
many analytical tools have been used (Tura and Seboka, 2020; 
Zábrodská and Vorlová, 2015; Consonni and Cagliani, 2015; Elflein and 

Raezke, 2008). Among them, NMR is considered one of the vital and 
non-destructive spectroscopic tools useful to monitor the authenticity of 
honey (Olawode et al., 2018; Machado et al., 2020; Ohmenhaeuser 
et al., 2013; Spiteria et al., 2015; Lolli et al., 2008). 

Melissopalynology (microscopic study of pollen grains) and some 
physicochemical parameters such as sugar content, concentrations of 
proline, HMF, free acids, and diastase activity are some of the traditional 
methods for determining honey quality; however, a set of parameters 
must be considered to draw a decision on honey quality. The determi
nation of these traditional characteristics is operator-dependent. 
Whereas, IRMS (isotopic ratio mass spectroscopy) is a sophisticated 
analytical technique that uses carbon isotope ratios to detect adultera
tions in honey. In general, its hyphenated approaches, EA-IRMS 
(elemental analysis coupled IRMS) and LC-IRMS (liquid chromatog
raphy coupled IRMS), can be used to evaluate honey with extractable 
proteins; however, these schemes have recently been extended to 
analyze honey with non-extractable proteins (Dong et al., 2018). IRMS, 
on the other hand, indirectly detects C3 sugar adulterants and can also 
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be time-consuming. Conversely, honey analysis from NMR spectroscopy 
requires less sample preparation and data collection times when 
compared with other analytical methods. 

The inherent strength of NMR (target and non-target based) permits 
identification and quantification of all possible monosaccharides, di
saccharides, oligosaccharides, acids, HMF, and amino-acids, separately 
from different well-resolved chemical shifts. These features can be easily 
exploited to discriminate geographical and botanical origins of honey 
since each honey variety has its unique NMR spectral features/signa
tures (Girelli et al., 2020; Spiteri et al., 2020; Boffo et al., 2012; Ribeiro 
et al., 2014; Nguyen et al., 2017; Luong et al., 2019; Pu’scion-Jakubik 
et al., 2020). Thus, to detect the authenticity of honey under testing, a 
specific honey NMR database with the respective authentic honey 
samples is required. Even so, often, these honey NMR databases of 
authentic samples fail to provide specific insights into the type of 
adulteration that has taken place. Previously, in one of the reports, NMR 
combined with statistical analysis has been used to identify the com
mercial sugar syrup adulterations in honey (which are routinely used as 
nutrition to bees) (Bertelli et al., 2010). In another work, brown rice 
syrup adulterated honey has also been discriminated from authentic 
honey, while considering only one specific 1H chemical shift peak at 
5.39 ppm (Musharraf et al., 2016). Still, simultaneously and rapidly 
classifying several sugar syrup adulterations in a large group of honey 
samples is rather challenging; this is particularly relevant in an indus
trial environment, where a large number of samples have to be tested 
reliably. 

In the present work, we have demonstrated the strength of NMR in 
combination with supervised machine learning strategies for classifying 
honey samples with three different sugar syrup adulterations. In this 
context, different direct, intentional adulterations are considered by 
adding varying concentrations of sugar sugars such as corn syrup, brown 
rice syrup, jaggery syrup to a set of authentic Indian rapeseed honey 
samples. Subsequently, statistical analysis through various supervised 
machine learning techniques of the NMR spectra has been done to get 
insights into the kind of adulteration that has taken place. 

2. Materials and sample preparation 

Indian rapeseed honey samples, corn syrup, brown rice syrup, and 
jaggery syrup used in the present study are taken in a petri dish kept in 
an oven at 50 ◦C for about 20 min to homogenize the honey samples. 
After that, samples are weighed to 2.5 g in a 15 ml polypropylene tube 
(required concentrations (w/w) of adulterations are calculated and 
weighed). After weighing, the sample volumes are adjusted to 10 ml. 
These samples are vortexed properly for about 20 min. Then the samples 
are centrifuged at 6000 RPM for about 30 min. Later 900 μl of sample 
solutions are pipetted out in cryovials, and 100 μl of 1 M KH2PO4 in D2O 
buffer having 0.05% of TSP as an internal reference standard is added, 
and finally, pH is adjusted to 3.1 (Bruker BTpH unit), which aids in 
reproducing the NMR spectral results (to eliminate the effect of sample 
pH changes on NMR chemical shifts). From that, 600 μl of pH adjusted 
samples are pipetted out into 5 mm NMR tubes for the NMR data 
acquisition (Ohmenhaeuser et al., 2013; Spiteria et al., 2015; Lolli et al., 
2008). 

A total of 20 Indian rapeseed honey, 14 corn syrup adulterated 
honey, 14 brown rice syrup adulterated honey, and 11 jaggery syrup 
adulterated honey samples are prepared under an identical sample 
preparation procedure. All the adulterant concentrations are ranging 
from ~5% to ~30% w/w with respect to the authentic Indian rapeseed 
honey (for all the adulterant spectra illustrating the percentages, see 
supporting information Table S1). 

3. NMR experimental procedure 

For all the honey samples, pre-saturated proton 1D-NOESY (Mckay, 
2011) NMR spectra were recorded under identical experimental 

parameters on a Bruker 400 MHz AVANCE NEO spectrometer equipped 
with a room temperature BBI probe. The offset is set to 4.702 ppm, with 
water peak suppression. Overall, recording 65,536 data points with a 
spectral width of 20.5 ppm resulted in a 4 s of FID length (acquisition 
time), and 32 scans are recorded for each sample (for the complete data 
acquisition parameters, see supporting information Table S2). Then, the 
Fourier transformed (data processing parameters are given in supporting 
information Table S3) NMR spectra were used for the statistical analysis 
by machine learning methods to discriminate the adulterated honey, i. 
e., brown rice adulterated, corn adulterated, and jaggery adulterated 
honey from the pure Indian rapeseed honey. 

4. Results and discussion 

4.1. NMR spectral analysis 

Fig. 1 compares the representative 1D-NMR spectral features of In
dian rapeseed honey, and the adulterated samples, i.e., corn, brown rice, 
and jaggery adulterated honey samples. The aliphatic region (0–3 ppm, 
Fig. 1a) consists of leucine, ethanol, proline, succinic acid, acetic acid, 
alanine, malic acid, citric acid, and many more (Soares et al., 2017) 
Herein, ethanol, succinic acid, and acetic acid are the fermentation 
markers of honey (Sroka and Tuszyński, 2007; Mărgăoan et al., 2020). 
Some of the other constituents, alanine, leucine, proline, citric acid, and 
malic acid are the geographical indicators. Whereas, the expanded 
chemical shift region from 3 to 5.3 ppm (Fig. 1b) mainly consists of 
fructose and glucose resonances with high intensities (sum of glucose 
and fructose is > 60 g/100 g of honey) when compared with the other 
chemical shift regions. Further, these NMR spectral features are most 
common among all the three adulterants and pure honey; hence, 
clear-cut discrimination cannot directly be done from this spectral 
region. 

Interestingly, in the chemical shift region from 5.3 to 5.5 ppm 
(Fig. 1c), significant differences in the NMR spectral patterns are 
observed among all the samples, which is mainly due to the presence of 
disaccharides, trisaccharides, and oligosaccharides (Schievano et al., 
2017) Composition of these saccharides are very specific to the adul
terated honey and authentic honey samples. As a consequence, from the 
given expanded spectra, it is evident that the increased peak intensities 
of maltose and the other higher oligosaccharides have made the peak 
appearance different for both the corn and brown rice adulterated honey 
from the authentic rapeseed honey spectrum. Whereas, in the jaggery 
adulterated honey, increased sucrose peak intensities can facilitate its 
discrimination from the authentic and two other adulterations (corn and 
brown rice adulterated honey). Hence, only this small chemical shift 
region is considered for the present supervised machine learning clas
sification task. 

The chemical shift region from 5.5 to 10.5 ppm (Fig. 1d) consists of 
signals belonging to tyrosine, phenylalanine, formic acid and 5-hydrox
ymethylfurfural (HMF). This region can be used to identify the 
geographical origin. Herein, the quality of honey can be assessed from 
the concentration of HMF. In general, higher concentrations (>80 mg/1 
kg) of HMF signifies shortcomings in the quality of honey, which could 
be due to improper storage, overheating of honey in the processing, and 
the addition of invert sugars. 

The power of NMR lies in the fact that a small section of the NMR 
spectrum, covering chemical shift range (5.3–5.5 ppm) alone can 
discriminate adulterations when coupled with supervised machine 
learning methods. The supporting information Table S4 provides a list of 
data analysis software. 

4.2. Supervised machine learning 

Supervised classification algorithms have been successfully demon
strated to classify varieties of datasets (with target labels); wherein, 
feature variables of samples are related through complex mathematical 
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expressions. Hence, in the present study, as the NMR spectra are found 
to be very complex, we believe that the supervised classification ma
chine learning methods can also be used to classify the different adul
terated honey samples. In any statistical analysis, in general, choosing 
only one of the algorithms randomly for the required classification task 
is not appropriate. To achieve reliability in the predictions, considering 
a set of supervised learning algorithms and evaluating their performance 
to solve the classification task of metabolite samples is necessary. After 
that, predicted classification results from these models can be further 
refined (through consolidating) by the voting classification technique (a 
target that has been predicted for the maximum times from all the su
pervised classification schemes). 

In the present study, for the honey NMR classification task, we have 
considered three supervised classification schemes. This includes, (i) one 
of the widely used logistic regression classifier (Juliana and William, 
2016), (ii) an advanced deep learning neural network classifier (DNN, 
Deng and Yu, 2014), and (iii) an ensemble-based light gradient boosting 
machine (LGBM, Ke et al., 2017) classifier. These selected statistical 
algorithms can learn differently from the sample features, as the work
ing principles and mathematics behind the chosen models are distinct. 
Hence, subjecting all the models to the voting technique improves the 
classification performance. It is also worth noting that deep learning and 
other machine learning approaches have recently been successful in 
various food-related spectroscopic data analysis (Zhu et al., 2021; Zheng 
et al., 2014; Feng et al., 2021; Wang et al., 2021; Liang et al., 2020; Yan 
et al., 2021; He et al., 2021); thus, we expect that the considered ma
chine learning and deep learning methods will work-well in the classi
fication of various adulterant honey samples using NMR spectroscopy in 

Fig. 1. Comparison of the expanded chemical shift regions of authentic Indian rapeseed honey (red), brown rice syrup adulterated honey (blue), corn syrup 
adulterated honey (green), and jaggery adulterated honey (black). See main text for the full details. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 2. Schematic representation of the complete classification procedure used 
in the present study. This routine has been repeated 50 times to avoid the bias 
associated with the train-test dataset splitting. 

K. Rachineni et al.                                                                                                                                                                                                                              



Current Research in Food Science 5 (2022) 272–277

275

the proposed context as well. As schematically shown in Fig. 2, NMR 
spectra of 59 samples are used for supervised classification which in
cludes 20 pure Indian rapeseed, 14 corn adulterated honey, 14 rice 
adulterated, and 11 jaggery adulterated honey samples with their tar
geted labels. As has been discussed above (Fig. 1c), the promising 
spectral region, 5.3–5.5 ppm of the 59 spectra is considered for the 
statistical analysis; the NMR input consists of peak positions (ppm) and 
intensities of the peaks. Then, the NMR spectral dataset (59 samples) has 
been randomly split into the training dataset (90%, 53 samples) and the 
testing dataset (10%, 6 samples). The training dataset has been used to 
train all the selected models, logistic regression, deep neural networks 
(DNN), and light gradient boosting machine (LGBM) classifiers. The 
performance of each model has been evaluated by using LeaveOneOut 
(LOO) cross-validation procedure. During this LOO, in each step, only 
one of the samples (one out of 53 samples) is used to validate the model, 
and the training procedure for the cross-validation is repeated as many 
times as the number of training samples (53 times with 52 training 
samples and one validation sample). The predicted LOO cross-validation 
accuracy (for each model) is known as the Q2 score. However, models 
developed for the cross-validation cannot be used on the testing dataset, 
since in each step, the LOO procedure has resulted in a total of 53 trained 
models for each classifier. Therefore, all the said classifiers have been 
further retrained on the full training honey dataset (53 samples). Then, 
these trained classification models are ready to predict the honey target 
labels of the test dataset (6 samples). In order to consolidate the pre
dicted target labels from all the classifiers, voting classification has been 
implemented and a comparison of the obtained voting labels with the 
actual target labels of the test dataset facilitates accuracy measurements. 
The whole routine given in Fig. 2 has been repeated 50 times (50 trials 
with different combination of 6 test samples) in a randomized sampling 
fashion, which avoids bias associated with the splitting of train and test 
datasets. Finally, the obtained Q2 and accuracies from all the trials are 
averaged; herein, the models which have average Q2 value and average 
accuracy value nearer to 1.0 and 100%, respectively, are the best per
forming classifiers. 

The supervised classifiers used in the present study are schematically 
represented in Fig. 3. The technical details of these logistic regression, 
DNN, and LGBM classification algorithms can be found in the given 
references (Juliana and William, 2016; Deng and Yu, 2014; Ke et al., 
2017). For completeness, we have given here only a brief description. 

The logistic regression classifier (Fig. 3a) utilizes the one vs rest classi
fication phenomenon in multiclass classification tasks. It is one of the 
simplest known classification techniques, wherein the sigmoid function 
is used to fit the sample features. In the present case, to minimize the 
overfitting L2 regularization is used. The obtained Q2 average score is 
0.97 over 50 trials of train-test dataset random sampling splits (for the 
parameters used, see supporting information Table S5). 

Next, advanced supervised deep neural networks (DNN) classifica
tion (Fig. 3b) models are also considered for the classification of honey 
adulterations. Wherein, the number of input layers in the DNN is equal 
to the number of data points in the NMR spectra. Subsequently, hidden 
layers are added with a different number of units (ReLu activation 
function). The final output layer has as many units equal to the number 
of honey classes while using the softmax multi-class activation function. 
In this scheme, a dropout of 20% is used to overcome the overfitting 
issues associated with the DNN. For the cross-validation, as has been 
used for the conventional logistic regression, the LeaveOneOut scheme 
is implemented, while using the categorical cross-entropy for calculating 
the loss in cross-validation with the Adam optimizer. The resultant 
average value of Q2 score value is equal to 0.99 over 50 trials of train- 
test dataset splits (for the parameters used, see supporting information 
Table S6). 

The light gradient boosting machine (LGBM) (Fig. 3c) is an ensemble 
classifier, which has been first proposed by Microsoft and it oftentimes 
outperforms many of the deep learning schemes as well. The required 
training time for this LGBM is also very little when compared with the 
other ensemble methods and deep learning schemes. In the LGBM, 
gradient boosting trees is used as weak learners and a continuous 
summed score is assigned to each leaf for the predictions. In the present 
study, to avoid overfitting issues, all the hyper parameters are tuned and 
it is found that the gradient boosting decision trees has resulted in a 
better Q2 score while using a learning rate of 0.1 (with the number of 
iterations equal to 100). The obtained average Q2 score is 0.97 over 50 
trials of train-test dataset splits (for the parameters used, see supporting 
information Table S7). 

The obtained average Q2 scores from all the models are very nearer 
to 1.0; hence, we can conclude that the selected supervised models are 
well-suited for the honey classification. In each step of the test-train 
dataset random sampling, after completing the LOO cross-validation 
procedure, the final supervised models are also developed by utilizing 

Fig. 3. Schematic representation of logistic regression (a), deep neural network (b), and light gradient boosting machine (c) classifiers.  

K. Rachineni et al.                                                                                                                                                                                                                              



Current Research in Food Science 5 (2022) 272–277

276

the entire training dataset (53 samples), and the trained models (for 
three classifiers) are ready to predict the samples in the test dataset (6 
samples, which are nowhere utilized for the model training or cross- 
validation). The model retraining has also been repeated 50 times (50 
trials, on the training dataset obtained from a random sampling pro
cedure), as in the cross-validation step. For clear understanding, out of 
50 trials, predicted results obtained from three of the trials are compared 
in Fig. 4. In the first trial (Fig. 4a), explicit comparison of the predicted 
results and the target labels of the test honey dataset (sample-1: pure 
honey, sample-2: rice adulterated, sample-3: jaggery adulterated, 
sample-4: rice adulterated, sample-5: corn adulterated, sample-6: pure 
honey) has facilitated the measurement of classification accuracies. 
From the results, it is clear that for all the chosen classifiers, 100% ac
curacy is observed. These classification results from all the individual 
models on the test dataset of honey can be consolidated by using the 
voting method. The predictions from the voting method are compared 
with the actual test dataset of honey classes, in the first trial, which also 
has resulted in 100% accuracy. But there are some cases where pre
dictions require voting methods, e.g., Fig. 4b, i.e., in the second trial, the 
test dataset has 6 samples (sample-1: pure honey, sample-2: jaggery 
adulterated, sample-3: corn adulterated, sample-4: rice adulterated, 
sample-5: pure honey, sample-6: rice adulterated), and the logistic 
regression and deep learning classifiers have predicted all the honey 
types correctly. Whereas, the LGBM classifier predicted sample-3 as rice 
adulterated honey instead of originally labelled corn adulterated honey 
sample. In this context, it is worthwhile to note that classification 
through the voting method is rather important; for the sample-3, in the 
second trial, the voting method (voting considers the sample label which 
has been predicted for maximum times from all the classifiers) correctly 
predicted the sample as corn adulterated honey label. Similarly, for the 
third trail (Fig. 4c), deep neural networks wrongly predicted sample-2 
(original label: pure honey) and sample-3 (original label: pure honey) 
as rice adulterated honey; whereas, the other two remaining classifiers, 
logistic regression and LGBM, have correctly predicted all the sample 
labels. Hence, here too, the voting method has corrected the prediction 
errors associated with the individual classifiers. In the remaining trials 
also the voting method has played a role in accurately predicting the 
honey types. The obtained average accuracies over 50 trials are equal to 
99.8%, 99.3%, and 98.7% respectively for the logistic regression, DNN 
and LGBM classifiers. Finally, assembling the results through voting 
(from all the classifiers) has resulted in 100% average accuracy. 

5. Conclusions 

Overall, the present work demonstrates the combined strength of 
NMR spectroscopy and supervised machine learning models to identify 
the different adulterations in honey samples, in an automatic fashion. 
Using 90% training and 10% testing data, the experimental 1D-NMR 
spectra of honey samples are subjected to three types of classification 
algorithms: logistic regression classifier, deep neural networks (DNN) 
classifier, and light gradient boosting machine (LGBM) classifier. In 
general, the DNN classifier requires a large amount of training data to 
achieve optimal performance in predicting target labels; however, 
because the experimental NMR data only has four different target labels 
as well as the spectra are rather distinct from one class of adulteration to 
the next, the working performance of considered DNN classifier model is 
good even with the small amounts of data. Further, the voting mecha
nism is used to combine the predictions from the three classifiers and the 
accuracies of the trained models are measured using these voting-based 
predictions. To reduce the bias associated with during the splitting of 
training and testing datasets, the entire cross-validation and predictions 
on the three classifiers are repeated 50 times. Finally, the average of the 
cross-validation score and accuracies is calculated, yielding values close 
to 1.0 and 100%, respectively. Thus, the use of NMR in combination 
with supervised machine learning can successfully identify the adul
teration that has occurred. Indeed, supervised machine learning and 
deep learning tools will have a substantial impact on identifying a va
riety of other types of adulterations, such as invert sugar adulterations 
and the addition of a mixture of sugar syrups to honey. Furthermore, 
when paired with NMR, supervised machine learning methods may be 
used to authenticate other food products such as oils, tea, spices and 
many others. 
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