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Abstract: The current work introduced a convenient single-phase hydrothermal protocol to fabricate
MnO2 nanorods (MnO2 NRs). Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction
(XRD), Energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscopy
(FE-SEM) were used to determine the characteristics of MnO2 NR. Then, ionic liquid (IL) and
MnO2 NRs were utilized to modify a carbon paste electrode (CPE) surface (MnO2NR-IL/CPE) to
voltammetrically sense the sulfanilamide (SAA). An enhanced voltammetric sensitivity was found
for the as-developed modified electrode toward SAA when compared with a bare electrode. The
optimization experiments were designed to achieve the best analytical behavior of the SAA sensor.
Differential pulse voltammetry (DPV) in the optimized circumstances portrayed a linear dependence
on various SAA levels (between 0.07 and 100.0 µM), possessing a narrow detection limit (0.01 µM). The
ability of the modified electrode to be used in sensor applications was verified in the determination
of SAA present in the actual urine and water specimens, with impressive recovery outcomes.

Keywords: MnO2 nanorod; ionic liquid; sulfanilamide; electrochemical sensor; voltammetry

1. Introduction

Sulfonamides (SAs) are agents that were able to show a selective effect on bacteria
for the first time. They are systematically prescribed to control bacterial infections. The
structure of sulfonamides contains an amino group bound with a phenyl ring having an
alkyl sulfonamide in the para direction [1,2]. 4-aminobenzenesulfonamide, also called
sulfanilamide or SAA, with the formula C6H8N2O2S is an antibiotic with antibacterial
activity. The antibacterial response of SAA is related to the competitive inhibition of
dihydropterase synthetase relative to paminobenzoate [3,4]. Despite the numerous benefits
of antibiotics, they are potential contaminants. Hence, there are numerous reports of
adverse effects on human health and the formation of resistant bacteria following long-term
and over-administration of antibiotics. The biotic and abiotic degradability of SAA is weak
in nature, so its residues can be found in various aquatic solutions like waste treatment plant
effluents, surface water and groundwater, which is a public health problem worldwide [5,6].
This introduction highlights the need to take a robust approach to quantifying SAA at trace
levels in different environments.

There are multiple accurate techniques for sensing the SAA, some of which are liquid
chromatography [7], high performance liquid chromatography [8,9], spectrophotome-
try [10], chemiluminescence [11], and capillary electrophoresis-mass spectrometry [12].
However, some of these methods have disadvantages such as a high cost, a time-consuming
operation, unsuitability for on-site analysis, and the need for qualified operators and com-
plicated instrumentations.
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Among all sensing systems, great attention has been focused on the electrochemical
determinations owing to their impressive merits like simple use, affordability, portability,
exceptional selectivity, and sensitivity and rapidity [13–19]. Voltammetry has had a great
role in the detection of various analytes in environmental, biomedical and food matri-
ces. Numerous studies reported the direct detection of analytes by voltammetry owing
to accuracy, convenience, simplicity, sensitivity, and rapidity [20–23]. Hence, the SAA
concentrations can also be detected by voltammetric methods. A major problem in this
field is the need for a high overpotential due to the direct redox reaction of analytes on
the bare electrode, as a result of which the appeared fouling impact leads to a weakness in
reproducibility and selectivity [24,25].

Electrode surface modification can increase the sensitivity of the produced sensors due
to the establishment of appropriate and adjustable features. Diverse modifiers in this field
have offered a lower limit of detection (LOD), excellent sensitivity, overpotential reduction
and surface fouling resistance [26–32].

The use of appropriate electrochemical methods in conjunction with carbon paste
electrodes (CPEs) has yielded acceptable results. A variety of analytes have been detected
by CPEs because of their unique properties, some of which include residual currents
10 times lower than glassy carbon electrodes (GCEs), a wider potential window, and facile
preparation steps [33–38]. The selectivity and sensitivity of the target analyte determination
can be significantly enhanced by chemically modified CPEs using modifiers [39–42].

One of the most successful modifiers used in electrochemical sensors is nanoparticles
(NPs), and many special features of the working electrode, like the huge surface area and
small size, reproducibility, peak current and sensitivity, can be enhanced in the presence of
NPs [43,44].

Another modifiers are metal oxides, owing to their admirable traits, some of which
include an adjustable production, huge specific surface area, direct paths for electron
transfer, empty space to reduce volume expansion, proper adhesion of active substance
to current collector and low cost [45,46]. A popular oxide material is manganese dioxide
(MnO2), whose behavior can be enhanced by changing its morphology and surface area.
MnO2 is a polymorph (1D α-, β- and γ-MnO2, and 2D δ-MnO2) owing to an octahedral
[MnO6] spatial arrangement [47,48]. Nano-sized MnO2 exhibits commendable benefits, due
to a larger surface-to-volume ratio and further reactive surface for electrochemical reactions.
The diverse application of this substance in electrochemistry and sensor fabrication can be
attributed to the simple reduction of MnO2 to Mn2O3 and MnO and, at the proper potential,
the re-oxidation to MnO2 as a catalytic circle for electrochemical detection [49–51].

Electroanalysis and electrochemistry have recently benefited greatly from room tem-
perature ionic liquids (RTILs), which have astonishing physicochemical properties such as
an impressive thermal and chemical stability, ionic architecture, proper extraction capacity,
low equilibrium vapor pressure, ion exchange activity, potent conductivity and broad
electrochemical window. ILs have a better conductivity than paraffin oil, which makes
them suitable for making paste electrodes in voltammetric determinations due to a reduced
charge current and consequent intensification of sensitivity and a decrease in the LOD
value [52,53].

Accordingly, the present study utilized these two compounds to modify the CPE surface.
The current work introduced a convenient single-phase hydrothermal protocol to

fabricate MnO2 NR. Then, IL and MnO2 NR were utilized to modify the CPE surface to
voltammetrically sense the SAA. An enhanced voltammetric sensitivity was found for
the as-developed modified electrode toward SAA when compared with the bare CPE.
The ability of the modified electrode for use in sensor applications was verified in the
determination of SAA present in the real specimens, with an impressive relative standard
deviation (RSD).
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2. Materials and Methods
2.1. Chemicals and Equipment

An X-ray diffractometer (Panalytical X’Pert Pro, Almelo, The Netherlands) using
copper/Kα radiation (λ = 1.5418 Å) captured XRD patterns. A Tensor II spectrometer
(Bruker, Denkendorf, Baden-Württemberg, Germany) was utilized to record the FT-IR
spectra. A scanning electron microscope (MIRA3, Tescan, Brno, Czech Republic) provided
the FE-SEM images and the EDX patterns. An autolab potentiostat/galvanostat (PGSTAT-
302N, Eco Chemie, Utrecht, The Netherlands) recorded all electrochemical determinations.
The General Purpose Electrochemical System (GPES) as selected software monitored all
testing protocols. A conventional three-electrode system was used at 25 ± 1 ◦C. An
Ag/AgCl/KCl (3.0 M) electrode, a platinum wire and MnO2NR-IL/CPE were used as the
reference, auxiliary and working electrodes, respectively. A pH meter (Metrohm type 713)
was utilized to determine all solution pH values. All solutions were prepared freshly by
deionized water (DIW, Millipore Direct-Q® 8 UV water purification system, Darmstadt,
Germany). Sulfanilamide, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)
ionic liquid, and all materials were purchased from Merck (Darmstadt, Germany) with
analytical research purity. Orthophosphoric acid as well as relevant salts have been applied
to achieve all phosphate buffer solutions (PBS), set in a pH range of 2.0–9.0.

2.2. Hydrothermal Synthesis of MnO2 NRs

The MnO2 NRs were obtained by dissolving KMnO4 (0.316 g) in deionized water
(30 mL) while vigorously stirring, followed by the addition of 3 M HCl (1.4 mL) under vig-
orous stirring for another half hour. Then, the solution was placed in a 50-mL Teflon-lined
autoclave at 160 ◦C for six hours. Next, the products were cooled down to room temper-
ature and subsequently centrifuged and thoroughly rinsed with ethanol and deionized
water to clean any impurity, followed by drying at 60 ◦C for 12 h.

2.3. Process of Electrode Fabrication

As the composition of the carbon paste is very important in electrochemical responses,
we optimized all of them. To produce an MnO2 NR and ionic liquid-modified carbon paste
electrode (MnO2NR-IL/CPE), firstly, ionic liquid (0.8 mL), MnO2 NR (0.4 g), and graphite
powder (0.9 g) were blended well together in a mortar to achieve a uniformly wetted
paste. Then, the paste was compressed into the bottom of a glass tube. A copper wire
was embedded into the back of the mixture down in a glass tube to establish an electrical
contact. Next, excess paste, if present, was expelled from the tube, and a weighing paper
was used for polishing to achieve a new surface.

3. Results and Discussion
3.1. Determination of Characteristics

Figure 1 illustrates the FE-SEM images captured for the as-fabricated MnO2 NRs, and
observing them confirmed rod-shaped MnO2 nanostructures with a thickness ranging
from 15 to 25 nm and a length of about 3 µm. The MnO2 NRs showed an almost uniform
size distribution.

The EDS analysis was performed to check the elemental composition of the MnO2
NRs. Figure 2 shows the presence of O (42.16 wt%) and Mn (57.84 wt%) in the structure of
MnO2 NRs without any impurity.

Figure 3 displays the FT-IR spectrum captured for as-fabricated MnO2 NRs, with the
characteristic peaks at 476, 532 and 729 cm−1 corresponding to Mn-O α-phase vibration.
The FT-IR spectrum of the as-prepared sample was consistent with the previous report [54].

Figure 4 portrays the XRD spectrum captured for MnO2 NRs, presenting a clear
crystallinity at sharp intense peaks. There were peaks with corresponding planes at
12.7 (110), 18 (200), 28.7 (310), 36.5 (400), 37.6 (121), 42 (301), 49.8 (411), 56.1 (521), 60.2 (002),
65.5 (451) and 69.6◦. The diffraction peaks of MnO2 related to a tetragonal architecture with
the α phase, with ref. code 01-072-1982.
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3.2. Electrochemical Response of SAA on the MnO2NR-IL/CPE Surface

According to the obtained findings, the SAA electro-oxidation was based on electron
and proton exchange. Moreover, it was crucial to optimize the pH value in detecting the
analyte. Hence, the DPV technique was applied to clarify the electrochemical response of
SAA on the MnO2NR-IL/CPE surface in PBS (0.1 M) at various pH values between 2.0 and
9.0. Reportedly, the SAA electro-oxidation on the MnO2NR-IL/CPE surface was higher in
neutral conditions than in alkaline or acidic medium (Figure 5). Consequently, the optimal
pH was chosen as 7.0 for SAA electro-oxidation on the MnO2NR-IL/CPE surface.
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Figure 5. Plot of Ip vs. pH obtained from DPVs of MnO2NR-IL/CPE in a solution containing 50.0 µM
of SAA in 0.1 PBS with different pHs (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 and 9.0).

The electrochemical performance of MnO2NR-IL/CPE in comparison with other
modified electrodes was studied by the cyclic voltammetry (CV) technique under exposure
to 50.0 µM of SAA at 50 mV/s in PBS (0.1 M). The CVs of all as-fabricated electrodes in
this study can be observed in Figure 6. The MnO2NR-IL/CPE voltammetric behavior
(Figure 6c) exhibited the relatively strongest oxidation peak at 925 mV, with the oxidation
peak current at 16.0 µA, sequentially. The MnO2NR/CPE voltammetric behavior (Figure 6b)
exhibited the relatively strongest oxidation peak at 960 mV, with the oxidation peak current
at 9.3 µA, sequentially, and the bare CPE voltammetric behavior (Figure 6a) exhibited a
relatively weak oxidation peak with less intensity at 1000 mV, with the oxidation peak
current at 3.8 µA, sequentially. Consequently, the MnO2NR-IL/CPE has an obviously
better electrocatalytic behavior towards the SAA with a relatively strong current response.
Additionally, bare in PBS without SAA did not show any peak.
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3.3. Effect of Scan Rate

The scan rate performance on the SAA oxidation peak current was investigated to
analyze electrode processes. The linear sweep voltammograms (LSVs) were recorded for
50.0 µM of SAA in PBS (0.1 M) at various scan rates, and the results indicated that anodic
peak currents (Ipa) were linearly related to the scan rate square root (Figure 7). Accordingly,
the diffusion-controlled process was seen for the SAA oxidation on the MnO2NR-IL/CPE.
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Tafel graph was plotted to achieve data on the rate-determining step, as obtained from
points of the Tafel area in linear sweep voltammetry. Figure 8 illustrates the Tafel plot for
50.0 µM SAA oxidation in PBS (0.1 M) on the MnO2NR-IL/CPE surface.

In this condition, the transfer coefficient (α) can be estimated from the slope of the
Tafel plot:

η = b log i + constant

where b = 2.3RT/(1 – α)nF.
An average slope of 0.1307 V is obtained, indicating a one-electron transfer for a

rate-limiting step assuming a transfer coefficient of α = 0.55.
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3.4. Chronoamperometric Determinations

Figure 9 shows the chronoamperometric analysis to calculate the diffusion coefficient
of SAA. The plots of I against t−1/2 have been utilized in relation to the optimal fits for
different SAA contents in PBS (0.1 M), as seen in Figure 9A. The chronoamperometric
measurements were carried out for various SAA contents on MnO2NR-IL/CPE at the
working electrode potential of 975 mV. The slopes of the obtained straight lines versus SAA
contents were drawn by the Cottrell equation in order to obtain the below equation:

I = nFAD1/2 Cbπ
−1/2t−1/2

with D (cm2/s) being the diffusion coefficient, n the number of electrons for oxidation of
SAA (n = 1) and Cb (mol/cm3) the bulk content. There was a linearity for the I against
t−1/2 plot under diffusion control over various SAA contents. The slopes could be used to
compute the mean D value for SAA (see Figure 9B), which was 2.2 × 10−5 cm2/s.
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3.5. Detection Limit and Standard Plot

The SAA content was measured by the DPV technique. The DPVs captured for
MnO2NR-IL/CPE at various SAA contents in PBS (0.1 M) are shown in Figure 10. There
was a stepwise enhancement in the SAA oxidation current by gradually increasing the SAA
contents, which is to say the applicability of MnO2NR-IL/CPE for electrochemically sensing
the SAA. Figure 10 (inset) represents the alterations in the oxidation signal for MnO2NR-
IL/CPE as a function of various SAA contents (0.07–100.0 µM), showing a low detection
limit of 0.01 µM. Moreover, Table 1 shows that MnO2NR-IL/CPE can be successfully used
for the determination of SAA, compared with other sensors.

Table 1. Comparison of the linear range and detection limit obtained for MnO2NR-IL/CPE with the
determination of SAA with other sensors.

Electrochemical Sensor Method Linear Dynamic Range Limit of Detection Ref.

Au nanoparticle-functionalized
graphene/glassy carbon electrode DPV 0.1–1000 µM 0.011 µM [55]

Nanodiamond/glassy
carbon electrode Square wave voltammetry 1.2–581.4 µM 0.94 µM [56]

Carboxylmultiwalled carbon
nanotubes/glassy carbon electrode Cyclic voltammetrty 1–100 µM 0.5 µM [57]

Fe3O4/functionalized
Graphene/glassy carbon electrode Amperometry 0.5–110 µM 0.05 µM [58]

Pyrrole/molecularly imprinted
polymer pencil graphite electrode DPV 0.05–1.1 and 1.1–48 µM 0.02 µM [59]

MnO2NR-IL/CPE DPV 0.07–100.0 µM 0.01 µM This Work
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3.6. Interference Studies

Interference studies were investigated to know how the results for the SAA analysis
were affected by the presence of various compounds. According to the used definition, the
tolerance limit was defined as the ratio of the concentration of the interfering compounds
to the SAA, which led to a relative error of less than ±5.0%. The possible interference
was investigated by the addition of various compounds such as Mg2+, Na+, K+, Ca2+, Cl−,
ascorbic acid, uric acid, glucose, sucrose, L-cystine, and dopamine to PBS (pH 7.0) in the
presence of 50.0 µM SAA. It was found that the addition of these interfering species had
no remarkable effect on the DPV signal of SAA. These results indicate that the modified
electrode has a good selectivity for SAA determination.

3.7. Real Sample Analysis

The ability of MnO2NR-IL/CPE to be used for sensor applications in the detection
of SAA was determined in real specimens of urine and water according to the standard
addition method, as seen in Table 2. The recorded recovery rates ranged from 97.0% to
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104.2%, thereby highlighting the appreciable applicability of MnO2NR-IL/CPE in sensing
the SAA in real specimens.

Table 2. Confirmed applicability of MnO2NR-IL/CPE in sensing the SAA in real specimens (n = 5);
all concentrations are in µM.

Sample Spiked Found Recovery (%) R.S.D. (%)

Human urine

0 - - -
4.5 4.6 102.2 3.3
6.5 6.3 97.0 2.8
8.5 8.4 98.8 1.8
10.5 10.6 100.9 2.3

0 - - -

Blood serum
5.0 4.9 98.0 2.2
7.0 7.3 104.3 3.5
9.0 8.9 98.9 1.9
11.0 11.2 101.8 2.7

4. Conclusions

A facile hydrothermal method was applied to prepare uniform and pure manganese
dioxide NRs. Then, ionic liquid and MnO2 NRs were utilized to modify a carbon paste
electrode surface (MnO2NR-IL/CPE) to voltammetrically sense the SAA. An enhanced elec-
trochemical performance was found for the as-developed modified electrode toward SAA
oxidation when compared with a bare electrode, with a lengthy linear range (0.07–100.0 µM)
and a narrow limit of detection (0.01 µM). The as-fabricated sensor possessed an exceptional
electrocatalytic behavior, excellent sensitivity and low limit of detection. Additionally, the
MnO2NR-IL/CPE showed a good selectivity for the detection of SAA in the presence of
various compounds. The ability of the modified electrode to be used for sensor applica-
tions was verified by the determination of SAA present in actual human urine and serum
specimens, with impressive recovery outcomes.
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