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Abstract

With the advent of high-throughput assays, a large number of biological experiments can be
carried out. Image-based assays are among the most accessible and inexpensive technolo-
gies for this purpose. Indeed, these assays have proved to be effective in characterizing
unknown functions of genes and small molecules. Image analysis pipelines have a pivotal
role in translating raw images that are captured in such assays into useful and compact
representation, also known as measurements. CellProfiler is a popular and commonly used
tool for this purpose through providing readily available modules for the cell/nuclei segmen-
tation, and making various measurements, or features, for each cell/nuclei. Single cell fea-
tures are then aggregated for each treatment replica to form treatment “profiles”. However,
there may be several sources of error in the CellProfiler quantification pipeline that affects
the downstream analysis that is performed on the profiles. In this work, we examined various
preprocessing approaches to improve the profiles. We consider the identification of drug
mechanisms of action as the downstream task to evaluate such preprocessing approaches.
Our enhancement steps mainly consist of data cleaning, cell level outlier detection, toxic
drug detection, and regressing out the cell area from all other features, as many of them are
widely affected by the cell area. Our experiments indicate that by performing these time-
efficient preprocessing steps, image-based profiles can preserve more meaningful informa-
tion compared to raw profiles. In the end, we also suggest possible avenues for future
research.

Introduction

High-throughput image-based assays have proved to be an effective predictive tool in the early
stages of drug discovery through automated microscopy and image analysis, which make
quantification of cellular morphological responses possible at a large scale [1]. These experi-
ments often involve growing cells in multi-well plates and then treating cells in each well with
a small molecule, or genetic perturbation. Image-based profiling has diverse and powerful
applications, including identification of gene and allele functions and targets, and mechanisms
of action (MoA) of drugs [2]. Prediction of drug MoAs through such assays potentially saves
drug discovery process costs when applied early on. According to previous studies, the MoA of
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unknown compounds can be predicted by grouping each unknown compound with already-
annotated compounds based on the similarity of their morphological profiles [3-5]. Therefore,
high throughput assays can be helpful in this process.

The typical workflow in the analysis of images that are produced by high-throughput
assays includes illumination correction, nuclei/cell segmentation, quality control, morpho-
logical feature measurement, batch effect removal, data normalization, feature selection/
dimensionality reduction, and finally, aggregation of single cell measurements into image-
based profiles per well [2]. The initial steps such as the illumination correction, segmenta-
tion, and feature extraction are not investigated in this work. We instead mainly focus on
approaches that preprocess the features extracted by CellProfiler, open-source software that
aims to automate most of these steps. We conduct a comprehensive study on how such tech-
niques could potentially improve the profile’s quality. Data cleaning is a key step for enhanc-
ing image-based profiling as there may be different artifacts in the staining and imaging
process and can affect the next steps. There are some quality control methods applied to raw
images; for instance, in [6], a cell-level quality control approach has been proposed based on
the high throughput images. However, examining raw images can be time-consuming and
not applicable to previously prepared datasets. Hence, in this work, we focus on extracted
image-based profiles as the input to the downstream analysis. A significant step in image-
based profiling and data cleaning is cell-level quality control. Outlier cells, which do not
show any valid biological effect, may result from errors in different parts of the pipeline. For
instance, an error in the segmentation step may result in overly small or large cells and bias
the profiles heavily as a result. Detecting and removing outlier cells can highly improve the
profile quality.

We can categorize strategies for detecting outlier cells into two categories [2]: model-free
and model-based. In model-free strategies, statistical analysis is used to detect outlier cells; for
instance, calculating estimators such as median and median absolute deviation for multivariate
situations is useful [7]. The principal component analysis is another model-free strategy for
outlier detection [8]. In model-based strategies, a model is trained based on normal samples. It
can be a linear regression model, in which outliers can be detected as data points with a large
residual [9]. Alternatively, by providing samples of outliers, supervised machine learning clas-
sifiers can be beneficial [10].

We propose to use a unsupervised outlier detection method in this work and evaluate its
effectiveness in the context of MoA prediction. More specifically, histogram-based outlier
detection is applied on each plate individually, and by removing the single-cells detected as
outliers by this method, final results are improved.

In addition, we found that the domain-specific feature preprocessing, as a data cleaning
step, could enhance the relevant downstream task. In summary, we found that the cell area is a
pivotal contributor to many of the features, and hence the similarity metric is highly influenced
by it. Therefore, we propose to neutralize the effect of cell area on the other features to be able
to capture more meaningful information in the profiles. The major steps of this work are
described in Fig 1. Finally, we would investigate various general purpose methods for
dimensionality reduction and representation learning from the classical features that are
extracted by CellProfiler, and found that, as opposed to the domain specific preprocessing
step, they are not effective in improving the prediction ability of profiles.

According to previous studies with the same metric as the proposed method of this work,
increasing the enrichment of profiles is not an easy task in the context of high-throughput
microscopy [11]. However, we suggest some efficient preprocessing methods that can increase
the metric significantly, which is our main contribution.
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Fig 1. Representative workflow for the enhanced image-based cell profiling via data cleaning. Six main steps
transform cell measurements of each plate to compound-level profiles. Specifically, in step 3, we replace each feature by
part of those features that are accounted for by the cell area feature. This is achieved by regressing each feature against
the cell area, and replacing each feature by the residue of the corresponding regression. Furthermore, cells that appear
as outliers are identified and removed through a histogram-based approach, which is called HBOS, to make sure that
the well-level aggregated profiles would not be affected by potential artifacts.

https://doi.org/10.1371/journal.pone.0267280.g001

Materials and methods
Dataset

We used a dataset of images and morphological profiles of small-molecule treatments using
the Cell Painting assay [12]. About 50 plates, which correspond to the bioactive compounds
with known mechanisms of action, are chosen. Considering redundant features extracted by
CellProfiler, a specific list of features is selected for this experiment. This feature and plate
selection is based on the method proposed by Rohban et al. [11]. Each plate consists of wells
that consist of cells, and each well is treated by a particular compound. There are wells known
as negative controls (DMSO), which are treated only with the compound solvent. The profile
of a well is obtained by taking the median of single-cell measurements in that well. To mitigate
the batch effect, profiles in each plate were normalized separately using the DMSO wells of
that plate. For normalizing cells of a plate, single cells were subtracted by the median of DMSO
well profiles and divided by the median absolute deviation (MAD) of DMSO well profile [4].
There are several strategies for creating aggregated profiles. In this work, similar to earlier
experiments [4, 11], the median and profiles are used for well-level and profile-level
aggregations.

Methodology

Preprocessing. There are several sources of error while extracting raw image-based sin-
gle-cell profiles that may dramatically influence further steps in the pipeline. Consequently,
preprocessing strategies are necessary to get more meaningful and stable results. For instance,
some of the wells that contained DMSO had some intensity issues. This may mislead CellProfi-
ler algorithms and cause them to extract noisy information. Noisy DMSO can affect all the
information of a plate, as it is used for normalization. In Figs 2 and 3, images of some mislead-
ing DMSO wells can be seen.

Some wells had an extraordinary high cell area. By investigating their raw images, it was
clear that it was CellProfiler’s mistake. Those images mostly were toxic wells containing a very
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Fig 2. Plate 24277, well A13, containing DMSO, is blurry.
https://doi.org/10.1371/journal.pone.0267280.9002

Fig 3. Another outlier DMSO well in plate 24293, which shows a huge clump on the upper right corner of the left
image.

https://doi.org/10.1371/journal.pone.0267280.g003

small number of cells. For example, plate 24293, well E19, has a cell area of nearly 3000 after
normalization (Fig 4).

The noise in the images, especially in DMSO wells, could be a source of error in the Cell-
Profiler pipeline, and this indicated the importance of data cleaning in image-based profiling
enhancement. Preprocessing steps remove drugs with unrecognizable effects on the features
(outlier drugs) as well as the toxic drugs.

Removing outlier drugs. Not all compounds produce a meaningful change in the features
extracted by CellProfiler. Therefore, a drug selection method must be used to only keep those
drugs with discernible effects on the features [13]. First, a median profile for each well is calcu-
lated. Then, the wells are grouped based on their “Metadata_broad_sample” column, so each
group contains profiles of a specific compound. The similarity measure is chosen to be Pear-
son’s correlation, which reflects the linear relationship between two variables. The more simi-
lar the profiles are between two wells, the higher the correlation coefficient will be. To select
drugs with meaningful effect on the features, a null distribution is required. The null
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Fig 4. Plate 24293, well E19, with a cell area of nearly 3000.
https://doi.org/10.1371/journal.pone.0267280.g004

distribution is defined based on the correlations between non-replicates. That is, the median
correlation between groups of k different compounds constitute samples of the null distribu-
tion, where k is the number of technical replicates in the experiment (k = 3 in this work). Com-
pounds whose median replicate correlations are greater than the 95th percentile of the null
distribution are selected for further steps [13, 14], as they have a meaningful effect on the cells.
We will refer to the drugs removed in this section as the “outlier drugs” in the following sec-
tions. In this experiment, there were a total of 1551 different compounds, and based on the
explained method, only 455 of them were kept.

Removing toxic drugs. While investigating the features of each well, we faced some wells
with an extraordinarily low number of cells, even less than 10 cells in a whole well, as shown in
Fig 5. This issue could have several sources. It could be the result of a bad vital situation such
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Fig 5. Histogram of the cell count in each well.

https://doi.org/10.1371/journal.pone.0267280.9005
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Fig 6. Histogram of the cell count after removing toxic drugs.

https://doi.org/10.1371/journal.pone.0267280.9006

as lack of nutrients in a well, which caused the cell death. Or, it could be the result of the drug
itself. Some drugs have a toxic nature and cause cell death.

If the drug is toxic, that may cause a false result in the final odds ratio plot. To find toxic
drugs, we checked the median of cell count of different wells facing the same drug, and we
removed 0.05 of the drugs with the lowest cell count median. Cell count histogram after
removing toxic drugs can be found in Fig 6.

After doing so, the odds ratio was decreased. This indicates that the toxic drugs have a cor-
relation in their features that by removing them from the experiment, odds ratio decreases,
and toxic drug removal makes the final result more real. Fig 7 shows the correlation between
cells affected by toxic drugs, and Fig 8 corresponds to the correlation between toxic and non-
toxic drugs. The comparison between these figures clarifies that toxic drugs are highly
correlated.

Evaluation metric. Since similarity metrics reveal connections among image-based pro-
files, choosing a suitable one can enhance the analysis. Like similar tasks, Pearson’s correlation
coefficient was used in this work.

Consider two wells, each treated by a compound, which has some special mechanism of
action, or “MoA” for short. In this experiment, the final purpose is to find whether there is any
association between high values of correlations of the profiles of two wells and similarity of the
MoA of compounds that are used to treat the cells in those wells. In other words, it is hypothe-
sized that if profiles of two compounds have a high correlation, they probably have the same
MoA. To test this hypothesis, one-sided Fisher’s exact test is used.

Suppose Fisher’s test admits the hypothesis. In that case, this process can be used for drug
discovery, as it is possible to do high throughput experiments and use the correlation of pro-
files to guess the MoA of unknown compounds. In this experiment, odds ratio is used to check
how likely it is that the hypothesis is true. The Fisher’s test contingency table used in our exper-
iment can be found in Fig 9.
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Fig 7. Correlation between toxic drugs.

https://doi.org/10.1371/journal.pone.0267280.9007

Fig 8. Correlation between toxic drugs and non-toxic drugs. Toxic drugs are in rows and non-toxic ones are in columns.

https://doi.org/10.1371/journal.pone.0267280.9008

We change the value of “k” in Fig 9 to draw a plot, where its y axis corresponds to the odds
ratio value, and its x axis corresponds to value “k”, or the percentage of pairs with the highest
correlations.

If the hypothesis is true, we expect to have a plot with a negative slope. That means that by
tightening the condition of correlation, there must be more similarities in MoAs.

Histogram-based outlier score. By investigating images of some wells and the histogram
of multiple features, it was crystal clear that there are some outlier profiles. The cause of this
could be the issues in the pipeline or the imaging process. There are several ways to detect out-
liers in a dataset. Three different setups for outlier detection are supervised, semi-supervised,
and unsupervised methods. For the first two setups, labeled data is needed [15]. In this dataset,
outlier cells are not labeled, therefore unsupervised methods have to be adopted. Outputs of
outlier detection methods can be scores or labels. Labels (normal or outlier) are assigned to
each instance individually.

There are various approaches for unsupervised outlier/anomaly detection. Well-known
methods are Local Outlier Factor (LOF) [16], nearest-neighbor-based algorithm [17], Cluster-
ing Based Local Outlier Factor (CBLOF) [18], and LDCOF [19]. These are computationally
expensive. A fast and efficient unsupervised method for outlier detection is the Histogram-
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Fig 9. Odds ratio. Calculation of odds ratio.
https://doi.org/10.1371/journal.pone.0267280.g009

Based approach [20]. This approach assumes independence of features, so outlier detection is
most appropriately applied after regressing out, where the features become more independent.
Histogram-Based Outlier Score for an instance is calculated by building a histogram for each
feature and aggregating them. The proportion of outliers or the amount of contamination of
the dataset is a hyperparameter. In this task, for each plate containing wells, histogram-based
outlier detection is applied separately with a 0.01 amount of contamination, and the outlier
cells are removed. A useful library in Python for this section is PyOD [21]. A sensitivity analy-
sis on the threshold of contamination is performed to assess stability of the results. As shown
in Fig 10, it seems that our proposed method is robust to the slight changes of this
hyperparameter.

-o— 0.011
-o— 0.01
0.009

odds ratio

1 1 1
02 03 04 05 06 07 08 09 10
k top percent

Fig 10. Sensitivity analysis. The proportion of outliers in each plate is set to different amounts of 0.009, 0.01, and
0.011 after applying preprocessing and before regressing out.

https://doi.org/10.1371/journal.pone.0267280.g010
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Regressing-out. The majority of features are affected by a feature named Cells_AreaSha-
pe_Area. This feature expresses the space that is occupied by each cell. We used the regress-out
technique to reduce the impact of this feature on the rest in order to strengthen the meaning
of each feature individually. For this purpose, the relation between each feature and Cells_Ar-
eaShape_Area of all cells in one plate was modeled by fitting a linear equation without inter-
cept. Considering x as Cells_AreaShape_Area feature of all single-cells in a plate and y as
another feature from the feature set of all cells. In other words, x; represents the area and y;
another feature of the i” cell in that plate. A linear regression line without intercept attempts
to fit a line with an equation of the form y = ax. After fitting the model for each feature and cell
area, that feature column was replaced by their residuals from the regression prediction. Resid-
ual in regression means the difference between any data point and the regression line:

Residual = real value — predicted value (1)

For each feature except cell area, and for each plate, this technique and replacement have to be
done separately. By using this technique, significant progress was observed in the final results
and odds ratio in different first k percentages.

Validation methods. One important step in validating the results of the proposed method
thoroughly is to design some experiments in order to assess the significance of the observed
enhancements. We designed three experiments to this end.

P-value assessment. As explained in methodology section, the Fisher’s exact test is used to
test if highly correlated compound profiles have the same MoA. Considering the P-value of the
Fisher’s test can be used to determine how significant the results are.

HBOS significance assessment. If HBOS is a significant step in the proposed method, chang-
ing its hyperparameter should not change the overall trend of the odds ratio plot, and it should
lie upon the base method.

Per-drug validation. In a drug discovery pipeline, there is an alternative strategy to get can-
didate compound matches. In this strategy, a compound with a known primary MoA is used
as a query to find compounds that match its profile, and hopefully its primary MoA. Note that
this setup is different from the earlier one in which only top correlated compound pairs in the
entire experiment are considered as hits and are followed up. The difference stems from the
fact that in the latter strategy of following up only strongest matches, the list of hits may
involve only few compounds, while in the alternative strategy all compounds are involved in
the test. Therefore, the alternative strategy is a more difficult test to pass. For the alternative
strategy, Fisher’s test is applied per drug; In other words, the contingency table is calculated
for each drug to check if, for a specific compound, top k compounds with the highest correla-
tion have the same MoA. Then, P-values of the Fisher’s tests for all compounds are adjusted
using the Bonferroni correction method, to account for doing multiple tests. The number of
drugs with P-values smaller than various thresholds is counted for both base profiles after pre-
processing and our proposed method for profile enhancement. Comparing these values can
lead to an understanding of how significant the proposed method is.

Deep learning. Recently, deep neural networks have appeared very promising in repre-
sentation learning on various problems. Several methods were studied for the purpose of
learning more meaningful representations to increase the similarity between drug embeddings
with the same mechanism of action. Both supervised and unsupervised approaches are tested,
and a brief explanation for each of them is discussed next.

Classification with HSIC loss. A simple model is designed for this task. The input of the net-
work is single-cell features after feature selection and normalization, which was previously
explained, and the output that the model has to predict is the drug by which that cell in the
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input is treated with. We expect the network to learn a useful representation of cells through
this auxiliary task of predicting drug identity from the cellular measurements. For preparing
the training data, five mechanisms of action are chosen and about 30 drugs with these MoAs
are selected randomly. All cells in various pairs of plates and wells that are treated by these 30
compounds are collected to form the training data. An important point to be careful in the
train-test split is not to have cells from the same well/drug in both train and test/validation
data.

The purpose of this random selection of compounds and not to use all of them in training
and designing a network is to assess reasonable generalization on unseen data, especially new
compounds whose mechanisms and similarities with others are still unknown. Let (X, y) be a
data point such that X € R*® and y € R*. As discussed earlier, each single-cell profile has
about 470 features (less than 470), which are extracted by CellProfiler, and the output is proba-
bilities for each of 30 compounds.

The loss function that is used for this task is Hilbert-Schmidt Independence Criterion
(HSIC) loss [22] with the aim of learning on the training data with a limited number of MoAs
and compounds but generalize and perform well on profiles that have not been seen by the
model. This loss function has recently been proposed to facilitate out-of-distribution generali-
zation. Few changes in the implementation of HSIC loss by authors are needed to use it for the
multi-class classification.

The model is constructed by three dense layers. The activation function that is used for all
layers is ReLU and after the last layer softmax was applied to the outputs. After training and
convergence of loss on the train data, the trained model can be used for extracting new repre-
sentations for every single cell. The second last layer or the hidden layer before the class proba-
bilities (the red layer shown in Fig 11) is our new representation for the input single-cell
profile.

After finding the representation of every single cell by passing them through the trained
model, all previous steps such as aggregation, calculating the correlation between the com-
pounds’ profile, and plotting are repeated. The results from the new representations were
meaningless, and were not promising compared to raw profiles, and did not improve the
performance.

Autoencoders. Recently, Autoencoder [23] has achieved remarkable success as a feature
extraction method. A basic autoencoder has two parts, an encoder, and a decoder. The output
of the encoder represents the reduced representation of input data (code) and the decoder
reconstructs the original input from the latent code that is generated by the encoder. Later,
other variations of autoencoders were proposed that each tried to solve an issue such as varia-
tional autoencoder (VAE) [24], denoising autoencoder (DAE) [25], sparse autoencoder (SAE)
[26], relational autoencoder [27], and etc. In this section, preparing the training data is quite
similar to the classification task. Since this method is unsupervised, labels (compounds’
names) are not needed. The decoder of the model should reconstruct the input of the encoder,
which is a single-cell profile. After training and convergence of the mean squared loss on the
training data, the trained model can be used for extracting new representations for every single
cell. The code layer or the output of the encoder (the red layer shown in Fig 12) is the new
representation for the input single-cell profile from the autoencoder.

After finding the representation of every single cell by passing them through the trained
model, all previous steps for calculating the odds ratio are repeated. Basic AE, VAE, SAE, RAE,
and DAE with different depths and code sizes were tested, but no significant improvement
was observed in the final results. The convergence plot for SAE is included in S3 Fig.
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Fig 11. Simple classification network architecture. New representation from the classification task to feed into the
pipeline is created by passing through the trained network and picking the red layer.

https://doi.org/10.1371/journal.pone.0267280.9011

Mixup. According to [28], one way to improve model generalization is to construct some
virtual training data:

x =Ax; + (1 = A)x;, wherex;, x; areraw input vectors. (2)

y =My, + (1 = N)y;, wherey,, y,areonehot label encodings. (3)

As proposed in the paper, mix-up is based on the prior knowledge that linear interpolations
of feature vectors should lead to linear interpolations of the associated targets. This technique
is used in the classification steps that were covered earlier in the HSIC section. It led to better
accuracy on the test set of the auxiliary task, but no significant improvement in the odds ratio
was observed.

Experiments and results
Data cleaning

The enrichment of k percentages of compound pairs with the highest profile correlation in
having the same MoA is used for the evaluation. To measure the enrichment, the ratio of pairs
with the same MoA to different MoAs is calculated, and compared to the same ratio for weakly
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Fig 12. Simple classification network architecture. New representation from the classification task to feed into the
pipeline is created by passing through the trained network and picking the red layer.

https://doi.org/10.1371/journal.pone.0267280.g012

correlated pairs. This comparison could be summarized into a single number known as the
odds ratio, which is described in the Material and Methods. This basically shows how many
times we expect to find biologically related compound pairs in the top k percent connections
compared to the other connections.

We first investigated a certain feature transformation step that aims to remove the cell area
information that is implicitly contained in other features. This is particularly useful given that
many morphological features, such as the perimeter, or texture, are affected by the cell area.
We simply form a linear regression to predict any given feature from the cell area at the single-
cell level. The residual, or error, of such a regression represents the information that is uncor-
related to the cell area. This process, which we call “regressing out,” helps balance the effect of
cell area in the profiles. Fig 13 left, shows that the odds ratio has improved slightly as a result of
this step. We make comparisons in two cases. In the first case, all compounds in the dataset are

Case: without any techniques Case: without oulier drugs
~—e— without regressing out ~e— without regressing out
6.0- —e— with regressing out 2 - —e— with regressing out

5.0 -

odds ratio
odds ratio

) 0.'2 0'3 DI4 0:5 0‘6 017 0‘8 DV‘J le 0»‘2 0..3 0.'4 0?5 0.‘6 0..7 DIB 0'9 1.0

k top percent k top percent
Fig 13. Effect of regressing out the cell area. The left plot shows the increase in the odds ratio by regressing out the
cell area from all other features in different k percentages when no other data cleaning method is applied. The right
plot shows that regressing out improves the result when just outlier drugs, which exhibit weak phenotypes, were
removed.

https://doi.org/10.1371/journal.pone.0267280.g013
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Fig 14. Effect of regressing-out and cell outlier detection. The left plot shows the increase in the odds ratio by
regressing out the cell area from all other features in different k percentages when outlier and toxic drugs were
removed. Improvement in the odds ratio becomes more significant when the toxic drugs are excluded from the
analysis. The right plot shows that using histogram-based outlier detection improves the result in the same baseline
case, where the outlier and toxic drugs were removed.

https://doi.org/10.1371/journal.pone.0267280.9014

included, while in the second case, only the compounds with a high replicate correlation are
retained. This filtering has previously been discussed to be a key step in removing treatments
that do not show any strong biological effect from the lens of the image-based assay (4). We
call such compounds “outlier” throughout the paper. It is notable that the odds ratio jumps to
a much higher level, from 9 to higher than 40, when such compounds are removed. In this
case, regressing cell area out results in a more consistent improvement in the odds ratio across
various values of k, which is illustrated in Fig 13 right. We next investigated the effect of
removing overly toxic compounds, which highly affect the cell viability. We would expect a
much smaller cell count in the wells that are treated by such compounds. The profile might be
of lower reliability as a result of the small cell count. In addition, the profiles of toxic com-
pounds are so unique that artificially inflate the odds ratio. The increase in the odds ratio as a
result of toxicity is not valuable from a practical perspective, due to limited clinical use of
overly toxic compounds, and in drug discovery as a result. Therefore, we opted to remove such
compounds before making further evaluations. Fig 14 left, shows that regress-out gives a more
pronounced improvement over the odds ratio when both outlier and toxic compounds are
removed. This could be partly due to regress-out unreliability under small sample size, which
is the cell count in this case.

Finally, we applied outlier detection at the level of single-cells through a histogram-based
technique, which is called “HBOS.” Building upon our previous improvements, we further
removed outlier cells prior to making the profiles. The odds ratio keeps enhancing in all the
thresholds, as shown in Fig 14 right. It turns out that the cell outlier detection is a more effec-
tive method in improving the overall profile quality, while regress-out mainly improves the
very top connections.

To assess the combined effect of regress-out and cell outlier removal, we take as baseline the
non-toxic and inlier drugs in addition to one of these methods, and apply the other method
next. Regress-out seems to provide an additional marginal improvement over cell outlier
removal, Fig 15 left. In contrast, cell outlier detection gives more extra enhancement over
regress-out, as shown in Fig 15 right. We conclude that both methods are valuable in cleaning
the profile, and providing independent improvements, but the cell outlier removal is a bit
more effective. All techniques have been described in more detail in the Material and Methods

section.
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Fig 15. The combined effect of outlier detection and regressing-out. The left plot shows the effect of regressing out

when all other preprocessing steps (outlier and toxic drug removal, and cell outlier removal) are applied. The right plot

shows the effect of cell outlier removal when all other steps, including outlier and toxic drug removal and regress-out,
have been applied. Cell outlier removal seems to provide a more consistent improvement across values of k compared
to the regress-out technique.

https://doi.org/10.1371/journal.pone.0267280.g015

Validation results

We investigated three different experiments to validate the significance of odds ratio results.

Fig 16 shows the amount of log(P-value) of Fisher’s tests, which their odds ratio can be
found in the result section. We illustrated two situations: first, base profiles (only outlier and
toxic drugs removed) and secondly, enhanced profiles (cell area regressed out from other fea-
tures, and HBOS is applied). According to Fig 16, by tightening the condition, which means
decreasing k, we have achieved a lower P-value, which indicates more confidence in both situ-
ations. The P-values of the proposed method are less than the base method, and it confirms
the significance of our proposed method compared to the base method.

In another experiment, we tested the effectiveness of the HBOS outlier detection method
with different hyperparameters. In all of the curves in Fig 17, all preprocessing steps are

—40 | —e— base
—&— proposed

=50 -
_60 -

_70 -

log(pvalue)

—-80 -

_90 -

—100 i | I

1 1 1
02 03 04 05 06 07 08 09 10
k top percent

Fig 16. P-value comparison between base profiles and our proposed enhanced profiles in different k percentages.

https://doi.org/10.1371/journal.pone.0267280.9016
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Fig 17. HBOS significance analysis. HBOS with different proportions of outlier removal has outperformed the case in
which no outliers were removed.

https://doi.org/10.1371/journal.pone.0267280.9017

applied to the profiles, but the HBOS contamination parameter is different among different
curves. The green curve is related to profiles with no HBOS outlier detection. It is clear that
HBOS with different hyperparameters has improved the profiles compared to not applying it.
In the last experiment, the effectiveness of the proposed method for profile enhancement is
tested for each drug through the alternative strategy that was discussed in validation methods
section. Here, we plot the number of queried compounds that their 10 top correlated com-
pound matches mostly share the same MoA of the queried compound. In Fig 18 the plot is

300 -—o~ pase

—&— proposed
275 -

\ 4 \ 4 \ 4
25.0 -

Drug counts
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Fig 18. Comparison of drug counts for each P-value threshold. Drug counts for each P-value threshold are

compared between base profiles and our proposed method (Thresholds in the plot are divided by the total number of
drugs for using Bonferroni correction method in actual experiments).

https://doi.org/10.1371/journal.pone.0267280.9018
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made against various thresholds of the P-value that is used to decide the significance. As can
be seen, the proposed method has improved the baseline significantly.

Analysis of deep learning methods

Unfortunately, none of the deep representation learning methods, which are described in
Material and Methods, could lead to a better result in the odds ratio (S1 and S2 Figs). There
are some explanations for these observations. The most important factor that prevents repre-
sentation learning, could be information loss, which is a result of using CellProfiler output. In
fact, there are some important features that are captured using CellProfiler, but they are mostly
the features that are introduced as important features by biologists, and there could be some
hidden patterns in the raw images that a deep neural network is capable of learning, which are
not captured by CellProfiler. For example, the texture information in the CellProfiler features
are limited to certain Haralick texture descriptors, while a deep convolutional model could
learn richer texture patterns. One other source of information loss in this work, is that the raw
images contain 16 bits of information for each pixel. This means that they can be modeled
more accurately when fed originally to a deep model, compared to the CellProfiler features,
which are often of lower precision.

Another reason that the network does not improve the results is that there are some prob-
lems with outputs of CellProfiler for some images with low quality or with a small number of
cells in them. This problem was explained in the previous sections. All these observations and
hypotheses lead to one conclusion, that it is challenging for the neural networks to improve
the CellProfiler output, and they should be trained on the raw images instead to be able to cap-
ture the high-quality information.

Conclusion

High throughput assays play a vital role in carrying out biomedical experiments. CellProfiler is
a common tool used to quantify the data produced by these assays, but many sources of error
might affect the data quality in this pipeline. In this work, we mainly focused on data cleaning
steps that could enhance image-based profiles extracted from CellProfiler.

Our Experiments indicate that data cleaning methods highly impact the quality of extracted
features to identify mechanisms of action of different drugs, which results in a higher amount
of the odds ratio. Removing drugs with intra-correlation less than inter-correlation improves
the odds ratio. It is the result of keeping those drugs with more meaningful features. Removing
toxic drugs—drugs that cause cell death—decreases the odds ratio, but makes the result more
real and meaningful.

Due to the different error sources in the imaging and feature extracting pipeline, cell level
outlier detection is an important step to enhance the profile of each specific compound. HBOS
outlier detection was used in this work. Regressing out the cell area from all other features is
another helpful step in data cleaning, since the cell area widely affects all other features, and by
regressing it out, other useful information can be presented better in the resulting profile. Both
techniques proved to be effectively improving the odds ratio.

Deep representation learning methods that are applied on top of CellProfiler features could
not achieve a result better than the raw features, mainly because of information loss in the Cell-
Profiler measurement step, but they have perfect ability in capturing hidden patterns, and they
may be useful if applied on the raw images instead.

The proposed methods of this work are simply applicable to CellProfiler extracted features
to improve the quality of image-based profiles, and can enhance the odds ratio significantly.
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Therefore, they can be considered as a pivotal step in the profile pre-processing step of typical
analysis workflows.

Supporting information

S1 Fig. Odds ratio for profiles that are obtained through representation learning using a
denoising autoencoder. A denoising autoencoder (DAE) with one hidden layer of encoder
and decoder, and code size of 200 is trained. Compound-level profiles that are used for the last
step come from the aggregation of DAE representation of cell measurements. Odds ratios in
different percentages are too low and full of fluctuations compared to the cases that were inves-
tigated in the results section.

(TIF)

$2 Fig. Odds ratio for profiles that are obtained through a supervised representation learn-
ing using the mixup technique. A simple fully connected network that is regularized through
applying the mixup technique is trained. In the first step, instead of raw cell-level profiles, rep-
resentations that are extracted from the network are used. Considering this plot, the mixup
technique does not effectively improve upon the baseline that was discussed earlier in the
results section.

(TIF)

S3 Fig. Convergence plot of loss in the train and validation sets during training sparse
autoencoder to capture the representation of raw profiles. This figure is a sample of conver-
gence plots of deep methods in this work. Deep networks are tried for representation learning
but they lead to no improvement in the odds ratio. It is clear that the loss has been decreased
during the training process and no overfitting can be detected in the plots. This plot specifi-
cally represents sparse autoencoder training and validation losses.

(TIF)
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