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Introduction: Metabolomics offers considerable promise in early disease detection. We set out to test the

hypothesis that routine newborn metabolic profiles at birth, obtained through screening for inborn errors

of metabolism, would be associated with kidney disease and add incremental information to known

clinical risk factors.

Methods: We conducted a population-level cohort study in Ontario, Canada, using metabolic profiles from

1,288,905 newborns from 2006 to 2015. The primary outcome was chronic kidney disease (CKD) or dial-

ysis. Individual metabolites and their ratio combinations were examined by logistic regression after

adjustment for established risk factors for kidney disease and incremental risk prediction measured.

Results: CKD occurred in 2086 (0.16%, median time 612 days) and dialysis in 641 (0.05%, median time 99

days) infants and children. Individual metabolites consisted of amino acids, acylcarnitines, markers of fatty

acid oxidation, and others. Base models incorporating clinical risk factors only provided c-statistics of 0.61

for CKD and 0.70 for dialysis. The addition of identified metabolites to risk prediciton models resulted in

significant incremental improvement in the performance of both models (CKD model: c-statistic 0.66 NRI

0.36 IDI 0.04, dialysis model: c-statistic 0.77 NRI 0.57 IDI 0.09). This was consistent after internal validation

using bootstrapping and a sensitivity analysis excluding outcomes within the first 30 days.

Conclusion: Routinely collected screening metabolites at birth are associated with CKD and the need for

dialytic therapies in infants and children, and add incremental information to traditional clinical risk

factors.

Kidney Int Rep (2018) 3, 691–700; https://doi.org/10.1016/j.ekir.2018.02.001

KEYWORDS: chronic kidney disease; dialysis; end-stage kidney disease; metabolomics; newborn screening; pediatric;
renal failure
ª 2018 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
C
hronic kidney disease (CKD) is a leading contrib-
utor to cardiovascular morbidity and mortality,

with a global prevalence of 8% to 16% in adults.
Although large population-based studies have
examined the epidemiology of CKD in adult popula-
tions,1–3 comparable studies of CKD in children are
few.4 The current literature suggests that 70% of
children with CKD will develop end-stage kidney
disease (ESKD) by age 20 years, and mortality rates
for children with ESKD on dialysis therapy are 30 to
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150 times higher than those in the general pediatric
population.5,6

As there are limited therapies available after kid-
ney disease onset, early identification of individuals
at risk is critical to the implementation of measures to
minimize complications, to improve quality of life,
and to reduce mortality. Through its role as an
excretory organ the kidney plays a significant role
in nutritional and metabolic regulation. Alterations
in glomerular filtration, secretion, and tubular
reabsorption therefore result in detectable changes
in small molecule concentrations in the blood
and urine. Routinely used markers of kidney func-
tion including serum creatinine and blood urea
nitrogen are limited, however, by their inability
to support detection of CKD in the earliest stages of
the disease.
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Metabolic derangements are well described in pa-
tients with CKD. Plasma and urinary amino acid
profiles are demonstrably affected by acute and
chronic kidney disease and by glomerulonephritis.7–11

Dysregulation of acylcarnitine excretion as a result of
renal failure has also been observed in CKD and dia-
betic nephropathy. It is unknown whether the bio-
logical processes associated with acute illness,
inflammatory processes, and kidney disease are
established at the time of birth. Humans are born with
a set number of functioning nephrons per kidney,12

and reduced nephron mass is hypothesized to
underlie individual susceptibility to hypertension
and CKD.13–15 Whereas antemortem measurement of
nephron mass is not currently possible, metabolic
profiling of circulating amino acids and acylcarnitines
in the neonatal period may reveal differential renal
function and susceptibility to pediatric kidney disease
before clinical onset of the condition.

In this study, we set out to examine the association
between routinely collected newborn metabolite pro-
files with development of CKD or the need for dialysis
in infants and children up to 9 years of age. We
hypothesized that patterns of analytes and anatlye
ratios at birth would be associated with CKD or dialysis
and would add incremental information to known
clinical kidney disease�related risk factors.

METHODS

Design and Setting

We conducted a population-based cohort study to
determine the association between newborn meta-
bolic profiles and the risk of CKD or dialysis. We
used data collected from infants born in Ontario,
Canada, through routine newborn screening and
provincial outcome data from administrative data-
bases housed at the Institute for Clinical Evaluative
Sciences (ICES). The study was conducted according
to a prespecified protocol with ethics approval by
the Ottawa Health Science Network Research
Ethics Board (20140724-01H) and the Children’s
Hospital of Eastern Ontario Research Ethics Board
(15/143X).

Data Sources

Newborn metabolite data, maternal and newborn
clinical data, and study outcome information were
obtained by linkage between the Newborn Screening
Ontario, the Better Outcomes Registry and Network,
Gamma Dynacare, Canadian Organ Replacement Reg-
istry, and other ICES datasets using encrypted patient
health card numbers as unique identifiers.
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Newborn Screening Ontario

The Newborn Screening Ontario (NSO) program
screens nearly all (>99%) children born in Ontario,
Canada, for the presence of rare, treatable diseases
using blood samples collected within the first few days
of life. The newborn screening program collects data on
more than 40 distinct analytes, many of which are
markers of metabolism. The markers available for study
from NSO are listed in Supplementary Table S1.

The Better Outcomes Registry and Network

The Better Outcomes Registry and Network (BORN) is a
prescribed registry that includes a broad collection of
prenatal and perinatal data. BORN was launched in
2012 as the integration of 5 stand-alone databases:
congenital anomalies surveillance (Fetal Alert
Network); pregnancy, birth, and newborn information
for women in hospitals (Niday Perinatal Database);
pregnancy, birth, and newborn information for women
giving birth at home (Ontario Midwifery Program
database); prenatal screening (Ontario Maternal Multi-
ple Marker Serum Screening); and newborn screening
(the Newborn Screening Ontario database). Data within
the BORN Information System (BIS) are available to
researchers for the purposes of facilitating or
improving the provision of health care.

Institute for Clinical Evaluative Sciences

The Institute for Clinical Evaluative Sciences (ICES)
houses all of Ontario’s health administrative databases.
The study cohort was limited to children who were
continuously registered in the Ontario Health Insur-
ance Plan (OHIP) Claims database during the study
period to ensure capture of all potential study
outcomes. ICES datasets used for this study included
the MOMBABY dataset, which links the admission re-
cords of delivery mothers and their newborns; the
Discharge Abstract Database, which captures all
administrative, clinical, and demographic information
on hospital discharges; Gamma Dynacare, which cap-
tures laboratory tests; the Canadian Organ Replacement
Registry, which captures all ESKD patients in Canada;
and the National Ambulatory Care Registration System
database, which contains data for all hospital- and
community-based ambulatory care. A list of diagnostic
codes used for this study is presented in
Supplementary Table S2.

Study Population

Children born between 1 April 2006 and 26 September
2015 for whom newborn screening data were available
(n ¼ 1,504,459) were included for analysis. Children for
whom OHIP coverage was not continuous during the
study period, cases with missing clinical data, children
Kidney International Reports (2018) 3, 691–700
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who died within 7 days of birth, and those who were
identified as positive for one or more screened disor-
ders in the NSO database were excluded to remove any
potential outliers in the data set. Children with known
or diagnosed renal dysplasia, acute kidney injury,
uropathy, or urinary tract infections at birth were also
excluded. In a sensitivity analysis, we further excluded
all diagnoses of kidney disease listed above to 30 days
after birth.

Study Outcomes

The primary outcomes of interest were the develop-
ment of CKD or the need for dialysis. CKD was defined
by the use of validated International Classification of
Diseases (ICD) billing codes on 2 separate days.16 Dia-
lytic therapies were defined using any single validated
ICD diagnostic code, an OHIP physician billing code, or
a preemptive kidney transplantation.17,18 Outcome data
from Gamma Dynacare and ICES were captured up to
15 November 2016 to allow a minimum of 6 months of
follow-up of the last infant included in our population
subset. In this way, our analysis examined kidney
outcomes 0.5 to 10 years after birth in the identified
cohort.

Statistical Analysis

Baseline characteristics of the cohort were assessed
using frequency distributions and univariate descrip-
tive statistics. Metabolite ratios were examined, as they
have been previously implicated in the biological
processes associated with kidney disease.19 A total of
46 individual metabolites and 1035 metabolite ratios
were included. Metabolites and their ratios were
truncated at the 0.001st percentile and the 99.999th
percentile to minimize the influence of outliers, and
were also standardized by study week to account for
possible changes in the assays used over the study
period.

To examine the association of individual metabo-
lites with clinical outcomes we first examined crude
Spearman correlations for all metabolites and their
ratio combinations with each outcome of CKD or
dialysis. Crude Spearman correlation magnitudes were
ranked from largest to smallest to retrieve the top 100
ratios. An adjusted Spearman correlation for clinical
covariates, metabolites, and the top 100 ratios were
then computed, adjusting for the remaining variables.
We then reduced the top-ranked metabolites or ratios
to maintain 10 cases of CKD or dialysis per covariate.20

A mechanistic approach as opposed to an a priori se-
lection of metabolites based on biochemical knowledge
was used. Such an approach is advantageous
because it allows for inclusion of all available data
and makes no assumptions regarding underlying
Kidney International Reports (2018) 3, 691–700
relationships.7,21 We performed separate analyses for
CKD and dialysis and limited the sample to 10 non-
cases for every case by random selection. The final
model was developed using logistic regression with
clinical covariates defined a priori. Clinical covariates
included newborn sex, weight at birth, gestational
age, APGAR scores, feeding status, age at sample
collection, cesarean delivery, and maternal factors
(smoking, diabetes, hypertension, and age at time of
delivery).

Model discrimination was determined by examining
the incremental improvement that the metabolite model
lent to outcome prediction compared to a model con-
sisting of perinatal and maternal covariates alone. In-
cremental improvement in outcome prediction was
determined by examining the change in the area under
the receiver operating characteristic curve (AUC), the
net reclassification index (NRI), and integrated
discrimination improvement (IDI).22 The NRI is a
measure of correct reclassification of a new model
compared to an old model, and IDI is a measure of the
slope for model discrimination between a new and old
model. Model calibration was determined by the
Hosmer�Lemeshow test. The model was internally
validated using bootstrapping to determine the model
optimism.23 Internal validation was used as opposed to
use of a derivation/validation study design due to the
limited number of events and uniqueness of our study
cohort. Model optimism was estimated as the difference
between the apparent model’s performance obtained in
the bootstrap sample and the actual model performance
when applied to the derivation sample. The final model
c-statistic was adjusted for optimism with 200 boot-
strap samples performed as per simulation studies.23,24

To avoid exclusion of subjects due to missing cova-
riates, multiple imputation was performed prior to
analysis using a Markov chain Monte Carlo algorithm
(the data augmentation algorithm).25 Five multiple
imputation datasets were generated, with all variables
included in analytical models specified as predictors in
the multiple imputation model. Analyses were carried
out for each multiple imputation dataset and pooled
across datasets using Rubin’s rules.26 Correlation ana-
lyses were performed using R/R Studio (RStudio Inc.,
Boston, MA) packages ‘rms’ and ‘Hmisc’. All remaining
analyses were performed using SAS v9.4 (SAS Institute,
Cary, NC).
RESULTS

Cohort Characteristics

A total of 1,335,746 infants with newborn screening
records were captured during the study period, of
which 46,841 were excluded (11,863 screen-positive
693
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cases; 34,707 unsatisfactory samples; and 271 cases of
neonatal death within 7 days of birth). The final study
cohort consisted of 1,288,905 newborns, with 2086 who
developed CKD and 641 who required dialysis. The
median follow-up time for the total cohort was 1863
days (interquartile range [IQR], 978�2758). Median
times to CKD diagnosis and dialysis were 612 days
(IQR, 155�1399) and 99 days (IQR, 5�383), respec-
tively. A summary of the cohort characteristics strati-
fied by outcomes is presented in Table 1. Among
newborns who developed CKD and required dialysis,
the proportion of females was lower (CKD 43.5% vs.
non-CKD 48.8%; dialysis 43.1% vs. no dialysis 48.8%),
and fewer newborns were exclusively breastfed rela-
tive to the total cohort (CKD 25.3% vs. non-CKD
41.6%; dialysis 25.7% vs. no dialysis 41.6%). Kidney
disease was more prevalent among infants born <37
weeks’ gestational age (CKD 18.4% vs. 7.5% non-CKD;
dialysis 16.6% vs. no dialysis 7.5%), those with a
lower mean APGAR score (CKD 8.01 vs. non-CKD 8.40;
dialysis 7.63 vs. no dialysis 8.39), and those with a
lower birthweight (CKD 3174 g vs. non-CKD 3353 g;
dialysis 3132 g vs. no dialysis 3353 g). Kidney disease
was more common among infants born to mothers with
diabetes (CKD 17.9% vs. non-CKD 12.4%; dialysis
18.3% vs. no dialysis 12.4%) and hypertension (CKD
15.9% vs. non-CKD12.4%; dialysis 17.6% vs. no
dialysis 12.4%).
Table 1. Baseline characteristics of the study cohort by end stage kidne
Characteristic Total CKD Non

Total, n (%) 1,288,905 (100.00) 2086 (0.16) 1,286,81

Newborn

Female, n (%) 628,881 (48.8) 907 (43.5) 627,97

Feeding status, n (%)

Breast 535,612 (41.6) 527 (25.3) 535,08

Breast/formula/TPN 112,233 (8.7) 176 (8.4) 112,05

Formula/TPN 65,528 (5.1) 84 (4.0) 65,44

NPO/TPN/null 78,946 (6.1) 175 (8.4) 78,77

Gestational age, n (%)

#32 wk 23,180 (1.8) 168 (8.1) 23,01

33�36 wk 73,415 (5.7) 215 (10.3) 73,20

$37 wk 1,179,845 (91.5) 1687 (80.9) 1,178,1

Birthweight, g, mean � SD 3353.01 � 568.53 3174.24 � 795.99 3353.30

APGAR score, mean � SD 8.39 � 1.32 8.01 � 1.84 8.40

Age at collection for newborn
screening (h), median (IQR)

29.85 (24.83�44.57) 33.92 (25.40�4.43) 29.83 (24

Maternal

Cesarian delivery, n (%) 353,533 (27.4) 702 (33.7) 352,83

Age at birth, yr, mean � SD 30.17 � 5.48 29.82 � 5.54 30.17

Smoking, n (%) 79,918 (6.2) 162 (7.8) 79,75

Diabetes, n (%) 160,366 (12.4) 374 (17.9) 159,99

Maternal hypertension, n (%) 160,209 (12.4) 332 (15.9) 159,87

CKD, chronic kidney disease; IQR, interquartile range; NPO, nil per os; TPN, total parenteral n
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Metabolite Models for CKD and ESKD

Crude Spearman correlations for metabolites and
metabolite ratios with CKD and dialysis are presented
in Figure 1. For CKD, the strongest unadjusted corre-
lations were for analyte ratios C5DC:C12, tyrosine:17-
hydroxyprogesterone, phenylalanine:glycine, C5 to
C14:1, and C8:1 to C12. For dialysis, the strongest
correlations were for analyte ratios phenyl-
alaine:tyrosine, tyrosine:methionine, C6DC to C8:1,
C8:1 to tyrosine, and C16:phenylalanine.

The clinical variables and metabolites included in the
prediction model for CKD are provided in Supplementary
Table S3. Male sex (odds ratio [OR], 1.14; 95% confidence
interval [CI], 1.02�1.26), feeding other than breastfeeding
exclusively, APGAR score (OR, 0.96; 95% CI, 0.92�1.00),
maternal diabetes (OR, 1.32; 95% CI, 1.15�1.52), and
maternal age (OR, 0.98; 95% CI, 0.97�0.99) were statisti-
cally associated with CKD. CKD was also significantly
associated with amino acids (citrulline), amino acid ratios
(phenylalanine:glycine), acylcarnitines (C2, C4DC, C6DC,
C16:1OH), acylcarnitine ratios (C4 to C12:1, C5 to C14:1,
C18:1 to C18:2, C4DC to C8:1), and the ratio of amino acids
and acylcarnitines to endocrine markers (alanine:17-
hydroxyprogesterone, C4DC:17-hydroxyprogesterone.
The strongest statistical associations were for alanine:17-
hydroxyprogesterone (adjusted OR, 1.35; 95% CI,
1.07�1.70 per log unit increase), phenylalanine:glycine
(adjusted OR, 1.30; 95% CI, 1.08�1.56 per log unit
y disease status
-CKD P value Dialysis No dialysis P value

9 (99.84) 641 (0.05) 1,288,264 (99.95)

4 (48.8) <0.001 276 (43.1) 628,605 (48.8) 0.004

<0.001 <0.001

5 (41.6) 165 (25.7) 535,447 (41.6)

7 (8.7) 75 (11.7) 112,158 (8.7)

4 (5.1) 51 (8.0) 65,477 (5.1)

1 (6.1) 98 (15.3) 78,848 (6.1)

<0.001 <0.001

2 (1.8) 33 (5.1) 24,147 (1.8)

0 (5.7) 67 (10.5) 73,348 (5.7)

58 (91.6) 534 (83.3) 1,179,311 (91.5)

� 568.04 <0.001 3132.66 � 695.41 3353.12 � 568.44 <0.001

� 1.32 <0.001 7.63� 2.08 8.39 � 1.32 <0.001

.83�44.53) <0.001 41.77 (26.72�64.85) 29.85 (24.83�44.55) <0.001

1 (27.4) <0.001 198 (30.9) 353,335 (27.4) 0.136

�5.48 0.004 29.98 � 5.64 30.17 � 5.48 0.399

6 (6.2) <0.001 39 (6.1) 79,879 (6.2) 0.953

2 (12.4) <0.001 117 (18.3) 160,249 (12.4) <0.001

7 (12.4) <0.001 113 (17.6) 160,096 (12.4) <0.001

utrition.

Kidney International Reports (2018) 3, 691–700
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Figure 1. Crude Spearman correlations of metabolites in (a) chronic
kidney disease and (b) dialysis.

Table 2. Adjusted odds ratios for statistically significant newborn
screening metabolites and metabolite ratios in CKD and the need for
dialysis

Variable
CKD

OR (95% CI)
Dialysis

OR (95% CI)

Phenyalanine:glycine 1.30 (1.08–1.56) 1.43 (1.13–1.81)

Phenylalanine:tyrosine 1.51 (1.12–2.03)

Citrulline 1.11 (1.02–1.22)

Citrullline:tyrosine 1.26 (1.11–1.43)

Alanine:17-hydroxyprogesterone 1.35 (1.07–1.70)

C0:C8:1 0.70 (0.54–0.93)

C2 1.22 (1.02–1.45)

C4DC:17-hydroxyprogesterone 0.79 (0.65–0.97)

C4:C12:1 0.83 (0.70–0.97)

C4DC:C8:1 1.14 (1.05–1.23)

C4DC 0.73 (0.55–0.97)

C4DC:leucine —

C5:C14:1 0.76 (0.64–0.92)

C5:1:C12:1 —

C6DC 1.14 (1.08–1.22)

C8:tyrosine 1.14 (1.02–1.28)

C8:1:C16 —

C8:1:C14:1 1.43 (1.14–1.79)

C8:1:C18 1.70 (1.23–2.35)

C16:phenylalanine —

C16:1OH 1.06 (1.01–1.11)

C18:1:C18:2 1.20 (1.02–1.40)

CI, confidence interval; CKD, chronic kidney disease; OR, odds ratio.
Full models presented in Supplementary Tables S2 and S3. Models adjusted for
newborn sex, birthweight, gestational age, APGAR scores, feeding status, age at
sample collection, cesarean delivery, and maternal factors (smoking, diabetes, hyper-
tension, age at time of delivery) and additional analytes identified by Spearman cor-
relation (Figures 1 and 2).
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increase), andC4DC (adjustedOR, 0.73; 95%CI, 0.55�0.97
per log unit increase) (Table 2).

The final model for prediction of pediatric dialysis is
presented in Supplementary Table S4. Clinical covariates
statistically associated with dialysis were birthweight
(P < 0.0001), feeding other than breastfeeding exclu-
sively, and APGAR score (OR, 0.91; 95% CI, 0.84�0.97).
Need for dialysis was significantly associated with
amino acid ratios (phenylalanine:glycine, phenyl-
alanine:tyrosine, citrulline:tyrosine), ratio of amino acids
to acylcarnitines (C8:tyrosine, C16:phenylalanine), and
acylcarnitine ratios C0 to C8:1; C8:1 to C14:1; C8:1 to C18).
The strongest metabolite associations were for C8:1
to C18:2 (adjusted OR, 1.70; 95% CI, 1.23�2.35 per log
unit increase), phenylalanine:tyrosine (adjusted OR, 1.51;
95% CI, 1.12�2.03 per log unit increase), phenyl-
alainine:glycine (adjustedOR, 1.43; 95%CI, 1.13�1.81per
log unit increase), and C8:1 to C14:1 (adjusted OR, 1.43;
95% CI, 1.14�1.79 per log unit increase) (Table 2).

Incremental Risk Prediction of Metabolites From

Traditional Clinical Risk Factors

Incremental improvements provided by newborn me-
tabolites to CKD and dialysis risk prediction compared
to known clinical risk factors are summarized in
Table 3 and Figure 2a and b. For CKD, compared to a
base model derived from clinical risk factors the
addition of metabolites and their ratios increased the
AUC from 0.61 to 0.66 (P < 0.001). The category-free
NRI increased 0.36 (95% CI, 0.32�0.40; P < 0.001;
11% events correctly reclassified and 25% nonevents
correctly reclassified) and the IDI increased 0.039 (95%
Kidney International Reports (2018) 3, 691–700
CI, 0.034�0.044; P < 0.001). Model calibration was
significant at P < 0.0001, demonstrating poor calibra-
tion. In the sensitivity analysis, AUC for the full model
was 0.72 with NRI 0.49, IDI 0.024, and model calibra-
tion improved (P ¼ 0.1431). After internal validation
using 200 bootstrap samples the corrected AUCs were
0.64 and 0.69 for CKD and CKD 30 days after birth,
respectively.

Similarly, for dialysis (Table 4 and Figure 2c and d),
the addition of metabolites and their ratios improved
model fit (AUC changed from 0.70 to 0.77, P < 0.0001).
The category-free NRI increased 0.57 (95%
CI, 0.49�0.65; P < 0.001; 21% events correctly
reclassified and 35% nonevents correctly reclassified)
and the IDI increased 0.085 (95% CI, 0.072�0.098; P <
0.0001). Model calibration was acceptable (P ¼ 0.1756).
In the sensitivity analysis, AUC for the metabolite
model was 0.72 with NRI 0.41 and IDI 0.020. After
internal validation using 200 bootstrap samples, the
corrected AUCs were 0.75 and 0.71 for dialysis and
dialysis 30 days after birth, respectively.
DISCUSSION

In this exploratory, population-based cohort study
including data from 1,288,905 newborns, we identified
695



Table 3. Comparison of model discrimination between clinical model (base) and clinical model plus metabolites for chronic kidney disease and
30 days after birth in infants and children

Modela AUC (95% CI)

P value
for AUC
difference NRI (95% CI)

% of Events
correctly

reclassified

% of Nonevents
correctly

reclassified IDI (95% CI)
Hosmer--Lemeshow

test
AUC

correctedb Optimism

CKD

Clinical risk factors
Clinical risk factors þ metabolites

0.61 (0.60–0.62)
0.66 (0.65–0.67)

<0.001 0.36 (0.32–0.40) 11% 25% 0.039 (0.034–0.044) <0.001 0.64 0.018

CKD >30 days

Clinical risk factors
Clinical risk factors þ metabolites

0.64 (0.61–0.67)
0.72 (0.70–0.75)

<0.001 0.49 (0.41–0.58) 23% 26% 0.024 (0.018–0.031) 0.1082 0.69 0.034

AUC, area under the receiver operating characteristic curve; CI, confidence interval; IDI, integrated discrimination improvement; NRI, net reclassification index.
aClinical risk factors included in the model were sex, birthweight, feeding, age at sample collection, gestational age, APGAR score, and maternal cigarette smoking, hypertension,
diabetes mellitus, and age at time of delivery.
bAUC corrected is based on internal validation in which optimism was calculated using 200 bootstrap samples.
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an association between routinely collected newborn
metabolite profiles and the development of CKD or
dialysis. Models incorporating analyte and analyte ra-
tios as covariates improved the identification of infants
and children at risk for developing CKD and dialysis,
beyond the use of maternal and neonatal clinical risk
factors alone. Our data demonstrate that routinely
collected newborn data may be used for early identi-
fication of children at risk.

Although direct cross-comparison of our findings
with those of previous studies is difficult given that the
majority of metabolic studies have been conducted in
adult populations with established kidney disease, the
metabolites used in the models described in this study
have appeared previously in the literature.27 Among
the amino acids, tyrosine and its metabolic precursor,
phenylalanine, are the most consistently reported to be
altered in kidney disease and were among the strongest
associated metabolites in both our CKD and dialysis
models. In individuals with CKD, enzyme-driven con-
version of phenylalanine to tyrosine is reportedly
impaired,28 resulting in elevated plasma phenylalanine
and reduced plasma tyrosine. In our study, we detected
significantly increased phenylalanine levels among
newborns who later developed CKD and increases in
phenylalanine/tyrosine ratios in association with the
need for dialysis, consistent with previous reports. The
association of CKD with changes in amino acid levels,
including citrulline, glycine, and leucine, in this study
also confirms the findings of others.27 Shah et al.
examined metabolite profiles in nondiabetic individuals
with differing CKD stages.29 Multiple significant me-
tabolites that changed based on estimated glomerular
filtration rate stages identified by Shah et al. were also
identified by our approach, including ornithine, C5,
and C18:2. Acylcarnitines comprised 5 of 12 and 4 of 7
of the covariates in our CKD and dialysis models,
respectively, highlighting their significance in the
development of kidney disease. The acylcarnitines used
in our models including C0, C2, C4, C8:1, C12:1, C14:1,
696
C16, and C16:1OH have been previously reported to be
strongly associated with a decline in estimated
glomerular filtration rates.30 Finally, production of the
endocrine marker 17-hydroxyprogesterone was
strongly associated with CKD and dialysis in our
models. This marker has been suggested to decline in
advanced CKD,29 although its role in the early estab-
lishment of renal disease remains unclear.

The clinical risk covariates used in our models are
consistent with the known risk factors for CKD and
dialysis.14,31,32 Hsu et al. examined maternal and pre-
natal risk factors for the development of CKD in 1994
children with follow-up to 20 years of age. The authors
reported independent associations of low birthweight,
maternal diabetes, and maternal obesity with CKD.
Cataldi et al. reported low APGAR score and receipt of
renal-toxic medications as independent risk factors for
acute kidney injury in 172 preterm infants.33 Our
study identified male sex, low birthweight, no feeding
or methods aside from breastfeeding, prematurity,
lower APGAR score, and maternal diabetes as inde-
pendently associated with CKD or the need for dialysis.
The consistency of identified risk factors between our
models and previous reports strengthens our findings
that the identified metabolites add significant infor-
mation to clinical risk factors for kidney disease risk
prediction.

Plausible mechanisms of metabolic alterations
include changes in metabolites levels secondary to
inflammation or oxidative stress or changes in
glomerular filtration and clearance by the renal tu-
bules.12,34 Indeed, many characteristics identified in
our models, such as low birthweight, prematurity, and
low APGAR score, are associated with general illness in
newborns, and, as such, many of the associated me-
tabolites may not be kidney specific. However, it
should be noted that newborns with clinically apparent
kidney illness at birth were excluded, as were di-
agnoses within the first 30 days of life through sensi-
tivity analyses in an attempt to isolate metabolites
Kidney International Reports (2018) 3, 691–700
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Figure 2. Receiver operating characteristic curves (>30 days) for the following: (a) chronic kidney disease (CKD): clinical characteristics;
(b) CKD: clinical characteristics þ metabolites; (c) dialysis: clinical characteristics; and (d) dialysis: clinical characteristics þ metabolites.
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specifically associated with our outcomes of interest.
Glomerular and tubular filtration of metabolites may be
related to the nephron endowment hypothesis in which
individuals born with fewer functional nephrons may
be more susceptible to kidney disease with secondary
insults.35 As there is limited glomerulogenesis beyond
birth, reduced nephron mass may lead to an increase in
intraglomerular pressure, glomerular hyperfiltration,
and accelerated glomerulosclerosis.12 Indeed, a small
and invasive biopsy study demonstrated roughly half
the number of nephrons in men with primary hyper-
tension.13 Other studies in populations at high risk for
Kidney International Reports (2018) 3, 691–700
renal disease (e.g., Australian Aboriginal peoples)
demonstrate an association between CKD onset with a
reduction in total nephrons present at birth.15,36 Cur-
rent methods to measure nephron mass involve
stereological analysis or acid maceration, and highly
time-intensive and invasive procedures often per-
formed post mortem.37 Newborn screening metabolite
measurements may offer the intriguing possibility for
delineation of reductions in nephron mass in the peri-
natal period.

Numerous novel biomarkers and metabolomics ap-
proaches are being actively sought to support the early
697



Table 4. Comparison of model discrimination between clinical model (base) and clinical model plus metabolites for the need for dialysis and 30
days after birth in infants and children

Modela AUC (95% CI)

P value
for AUC
difference NRI (95% CI)

% of Events
correctly

reclassified

% of Nonevents
correctly

reclassified IDI (95% CI)
Hosmer--Lemeshow

test
AUC

correctedb Optimism

Dialysis

Clinical risk factors
Clinical risk factors þ metabolites

0.70 (0.68–0.72)
0.77 (0.75–0.79)

<0.001 0.57 (0.49–0.65) 21% 35% 0.085 (0.072–0.098) 0.1756
0.1082

0.75 0.015

Dialysis >30 days

Clinical risk factors
Clinical risk factors þ metabolites

0.65 (0.62–0.68)
0.72 (0.69–0.75)

<0.001 0.41 (0.31–0.51) 17% 24% 0.020 (0.015–0.026) 0.4124
0.6887

0.71 0.021

AUC, area under the receiver operating characteristic curve; CI, confidence interval; IDI, integrated discrimination improvement; NRI, net reclassification index.
aClinical risk factors included in the model were sex, birthweight, feeding, newborn age at sample collection, gestational age, APGAR score, and maternal cigarette smoking, hy-
pertension, diabetes mellitus, and age at time of delivery.
bAUC corrected is based on internal validation in which optimism was calculated using 200 bootstrap samples.
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detection of kidney disease. Metabolomics analyses can
identify and quantify upwards of hundreds to thou-
sands of small molecules in a given biological sample.
Whereas the benefit of nontargeted metabolomics
profiling lies in its potential for new biomarker dis-
covery and elucidating the pathophysiological mecha-
nisms of disease, more targeted approaches can help to
distinguish CKD markers from those of similar meta-
bolic disease states. The development, validation, and
adaptation of newer methods of disease detection,
although necessary, are costly and time consuming.
Indeed, currently applied technologies for metab-
olomics analyses rely on sophisticated laboratory
infrastructure, including mass spectrometry and pro-
ton nuclear magnetic resonance spectroscopy.
Newborn screening is a routine public health initiative
that uses internationally standardized methods for the
mass spectrometric detection of inborn errors of meta-
bolism.38 Here we present a novel “proof-of-concept”
approach that uses existing high-quality data that are
routinely captured, reliable, and widely adaptable. The
early timing of measurement for newborn screening is
ideal, as it facilitates disease detection in the immediate
postnatal period. Leveraging newborn screening data
for risk modeling approaches such as those described
here could conceivably be incorporated into existing
electronic medical reporting systems to complement
concurrent clinical findings and be used to alert clini-
cians to individuals with subclinical or higher sus-
ceptibility for kidney illness.

Strengths of our study include the use of a
population-level cohort with a large sample size. Cur-
rent metabolomics studies are largely case-control
studies in which relative measures of association may
be limited by the selection of the control group. In
contrast, our study was performed as a population-level
analysis, thus allowing accurate relative measures of
association. Here we have demonstrated that a targeted
approach involving a limited number of routinely
captured metabolites and their ratios provides moderate
698
discriminative ability for identifying newborns who
may develop a rare and potentially life-limiting illness.
In addition, our use of a well-defined clinical outcome,
dialytic therapy, with validated diagnostic and billing
criteria adds to the strength of this study.17,18,39 Our
approach and findings may be used to guide future
work on the development of predictive models and risk
scores to determine the risk of kidney disease in chil-
dren. Indeed, a robust model for ESKD has recently
been demonstrated to improve risk prediction, dialysis
planning, and the allocation of finite resources in the
adult population.40

Our study does have some notable limitations. Our
objective was to identify the highest number of in-
dividuals with subclinical or de novo kidney disease,
without limiting our screening to previously described
biochemical pathways. By taking a mechanistic
approach, as opposed to a selective approach based on
biological mechanisms, our study was unable to eluci-
date causative mechanisms involved in the develop-
ment of kidney disease in our cohort. Furthermore,
despite exclusion of apparent kidney disease at birth
and a sensitivity analysis excluding early diagnosis and
accounting for a large number of clinical variables in
our models, we lacked the serum creatinine or urinal-
ysis data necessary to identify the presence of kidney
disease. Additional limitations to this study include a
limited number of maternal and newborn clinical var-
iables available for incorporation into the base model
and lack of an external validation cohort. Although
validated ICD codes were used to identify CKD, the
reported sensitivity is low and thus underestimates the
true disease prevalence.16 Despite the inclusion of more
than 1 million newborns, the absolute numbers of
dialytic events were relatively small. We were there-
fore unable to distinguish the need for dialysis for
acute kidney injury or ESKD.

In conclusion, our study demonstrates the associa-
tion between newborn metabolite profiles and subse-
quent development of chronic pediatric disease. We
Kidney International Reports (2018) 3, 691–700



MM Sood et al.: Metabolic Profiles and Pediatric Kidney Disease CLINICAL RESEARCH
have demonstrated the utility of routinely collected
newborn metabolite profiles for the identification of
infants at risk for later CKD and dialysis. Importantly,
the models described in this study provide significant
additional information beyond risk prediction based on
traditional clinical risk factors alone. This work high-
lights the potential for early targeted screening,
monitoring, and directing of clinical therapies toward
infants at risk.
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