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Hepatic ischemia-reperfusion (I/R) injury is a serious complication in patients who have undergone hepatic surgery such as orthotopic
liver transplantation and partial hepatectomy. Recently, a new cytoprotective agent, ursodeoxycholyl lysophosphatidylethanolamide
(UDCA-LPE), was reported to protect against hepatic I/R injury. However, the protective mechanism of UDCA-LPE is not
fully understood. Therefore, we conducted this study to explore its underlying mechanism. We used liquid chromatography-
tandem mass spectrometry (LC-MS/MS) to analyze the liver lipid metabolism changes in mice during I/R. KEGG enrichment
indicated that UDCA-LPE is likely to exert its protective role by regulating fatty acid (FA) metabolism. Further analysis found
that UDCA-LPE significantly increased the ratio of oleic acid (OA) to palmitic acid (PA). We found that mice pretreated with
OA improved tolerance to hepatic I/R injury. In addition, the phosphorylation level of AKT was markedly upregulated during
oxidative stress to promote p65 nuclear translocation, triggering an inflammatory response that exacerbated cell damage and
OA treatment significantly inhibited this process. Notably, OA was found to inhibit H2O2-induced oxidative stress,
inflammation, and cell death in HepG2 cells. Furthermore, we found that OA supplementation to the medium did not result
in a significant increase in intracellular OA, but marked increase in the ratio of OA to PA, which may be an important
mechanism for the inflammatory response induced by oxidative stress during I/R. Finally, we demonstrated that OA increased
the level of autophagy in HepG2 cells, which may be one of the protective mechanisms against oxidative stress. Collectively,
this study revealed that FA metabolism functionally determines the oxidative stress-related inflammation caused by hepatic
I/R. We hypothesize that OA treatment may be a promising strategy for preventing and treating I/R-induced liver damage.

1. Introduction

Hepatic ischemia-reperfusion (I/R) injury is a complication
of hepatic surgery, and it can arise after liver resection and
transplantation [1, 2]. Hepatic I/R injury induces oxidative
stress, inflammation, and other disorders in the liver, thus
leading to the liver damage in patients requiring liver surgery
[3–6]. However, the mechanisms underlying the I/R injury
are not completely understood. So far, only a few effective

protective strategies have been discovered [7]. Ursodeoxy-
cholyl lysophosphatidylethanolamide (UDCA-LPE), a novel
anti-inflammatory agent with hepatoprotective effects, was
developed by Chamulitrat et al. by coupling UDCA with a
phospholipid. This drug inhibits mitochondrial damage
and apoptosis, induces the survival signaling pathway, and
promotes the regeneration of hepatocytes [8]. The mecha-
nisms underlying the protective effects of this drug include
shifting FA pools toward monounsaturated fatty acids
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(MUFA) and polyunsaturated fatty acids (PUFA), attenuat-
ing hepatofibrogenesis by impairment of TGF-β1/Smad2/3
signaling [9] and inherent, pronounced anti-inflammatory
effects [10, 11].

Extra virgin olive oil (EVOO), a gold standard of edible
oils, was reported to present a protective effect against
hepatic I/R injury. EVOO combined with DHA attenuates
high-fat diet- (HFD-) induced hepatic steatosis [12]. Pinto
et al. [13] reported that supplementation with EVOO is asso-
ciated with a reduced prevalence of NAFLD in older individ-
uals at high cardiovascular risk. However, the molecular
mechanism by which EVOO protects the liver is not
completely understood. MUFAs, the main composition of
EVOO (55-83%), have beneficial effects for humans. A
large-scale KANWU study [14] showed that increasing rela-
tively low levels of MUFAs in the diet and decreasing satu-
rated FA intake could improve insulin sensitivity. In
addition, it was shown that foods containing MUFAs were
able to reduce low-density lipoprotein (LDL) cholesterol
[15]. Other studies demonstrated that MUFAs can also
increase high-density lipoprotein (HDL) [16, 17].

Oleic acid (OA, 18:1 n-9) is one of the most common
MUFAs and is widely distributed and abundant in nature.
People consume a large amount of OA from food, especially
people who eat a Mediterranean diet [18]. In the past few
decades, there has been increasing evidence showing multiple
positive effects of OA on human health and disease, includ-
ing modulating physiological functions, inhibiting cancer
proliferation and oncogene expression, reducing inflamma-
tion, modulating leukocyte activity, lowering blood pressure,
and enhancing wound healing [19]. The liver-protecting
effect of EVOO might be related to the protective effects of
its components such as hydroxytyrosol, OA, tocopherols,
and/or PUFAs. Considering all these positive effects of OA,
it is reasonable to speculate that a large part of the protective
effect of EVOO on the liver is played by OA. As there is cur-
rently very little research on this topic, we conducted this
study to investigate the role that MUFAs, particularly OA,
play in hepatic I/R injury. We evaluated the lipid metabolism
profiles of mouse livers that were subjected to a hepatic I/R
injury to analyze the FA changes. In addition, a hydrogen
peroxide-induced oxidative stress cell model, with and with-
out OA pretreatment, was used to simulate hepatic I/R
injury. Several observational indices were used to evaluate
the protective effect of OA.

2. Materials and Methods

2.1. Ethics Statement. All animal experiments were
approved by the Ethics Committee of Tongji Medical College,
Huazhong University of Science and Technology, China. In
addition, all the animal experiments were conducted in
accordance with the National Institutes of Health (NIH)
Guide for the Care and Use of Laboratory Animals published
by the US National Institutes of Health (NIH Publication,
8th edition, 2011).

2.2. Animal Model. Eighty 18-week-old male C57/BL6 mice
weighing 28 to 30 g were purchased from Beijing Vital River

Laboratory Animal Technology Co. The animals were raised
in cages under a 12/12-hour light/dark cycle at 25°C in the
Animal Care Facility of Tongji Medical College.

2.3. Surgical Procedures. After a one-week adaptive phase, the
animals were divided into the following three groups: sham,
I/R, and UDCA-LPE+I/R. Each group contained at least six
mice. The surgical procedures were performed as previously
described to induce hepatic I/R injury implicating 70% of
the liver [20]. As shown in Figure 1(a), fasted mice were anes-
thetized with pentobarbital sodium (50mg/kg) by an intra-
peritoneal injection and underwent a midline incision to
expose the liver. An atraumatic clamp was placed across a
branch of the portal triad to block the blood supply to the
median and left lateral liver lobes to induce ischemia for
90min. Following unclamping of the liver, hepatic reperfu-
sion was allowed for 2 h, and this procedure represented the
I/R group. UDCA-LPE stock was prepared at 5mg/mL in
0.5% CMC. In the I/R group, the vehicle CMC was injected
intraperitoneally. In the UDCA-LPE+I/R group, two doses
of 50mg/kg UDCA-LPE were injected intraperitoneally at
30min prior to clamping and just prior to reperfusion
(Figure 1(a)). The sham groups only received a switching
abdominal surgery. After surgery, blood samples were col-
lected and centrifuged at 3500 r/min for 15min. Livers were
harvested and fixed. Parts of the liver samples were sectioned
into 1mm slices, then stained with haematoxylin and eosin,
photographed using a NanoZoomer S360 (Hamamatsu,
Japan), and analyzed using NZAcquire software. The rest of
the samples were stored at -80°C for subsequent tests.

2.4. Serum Transaminase. Serum transaminases and triglyc-
eride were detected by Aeroset-2000 automatic biochemical
analyzer (Instrument Laboratory, USA).

2.5. Cell Lines and Oxidative Cell Model. The human hepato-
cellular carcinoma cell line HepG2 was purchased from the
American Type Culture Collection (ATCC, USA). Cells were
cultured in DMEM (Gibco, USA) with 10% FBS (ScienCell,
USA) and kept in a humidified atmosphere at 37°C with 5%
CO2 in an incubator (Thermo Fisher Scientific Inc., USA).
To generate the oxidative model, we treated the cells with
various concentrations of H2O2 for 3 h. To render the OA
mother liquor more soluble, we dissolve the OA into 1%
DMSO and subjected it to ultrasonification for 10min before
use. To generate the oxidative model, we treated the cells with
various concentrations of H2O2 for 3 h.

2.6. Proliferation Assay. The CCK-8 (Boster Biological
Technology, Ltd., China) proliferation assay was performed
according to the manufacturer’s instructions for the indi-
cated time.

2.7. LC-MS/MS Analysis

2.7.1. Lipid Extraction. Tissue sample was grounded by liquid
nitrogen. Then, tissue samples were firstly bath sonicated for
2min with 400μL ice-cold 75% to break up the cells. Next,
1mL MTBE was added and the samples were shaken for
1 h at room temperature. Next, phase separation was induced

2 Oxidative Medicine and Cellular Longevity



0:00 1:00 2:00 3:00 4:00 5:00

Time (hours)
Ischemia Reperfusion

Li
ve

r h
ar

ve
st

Re
le

as
e t

he
 v

ei
nc

lip

Cl
am

p 
th

e p
or

ta
l v

ei
n

an
d 

dr
op

 in
 th

e
re

m
ai

ni
ng

 U
D

CA
-L

PE

A
ne

st
he

sia

In
tr

ap
er

ito
ne

al
 in

je
ct

io
n 

w
ith

ha
lf 

do
se

 o
f U

D
CA

-L
PE

(a)

Sham IR UDCA-LPE+IR

(b)

TUNEL DAPI Merge

Sham

IR

UDCA-
LPE+IR

(c)

0

20

40

60

80

100
Cell count

Sh
am IR

U
D

CA
-L

PE
+

IR

⁎⁎ ⁎⁎

Pe
rc

en
ta

ge
 o

f a
po

pt
os

is 
ce

ll

0

1000

2000

3000

4000
ALT

Sh
am IR

U
D

CA
-L

PE
+

IR

⁎⁎ ⁎

En
zy

m
at

ic
 ac

tiv
ity

 (U
/L

)

0

1000

2000

3000

4000

5000

Sh
am IR

U
D

CA
-L

PE
+

IR

⁎⁎ ⁎

AST

En
zy

m
at

ic
 ac

tiv
ity

 (U
/L

)

0

2000

4000

6000

8000

Sh
am IR

U
D

CA
-L

PE
+

IR

⁎⁎ ⁎
LDH

En
zy

m
at

ic
 ac

tiv
ity

 (U
/L

)

(d)

Figure 1: Continued.
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by adding 250μL water, letting it sit for 10min at room tem-
perature and centrifuging for 15min at 14,000g, 4°C. Because
of the low density and high hydrophobicity of MTBE, lipids
and lipophilic metabolites are mainly extracted to the upper
MTBE-rich phase. The lipid was transferred to fresh tubes
and dried with air nitrogen.

2.7.2. UPLC-MSMobile Phases. Lipid analysis was performed
on a Q Exactive orbitrap mass spectrometer (Thermo, CA).
Mobile phase A is prepared by dissolving 0.77 g of ammo-
nium acetate to 400mL of HPLC-grade water, followed by
adding 600mL of HPLC-grade acetonitrile. Mobile phase B
is prepared by mixing 100mL of acetonitrile with 900mL
isopropanol.

2.7.3. Lipid Analysis. Lipids were identified and quantified
using LipidSearch 4.1.30 (Thermo, CA). Mass tolerance of
5 ppm and 10ppm was applied for precursor and product
ions. Retention time shift of 0.25min was performed in
“alignment.” M-score and chromatographic areas were used
to reduce false positives.

2.8. Detection of Apoptosis.HepG2 cells were seeded at a den-
sity of 2 × 106 cells/mL of the DMEMmedium with 10% FBS
on 6-well plates to a final volume of 2mL. After treatment
with OA and H2O2, the cells were collected, washed twice
with PBS, and then suspended in 1x Binding Buffer at a con-

centration of 1 × 106 cells/mL. The cells were subjected to
5μL of FITC-Annexin V and 5μL propidium iodide (PI)
staining using the Annexin V-FITC apoptosis kit (KeyGEN
BioTECH, China). Next, 100μL of the solution was trans-
ferred to a 5mL culture tube and incubated for 30min at
RT (25°C) in the dark. The apoptosis ratio was quantified
using flow cytometry. Data were presented by the system
software (Cell Quest; BD Biosciences).

2.9. Detection of ROS, GSH, and MDA. To detect the pro-
duction of ROS, GSH, and MDA, HepG2 cells were seeded
at a density of 2 × 106 cells/mL of the DMEM with 10%
FBS on 6-well plates. Reactive Oxygen Species Assay Kit,
GSH and GSSG Assay Kit, and MDA Assay Kit (Beyotime
Biotechnology, China) were used following the manufac-
turer’s instructions.

2.10. Western Blotting. Cells and tissues were lysed using
RIPA lysis buffer supplemented with 1% PMSF and 1% phos-
phorylase inhibitor. The protein concentration was deter-
mined using either the BCA or Bradford protein assay kit
(Beyotime Biotechnology, China). Boiled lysates were sub-
jected to SDS-PAGE and transferred to a polyvinylidene
fluoride membrane (Millipore, Billerica, MA, USA), which
was blocked with 5% BSA blocking buffer for 1 h and
subsequently incubated with the indicated primary anti-
bodies overnight at 4°C. Following incubation with HRP-
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Figure 1: UDCA-LPE protects mice from hepatic ischemia-reperfusion injury and increased the odds ratio of OA/PA. (a) Surgical procedure.
(b) Liver H&E staining after surgical procedure. (c) Mouse liver showing an apoptotic cell stained with TUNEL. (d) Liver enzymes ALT, AST,
and lactate dehydrogenase were determined in the serum of mice undergoing hepatic I/R. (e) Total cholesterol (TC), triglyceride (TG),
HDL-c, and LDL-c levels in the serum of each group. (f) Statistics of KEGG enrichment. (g) Heat map of liver fatty acid change
determined by LC-MS. Values are expressed with mean ± SD. Each group contains three mice. ∗∗p < 0:005, ∗p < 0:05, compared with the
control group. Bars indicate the standard deviation of the mean.
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conjugated secondary antibodies (diluted 1 : 5000) for 1 h
at room temperature, the membranes were treated with
ECL reagents (Meilunbio, China). Autoradiograms were
scanned, and the labelled bands were quantified using
Image-Pro Plus software. The following primary antibodies
and dilutions were used: anti-GAPDH (#5174, diluted
1 : 1000), anti-p-PI3K (#4228, diluted 1 : 1000), anti-p-AKT
(#4060, diluted 1 : 500), anti-caspase 3 (#9662, diluted
1 : 500), anti-LC3A/B (#4108, diluted 1 : 1000), and anti-p65
(#8242, diluted 1 : 1000) were purchased form Cell Signaling
Technology (CST, USA); anti-renalase (GTX89570, diluted
1 : 1000) was purchased from GeneTex (Irvine, CA, USA).
Anti-AKT (10176-2-AP, diluted 1 : 3000), anti-mTOR
(20657-1-AP, diluted 1 : 500), anti-Bcl2 (12789-1-AP, diluted
1 : 1000), and anti-PCNA (10205-2-AP, diluted 1 : 1000) were
purchased form Proteintech Group (Proteintech, China).
Anti-p-mTOR (ab109268, diluted 1 : 1000) was purchased
from Abcam (CA, USA).

2.11. Gene Expression Analysis by Quantitative Real-Time
PCR. RNA was extracted from liver tissues and cells tissues
using RNAiso Reagent (TaKaRa, China). cDNA was synthe-
sized using the HiScript II Q RT SuperMix for qPCR
(+gDNA wiper) (Vazyme Biotech Co., Ltd.) according to
the manufacturer’s instructions. PCR reactions were pre-
pared using the ChamQTM SYBR qPCR Master Mix
(Vazyme Biotech Co., Ltd.) and performed using a StepOne-
Plus™ System (Thermo Fisher Scientific Inc., USA). The
sense and antisense primers are shown in Tables 1 and 2.

2.12. Regents. The synthesis of UDCA-LPE was reported pre-
viously [20]. For UDCA-LPE used in this study, the same
synthesis procedure was performed by ChemCon (Freiburg,
Germany), donated by Prof. Walee Chamulitrat (Depart-
ment of Internal Medicine IV, University Heidelberg Hospi-
tal, Heidelberg, Germany). Recombinant Human IGF-I
Protein was purchased from R&D Systems (CA, USA). Oleic
acid was purchased from Sigma-Aldrich (CA, USA). H2O2
was purchased from Sinopharm Chemical Reagent Co., Ltd
(Shanghai, China).

2.13. Data Analysis. The fluorescent density was analyzed
with Image Pro Plus software. Densitometric analysis of
Western blot was carried out with ImageJ software. Data
are presented as means ± SD. Statistical analysis was per-
formed using GraphPad PRISM. All data sets were tested
for normality of distribution using the Shapiro-Wilk test.
Comparison between two groups was assessed using two-
tailed unpaired Student’s t-test or paired Student’s t-test.
One-way/two-way ANOVA was used to perform the statisti-
cal analysis among more than two groups, followed by
Tukey’s post hoc test for multiple-group comparisons. A
p value < 0.05 was considered statistically significant.

3. Results

3.1. UDCA-LPE Protects Mice from Hepatic Ischemia-
Reperfusion Injury. Our previous study [20] has proved that
UDCA-LPE was able to protect mice from liver I/R injury.
However, we did not study the role of lipid metabolism in

it before. Therefore, we repeated this experiment and con-
firmed the protective effect of UDCA-LPE. As described in
Materials and Methods, our experimental design is depicted
in Figure 1(a). The histological evaluation revealed that I/R
caused massive hepatic necrosis. A significant improvement
was observed in the UDCA-LPE+I/R group (Figure 1(b))
which is consistent with the observed necrosis during
I/R showing in the TUNEL staining (Figure 1(c)). I/R
increased the levels of serum alanine transaminase (ALT),
aspartate transaminase (AST), and lactate dehydrogenase
(Figure 1(d)). UDCA-LPE administration in mice undergo-
ing I/R significantly inhibited the elevation with stronger
effects in the UDCA-LPE+I/R group (Figure 1(d)).

3.2. UDCA-LPE Increases the Odds Ratio of Oleic Acid to
Palmitic Acid in the Liver of Mice.UDCA-LPE did not induce
a significant change in lipid metabolism in mice during I/R
injury. The TC, HDL-c, LDL-c, and TG levels in serum of
mice did not seem to change significantly after treatment
with UDCA-LPE before I/R injury (Figure 1(e)). Hence, we
conducted lipidomic analysis of total mouse hepatic FA com-
position to understand the effects of lipid metabolism on the
liver during I/R injury. KEGG enrichment (Figure 1(f)) anal-
ysis indicated that UDCA-LPE was most likely to participate
in FA metabolism pathways during I/R injury. The heat map
of changes in liver fatty acids in Figure 1(g) shows that
UDCA-LPE can significantly increase the odds ratio of OA
to PA.

3.3. Oleic Acid Alleviates Mouse Hepatic Ischemia-
Reperfusion Injury. To validate our hypothesis, we conducted
an in vivo experiment. Adult male C57 mice were randomly
divided into three groups. The sham group only received
switching abdominal surgery. The I/R group underwent sur-
gical procedures as previously described, while the OA+I/R
group mice received OA intragastric administration
(250mg/kg) for two weeks before undergoing the same surgi-
cal procedures. By comparing H&E staining of mouse liver
sections, we found that the OA+I/R group had less liver dam-
age than the I/R group. Further biochemical tests were con-
sistent with H&E staining of liver sections (Figure 2(a)).
OA can reduce the level of liver enzymes during liver I/R in
mice, especially ALT and LDH levels (Figure 2(b), p < 0:05).

To investigate the effect of OA on cell lipid metabolism,
HepG2 cells were treated with 100μM OA for 24 h. The FA
composition in HepG2 cells was analyzed by LC-MS/MS as
described before. FA changes are displayed in the heat map
(Figure 2(e)). KEGG enrichment analysis (Figure 2(d)) indi-
cated the pathways that OA is most likely to be involved in. It
is worth noting that supplementation of OA did not signifi-
cantly increase intracellular OA content, but increased the
odds ratio of OA/PA (Figure 2(e)).

3.4. Oleic Acid Protects Hepatic Cells from H2O2-Induced
Inflammation. To mimic I/R injury in cell model, HepG2
cells were selected to undergo various concentrations of
H2O2 treatment. As a result, 100μM H2O2 was considered
the best stimulation concentration (Fig. S1a). When pre-
treated with OA, the destructive effects of H2O2 on cells were
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reduced. The cell viability in the OA group was higher than
that in the vehicle group (Figure 3(a)). Consistently, results
of FACS analysis (Figure 3(c)) demonstrated that as the
concentration of H2O2 increases, the number of apoptotic
cells increases. However, it is worth noting that the OA
group had lower number of apoptotic cells compared to
the vehicle group. Western blot results also supported this
observation. Cleaved caspase 3 level was markedly lower
with OA treatment compared to groups without OA treat-
ment (Figure 3(d), p < 0:05).

HepG2 cells were pretreated with different concentrations
of OA before undergoing oxidative stress. The expression of
inflammation factors, such as TNF-α, IL-β, and IL-6,
increased after H2O2 treatment, which was consistent with
the expression of inflammation factors after hepatic I/R injury
(unpublished observations). However, inflammation factor
expression in the OA+Oxi (100μM) group sharply decreased
compared with that in the Oxi group (Figure 3(b), p < 0:01).
Western blot analysis identified that the PI3K/AKT/mTOR
pathway was activated (Fig S2) under oxidative stress. The
mRNA level of p65 expression showed the opposite tendency,
which was consistent with the expression level of the inflam-
matory cytokines (Figure 3(e)). The mRNA expression of
nuclear factor erythroid 2-related factor 2 (Nrf2) sharply
decreased under oxidative stress (Figure 3(f)). However,

OA does not seem to reverse the downregulation of peroxi-
some proliferator-activated receptor α (PPARα) caused by
oxidative stress (Figure 3(g)).

3.5. Oleic Acid Protects Hepatic Cells via Alleviating H2O2-
Induced Oxidative Stress. ROS fluorescence and immuno-
score showed that OA was able to reduce the intercellular
ROS production in HepG2 cells after H2O2 treatment
(Figure 4(a), p < 0:05). The MDA level increased during oxi-
dation; however, the OA treatment (200μM) significantly
lowered the MDA level caused by H2O2 (Figure 4(c), p <
0:05). The total GSH in HepG2 cells was measured. After
H2O2 treatment, the GSH level decreased, while the degree
of decline was significantly lower in the OA (100μM)+Oxi
group (Figure 4(d), p < 0:05). Western blot analysis demon-
strated that the protein expression level of renalase was ele-
vated during oxidation. In the OA-treated group, the degree
of increase was not as high as that compared with the vehicle
group (Figure 4(b)).

3.6. OA Inhibits the Nuclear Translocation of p65, Resists
Apoptosis, and Enhances Autophagy during Oxidative Stress
in HepG2 Cells. Western blot analysis of the cytoplasm and
nuclear p65 protein demonstrated that there was no signif-
icant change in cytoplasmic p65 protein levels in HepG2

Table 1: Mouse primer sequence.

Number Gene Legend
Gene bank

code Forward primer (5′ to 3′) Reverse primer (5′ to 3′) Product
length (bp)

Tm (°C)

1 IL-1β
Interleukin

1 beta
16176

TGCCACCTTTTGACAG
TGATG

ATGTGCTGCTGCGAGA
TTTG

136 59.0/59.6

2 IL-6 Interleukin 6 16193
CTGCAAGAGACTTCCA

TCCAG
AGTGGTATAGACAGGT

CTGTTGG
131 58.4/59.2

3 TNF-α
Tumor necrosis

factor
21926

CAGGCGGTGCCTATGT
CTC

CGATCACCCCGAAGTT
CAGTAG

89 60.2/60.5

4 β-Actin Actin, beta 11461
CTGTCCCTGTATGCCT

CTG
ATGTCACGCACGATTTCC 218 56.9/55.8

Table 2: Human primer sequence.

Number Gene Legend
Gene
bank
code

Forward primer
(5′ to 3′)

Reverse primer
(5′ to 3′)

Product
length (bp)

Tm (°C)

1 IL-1β Interleukin 1 beta 3553
TCCGACCACCACTA

CAGCAAGG
GGAGCGTGCAGTTC

AGTGATCG
223 64.2/64.0

2 IL-6 Interleukin 6 3569
AGCCACTCACCTCT

TCAGAACG
TGCCTCTTTGCTGC

TTTCACA
119 62.2/61.0

3 TNF-α Tumor necrosis factor 7124
CAGGCGGTGCTTGT

TCCTCAG
CGATGCGGCTGATG

GTGTGG
398 63.8/64.1

4 GAPDH
Glyceraldehyde-3-phosphate

dehydrogenase
2597

ACAACTTTGGTATC
GTGGAAGG

GCCATCACGCCACA
GTTTC

101 58.6/59.8

5 p65
RELA proto-oncogene,

NF-κB subunit
5970

AGAGGAGCACAGAT
ACCACCAAGAC

AAGCAGAGCCGCAC
AGCATTC

328 63.8/64.1

6 Nrf2
Nuclear factor

erythroid 2 like 2
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TGACAATGAGGTTT
CTTCGGCTACG
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TGAAGGAATC

385 63.3/63.0

7 PPARα
Peroxisome proliferator-
activated receptor alpha

5465
CAAGTGCCTTTCTG
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CAGCCATAC
289 63.9/63.4
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Figure 2: Oleic acid alleviates mouse hepatic ischemia-reperfusion injury. OA group mice were pretreated with 2 weeks of intragastric
administration of oleic acid (250mg/kg) prior to surgery. (a) Liver H&E staining after surgical procedure. (b) Serum ALT, AST, and LDH
levels in each group. (c) Linear molecular structure of oleic acid; HepG2 cells were treated with various concentrations of OA for 24 h, and
then, cell viability was measured by CCK-8 assay; 100μM OA has no significant effect on cell viability and was used in all subsequent
experiments. (d) Statistics of KEGG enrichment. (e) Heat map of cell fatty acid change determined by LC-MS. Values are expressed as the
mean ± SD; ∗∗p < 0:01, ∗p < 0:05. Bars indicate the standard deviation of the mean.
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Figure 3: Continued.

10 Oxidative Medicine and Cellular Longevity



cells, whether stimulated with H2O2 or treated with OA
(Figure 5(a)). However, we found a significant change in
the level of p65 in the nucleus (Figure 5(a), p < 0:01). Oxida-
tive stress increases the level of p65 in the nucleus, both in the
control group and in the OA group. Western blot results
indicated that OA markedly decreased the phosphorylation
level of AKT (Ser473) in the presence of H2O2. In the vehicle
group, H2O2 significantly increased the phosphorylation
level of AKT (Figures 3(d) and 5(b)). p62 was activated upon
OA treatment (2 h); however, the protein level of p62
decreased with treatment time compared with vehicle group
(Figure 5(c)). Significantly increased levels of Bcl2 and LC3-
II proteins were observed in the OA group compared with
the control group when H2O2 was not present. After H2O2
treatment, the Bcl2 and LC3-II levels remained unchanged
in the vehicle group, while they were sharply elevated in the
OA group (Figure 5(d), p < 0:01).

3.7. AKT Phosphorylation Activator Partially Reverses OA’s
Effects. For better understanding of the inhibitory action of
OA on the AKT/mTOR signaling pathway, we used recombi-
nant human IGF-I (10μM, 25μM, 50μM, and 100μM), a
frequently used AKT activator, to treat HepG2 cells for
30min. As expected, the p-AKT level increased with increase
in concentration of rhIGF-I and reached its peak at 50μM
rhIGF-I (Figure 6(a)). Similarly, the p-AKT level increased
in parallel with the increase in concentration of rhIGF-I in
the OA-treated group. However, the degree of upregulation
in the OA-treated group was noticeably lower than that in
the control group (Figure 6(a), p < 0:01). The results of
CCK-8 assay demonstrated that the AKT activator can
reverse the protective effect of OA under oxidative stress in
HepG2 cells (Figure 6(b), p < 0:01). After pretreatment with
50μM rhIGF-I, cells were treated with 50μM H2O2 for 3 h.

The FACS results (Figure 6(c)) showed that when subjected
to oxidative stress, rhIGF-I pretreatment slightly increased
the number of apoptotic cells compared with those without
rhIGF-I pretreatment. The level of cleaved caspase 3 showed
the same tendency (Figure 6(d)), though without statistical
significance. However, AKT activator successfully downregu-
lated level of LC3-B increased by OA (Figure 6(d), p < 0:05).

4. Discussion

Our experiments demonstrated that UDCA-LPE protects the
liver from I/R injury in mice, which is consistent with a pre-
vious study [20]. We used lipid metabolomics combined with
bioinformatics techniques to demonstrate that the protective
mechanism of UDCA-LPE is closely related to FA metabo-
lism. However, our results indicated that UDCA-LPE has
no significant effect on lipid metabolism in serum, but can
significantly alter the lipid composition of the liver. Our
study also identified that UDCA-LPE can significantly
increase the ratio of OA/PA in the liver. This may be one of
the important mechanisms of protective effect of UDCA-
LPE on the liver against I/R injury. In agreement with this
view, OA supplementation was shown to attenuate liver I/R
injury in vivo, since PA is generally considered harmful to
the liver [20–22]. In the cell model, relatively low concentra-
tion of OA supplementation was shown to protect HepG2
cells from H2O2-induced injury. LC-MS/MS results showed
that OA supplementation does not significantly increase
intracellular OA content, but can increase the OA/PA ratio.
H2O2 was used to mimic I/R injury, which has been widely
used to research I/R [23, 24]. Our results indicated that OA
supplementation can reduce the damage of H2O2 on cells
and reduce the number of apoptotic cells.
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Figure 3: Oleic acid protects hepatic cells from H2O2-induced inflammation. HepG2 cells were treated with various concentrations of H2O2
for 3 h with or without OA pretreatment. (a) Cell viability was measured by CCK-8 assay. (b) Relative liver mRNA expression of TNF-α,
IL-1β, and IL-6; the OA-Oxi group received a 100 μM OA pretreatment for 24 h. (c) Percentage of apoptotic cells. Western blot analysis of
AKT/p-AKT, caspase 3/cleaved caspase 3 protein levels after oxidative stress in HepG2 cells with or without OA treatment. (e–g) Relative
liver mRNA expression of p65, Nrf2, and PPARα; ∗∗p < 0:01, ∗p < 0:05. Data are plotted as the mean ± SD from three independent
experiments. Bars indicate the standard deviation of the mean.
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A large body of research [25–27] has proved that inflam-
mation and oxidative stress play an important, adverse role
in hepatic I/R injury. Recently, studies reported that supple-
mentation with EVOO prevents oxidative stress [28, 29]. As
OA is one of the main components of EVOO, we explored

the association between OA and EVOO. According to our
findings, OA was able to decrease hepatic expression of
TNF-α, IL-1β, IL-6, and p65 to levels comparable to the
control group. As reported, liver inflammation induced by
oxidative stress is closely related to the activity of Nrf2 and
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Figure 4: Oleic acid protects hepatic cells via alleviating H2O2-induced oxidative stress. (a) ROS fluorescence and its corresponding
fluorescence intensity score. (b) Western blot analysis of renalase protein levels. (c, d) The intracellular endogenous MDA and GSH in
HepG2 cells; ∗∗p < 0:01, ∗p < 0:05. Data are plotted as the mean ± SD from three independent experiments. Bars indicate the standard
deviation of the mean.
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Figure 5: Oleic acid inhibits the nuclear translocation of p65, resists apoptosis, and enhances autophagy during oxidative stress in HepG2
cells. (a, b, d) Western blot analysis of cytoplasm and nuclear p65, AKT/p-AKT, p-mTOR, LC3, and Bcl2 protein levels after oxidative
stress in HepG2 cells with or without OA treatment. (c) HepG2 cell were treated with 100μM OA for 2 h, 4 h, 12 h, and 24 h. Western
blot analysis of p62 protein levels. Values are expressed as the mean ± SD from three independent experiments; ∗∗p < 0:01, ∗p < 0:05,
compared with the control group. ns means no significance. Bars indicate the standard deviation of the mean.
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PPARα. Ligand activation of PPARα induces antioxidant,
metabolic, and anti-inflammatory responses. Our study
proved that OA supplementation only upregulates Nrf2
mRNA expression during oxidative stress. OA also tends to
reduce the mRNA expression level of PPARα.

The mechanisms of I/R injury are diverse, but the emer-
gence of ROS is one of the most critical factors [30–32]. The

sources of ROS are xanthine oxidase, NADPH oxidase
(Nox), mitochondria, and uncoupled nitric oxide synthase
and have become the current priority targets for therapeutic
intervention against reperfusion-induced organ dysfunction
and tissue damage [30, 33]. ROS leads to cell death by
mediating apoptosis, mitoptosis, necrosis, and necroptosis
[32]. In our study, we found that OA can significantly
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Figure 6: AKT phosphorylation activator partially reverses OA effects. (a) Western blot analysis of p-mTOR and AKT/p-AKT protein levels
with various concentrations of rhIGF-I pretreatment. HepG2 cells were pretreated with/without 50 ng/mg rhIGF-I, for 30min before
oxidation, apoptosis cells were detected with Annexin V-FITC kit using FASC, and cell viability was measured with CCK-8 assay. (b) Cell
viability of HepG2 cells. (c) Percentage of apoptotic cells. (d) Western blot analysis of p-AKT, caspase 3/cleaved caspase 3, and LC3
protein levels in HepG2 cells. Values are expressed as the mean ± SD from three independent experiments; ∗∗p < 0:01, ∗p < 0:05. Bars
indicate the standard deviation of the mean.
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reduce the amount of intracellular ROS produced during
oxidative stress. This clearance effect is partly due to the
enhancement of intracellular glutathione (GSH) production
induced by OA (Fig S1. b). Malondialdehyde (MDA), pro-
duced from PUFAs by both chemical reactions and reactions
catalyzed by enzymes, represents the intracellular lipid per-
oxidation level [34]. Our study also confirmed that OA was
able to limit intracellular lipid peroxidation levels induced
by H2O2. Our previous study found that renalase is highly
sensitive and responsive to oxidative stress in vitro and
in vivo [35]. In this study, we found OA decreased the expres-
sion of renalase induced by H2O2. Previous studies have con-
firmed that OA is effective in the prevention of diverse types
of digestive disorders such as inflammatory bowel disease
and cardiovascular disease due to its antioxidant capacity
[36–38]. The antioxidant effect of OA in liver I/R injury is
consistent with the existing literature.

The nuclear transcription of NF-κB is activated via AKT
signaling pathway under oxidative stress [39], which is inde-
pendent of PI3K phosphorylation. The activation of these
signaling pathways leads to the production of various proin-
flammatory mediators, such as TNF-α, IL-1β, IL-6, induced
nitric oxide synthase (iNOS), and cyclooxygense-2 (COX-2),
which are capable of amplifying the process of inflammation
[40]. NF-κB is a highly inducible transcription factor that
plays an important role in the hepatic acute phase response,
innate/adaptive immunity, and cellular survival through the
induction of genetic networks [41, 42]. RELA, also known as
p65, is a REL-associated protein involved in NF-κB hetero-
dimer formation, nuclear translocation, and activation. In
addition, phosphorylation of AKT (Ser473) is associated
with p65 [43]. We identified an increase in nuclear protein
level of p65 under oxidative stress conditions, and OA sig-
nificantly inhibited this process. It is worth mentioning that
in the cytoplasm, we did not detect changes in protein
expression level of p65. However, at the mRNA level, we
found that OA can significantly reduce the mRNA tran-
scription level of p65. This may be due to the certain time
lag between protein expression and mRNA expression.
Combining previous reports with our research results, we
hypothesize that OA reduces nuclear transcription of p65
by inhibiting phosphorylation of AKT, thereby reducing
inflammatory factor expression. Additionally, oxidative
stress-induced ROS and inflammatory factors lead to apo-
ptosis, which is highly associated with AKT phosphoryla-
tion. OA is able to clear ROS and downregulate the
expression of inflammation factors by blocking AKT phos-
phorylation in an unknown manner, thus protecting cells
from apoptosis.

Autophagy is a biological process in which macromole-
cules and damaged organelles in the cytoplasm are degraded
[32]. It is a self-degrading system that keeps normal cells
in a homeostatic environment. Autophagy-associated cell
death is considered an important mechanism for nona-
poptotic cell death [44]. However, the role of autophagy
in liver I/R injury remains controversial. Moderate autoph-
agy levels are beneficial for hepatocytes to maintain
homeostasis, but enhanced autophagy may further aggra-
vate the damage [45, 46]. In either case, autophagy is

closely related to liver I/R injury. Autophagy is regulated
by autophagy-related genes (ATG) and can be induced
by a variety of factors. LC3-II is produced during autoph-
agy and thus can be used as an autophagosomal marker
[47, 48]. The insulin-like growth factor I- (IGF-I-) AKT-
mTOR pathway (IIS) is involved in multiple bioprocesses
like aging, longevity, and cell survival/death signaling
[49]. IIS integrates a wide array of metabolic signals,
cross-talk with p53, NF-κB, or ROS, and influences gene
expression to shape the cellular metabolic profile and stress
resistance [49–53]. mTOR is located downstream of PI3K-
AKT signaling, regulates cell growth, and inhibits the initial
process of autophagy [45, 46, 54]. In this study, we identi-
fied for the first time that OA reduces the expression of
p-mTOR protein by inhibiting the phosphorylation of
AKT, thereby abolishing the inhibition of autophagy by
mTORC1 and thus promoting autophagy. This finding is
consistent with the findings of Qin et al. and provides a
rationale for a novel therapeutic strategy for managing liver
I/R injury [54].

The mechanism of OA inhibiting the phosphorylation of
AKT remains unclear. Activation of PI3K by extracellular
stimuli results in activation of AKT in almost all cells and tis-
sues. PI3K and its lipid products are generally considered to
be obligate and rate limiting for proper AKT activation
[55]. However, our study demonstrated that OA blocks the
AKT phosphorylation in a PI3K-independent manner. This
may be due to the increase in p-PI3K level when OA was
introduced (Fig. S4), while p-AKT level was suppressed.
The phosphorylation level of AKT is positively correlated
with the number of PIP3, which is mainly phosphorylated
by PIP2 in the cell and nuclear membranes [55, 56]. The
molecular structure of OA has great similarity with the lipid
part of PI-4,5-P2 and PI-3,4,5-P3, which means it is likely to
competitively combine with AKT, thereby inhibiting its
phosphorylation. We will explore its mechanism in depth
in a subsequent study.

5. Conclusions

In this study, we found that UDCA-LPE can significantly
increase the ratio of OA/PA in the liver, which may
account for its protective effect against the liver I/R injury.
OA supplementation demonstrated the alleviation of
mouse liver I/R injury. A relatively low dose of OA protects
against oxidative stress, inflammation, and apoptosis and
enhances autophagy in HepG2 cells. Furthermore, OA sup-
plementation reversed I/R-induced hepatocyte death. As a
MUFA, OA can eliminate ROS and MDA produced during
hepatic I/R injury and suppress the expression of inflam-
matory factors by inhibiting nuclear transcription of p65
by suppressing AKT phosphorylation. In addition, OA
induces the enhancement of autophagy by suppression of
AKT/mTOR pathways, thus protecting cells from oxidative
stress. Considering all these positive effects, OA supple-
mentation represents a potential suitable therapeutic strat-
egy preventing liver I/R injury. It is reasonable to expect
that there will continue to be many important mechanistic
and medical insights regarding lipid metabolism, which
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could lead to potentially beneficial, novel therapeutic strat-
egies to many patients.
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