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Abstract Antiphospholipid antibodies (aPL) are associ-

ated with the recurrent pregnancy loss and thrombosis that

characterizes the antiphospholipid antibody syndrome

(APS). Although the ontogeny of these pathogenic anti-

bodies has not been fully elucidated, there is evidence that

indicates the involvement of both genetic and environ-

mental factors. The ability of aPL to induce a procoagulant

phenotype in APS patients plays a central role in the

development of arterial and venous thrombotic manifesta-

tions typical of the disease. Inflammation serves as a nec-

essary link between this procoagulant phenotype and actual

thrombus development and is an important mediator of the

placental injury seen in APS patients with obstetric com-

plications. Recent evidence has indicated a role for

abnormal cellular proliferation and differentiation in the

pathophysiology of APS, especially in those patients with

pregnancy morbidity and other more atypical manifesta-

tions that have no identifiable thrombotic cause. The

interplay of genetic and environmental factors responsible

for aPL development and the mechanisms by which these

antibodies produce disease in APS patients is the focus of

this review.
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Introduction

Antiphospholipid antibody syndrome (APS) is an autoi-

mmune multisystemic disorder characterized clinically by

recurrent thrombosis and pregnancy morbidity and serolog-

ically by the presence of antiphospholipid antibodies (aPL)

including anticardiolipin (aCL) and anti-b2 glycoprotein I

(Anti-b2GPI) antibodies and lupus anticoagulant (LA) [1–3].

It is now widely accepted that aPL are a heterogenous group

of antibodies (Abs) that react with a myriad of phospholipids

(PLs), PL-protein complexes and PL-binding proteins. The

main antigenic target of these antibodies is recognized to be

b2GPI, which along with prothrombin accounts for more than

90% of the antibody-binding activity in APS patients. Other

potentially significant antigenic targets include tissue plas-

minogen activator (tPA), phosphatidylserine (PS), plasmin,

annexin 2, activated protein C (APC), thrombin, antithrombin

III (AT-III) and annexin V [4–10].

APS was first described in a subset of patients with

systemic lupus erythematosus (SLE) and related connec-

tive tissue diseases (CTD) that had abnormal LA tests,

subsequently being classified as ‘secondary’ APS (SAPS)

in the presence of these conditions and ‘primary’ (PAPS) in

their absence [11]. In the general population, PAPS is the

most common cause of acquired thrombophilia and is a

recognized risk factor for the development of deep vein

thrombosis (DVT) with or without pulmonary embolism,

new strokes in individuals below the age of 50 and recur-

rent fetal loss [12]. The prevalence of DVT occurrence in

the general population is estimated at 2–5%, 15–20%

associated with PAPS, suggesting that the prevalence of

venous thrombosis associated with PAPS may be as high as

0.3–1% of the general population [12]. APL Abs are

present in 30–40% of SLE patients and up to a third of

these patients (10–15% SLE patients) have clinical
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manifestations of APS, especially venous or arterial

thromboses [13, 14]. The APS-related thrombotic events

range in severity from the relatively benign superficial

thrombophlebitis to myocardial infarction, stroke, and

catastrophic APS (CAPS) [15]. SAPS also accounts for a

significant proportion of recurrent pregnancy loss in SLE

patients, indeed, aPL are now regarded as the most frequent

acquired risk for a treatable cause of recurrent pregnancy

loss and for pregnancy complications (early and severe pre-

eclampsia) [13, 16–18].

Apart from the well-recognized arterial and venous

thrombotic events typical of APS, these patients can also

present with a variety of ‘non-criteria’ manifestations

which include thrombocytopenia, nephropathy, livedo

reticularis, cardiac valve disease, skin ulcers, diffuse pul-

monary hemorrhage and neurological manifestations such

as chorea, epilepsy, cognitive dysfunction and transverse

myelopathy [19–21]. These manifestations often develop

during, and do not improve with, heparin or warfarin

anticoagulation therapy highlighting the concept that these

manifestations more than likely do not result from the same

biological abnormalities that cause arterial and venous

thromboembolism in APS patients [19].

The pathophysiology of this disease has its basis in the

action of the myriad autoantibodies found in APS patients

on their numerous antigenic targets [22]. The origin of

these pathogenic autoantibodies still remains a mystery but

is likely to be due to the complex interaction of multiple

environmental factors in individuals with genetic markers

that increase susceptibility to the disease [23, 24]. Perhaps

the most studied aspect of the disease is the increased

propensity for thrombus formation and this procoagulant

phenotype in APS occurs as a result of the synergy of many

contributory elements. These include aPL-mediated acti-

vation of platelets, monocytes, and endothelial cells and

aPL-induced perturbation of natural anticoagulant and

fibrinolytic systems [8, 25–28]. Non-thrombotic mecha-

nisms also play a major role in APS and their contribution

to the development of obstetric and other more atypical

manifestations of the disease has recently been the focus of

much research [29, 30]. Abnormal cellular proliferation

and differentiation impacting on cell function has been

shown to be an important factor in aPL-induced pregnancy

morbidity and this is also likely to be one of the main

mechanisms involved in the development of those APS

disease manifestations for which a thrombotic basis is not

clearly identifiable [19, 30–32]. Inflammation is a central

pathogenic factor in APS; it serves as a necessary link

between the procoagulant phenotype seen in this disease

and actual thrombus development and is an essential

mediator of placental injury typical of aPL-induced

obstetric complications [33, 34]. The proposed genetic and

environmental factors contributing to the development of

aPL and the mechanisms by which these autoantibodies

produce the myriad disease manifestations seen in APS

patients is the focus of this review.

Genes and the environment in APS

Various animal models and family and population studies

have been used to highlight HLA associations with the

disease and the occurrence of aPL in patients. That is to say

that Major Histocompatibility Complex (MHC) genes may

influence not only autoantibody production but also disease

expression itself [35]. Another important consideration is

the occurrence of prothrombotic genetic markers that may

modify disease expression in APS patients especially when

associated with acquired factors such as aPL [36]. These

pathogenic aPL are thought to be produced by exposure to

certain viral or bacterial products with sequence similarity

to host antigens inducing a break in tolerance [37]. As

stated previously, aPL represent a heterogenous group of

antibodies with many different antigenic targets and the

clinical experience is that not all aPL are pathogenic;

making it likely that only a limited number of aPL induced

by certain viral or bacterial products are important in dis-

ease [37, 38]. The roles that genetic and environmental

factors play in APS development are summarized in

Table 1.

Animal genetic studies in APS

There are relatively few animal studies that have assessed

the genetic basis for the development of APS. The spon-

taneous production of IgG aCL antibodies, which exhibit

co-factor (b2GPI) dependent binding to cardiolipin, has

been detected in NZW 9 BXSB F1 (W/B F1) male mice

[39]. W/B F1 mice are SLE-prone mice, which develop

several autoantibodies, circulating immune complexes, and

nephritis in addition to a high incidence of degenerative

coronary vascular disease with myocardial infarction and

thrombocytopenia and thus represent a model of lupus

associated APS [39–41]. Interestingly, analysis of the

genes utilized in the production of pathogenic aCL in these

mice showed preferential usage of certain VH and Vj

genes, whereas other non-pathogenic aCL utilize random V

gene combinations [42]. This possibly indicates that path-

ogenic aCL production in these mice is antigen-driven

rather than germ line encoded.

In 1998, Ida et al. analyzed APS disease features in

BXSB and NZW mice and their progeny [43]. Although

male BXSB parental mice showed similar disease features

to their male NZW 9 BXSB F1 progeny, these features

were of decreased frequency and intensity and disease

was not apparent in female parental NZW or female
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NZW 9 BXSB F1 progeny. These findings suggest that

genes from the BXSB strain determines, while NZW genes

serve to upregulate or modify, APS disease characteristics

in their progeny and that modifying alleles such as BXSB

Y-linked autoimmune accelerator gene (Y aa) may also

play a role [43–45]. In the same study, genome-wide

analysis using microsatellite markers was used to map

BXSB alleles affecting development of aCL, anti-platelet

antibodies, thrombocytopenia, and myocardial infarction in

NZW 9 (NZW 9 BXSB) F1 backcross male progeny

[43]. This analysis showed that the generation of each

disease character was controlled by two independently

segregating major dominant alleles producing full expres-

sion as a complementary gene action. Although there was

complete genetic concordance between anti-platelet Abs

and thrombocytopenia, other disease characteristics were

independently controlled by different combinations of two

dominant alleles suggesting that no single genetic factor

can explain the pathogenesis of APS [43].

The presence of IgG aCL antibodies has also been

demonstrated in other lupus-prone mice including the

MRL/MP/lpr/lpr (MRL/lpr) and MRL/?/? mice [46].

Similar to aCL produced in W/B F1 mice, those produced

in MRL/lpr mice show non-random VH and Vj gene usage

and also evidence of somatic mutation indicating a role for

antigen-driven affinity maturation [47]. aCL are also

produced in normal C57BL/6 J mice with estrogen treat-

ment increasing the incidence and levels of these anti-

bodies, underscoring the role that environmental factors

such as hormones may play in modifying genetic suscep-

tibility in APS patients [48]. It is important to note however

that aCL produced in these estrogen treated C57BL/6 J

mice and those in MRL/lpr mice are not b2GPI dependent

but rather show decreased binding to cardiolipin in the

presence of human b2GPI [49]. Interestingly, NZW 9

NZB F1 mice, another classic murine model of SLE, fail to

produce aCL Abs despite the production of other autoan-

tibodies such as anti-dsDNA [46].

Human family and population studies: HLA

and non-HLA associations

Multiple HLA-DR and DQ associations with the occur-

rence of aPL antibodies have been described but small

patient sample sizes and difficulties regarding obtaining

appropriately ethnically matched control populations make

interpretation problematic [35, 36]. A familial clustering of

individuals with persistently false positive tests for syphilis

in whom overt autoimmune disease developed years later

was perhaps the first indication of familial APS [50]. Since

1980, several studies have described families with high

incidences of primary APS associated with LA, aCL and

Table 1 Evidence for proposed mechanisms of genetic and environmental involvement in APS development

Experimental model Implications/findings

Genetic Animal studies • Evidence for antigen driven stimulation for pathogenic aPL production

• Complementary gene action of 2 independently segregating major dominant alleles produce disease

characteristic

• Role for modifying alleles (e.g. Yaa)

• Role for hormones in modifying genetic susceptibility

Human family HLA

Studies

• Most consistent associations: HLA-DR4 and DRw53

• Others: DR7, DQw3, DQw7, A30, Cw3, B60

Human population

HLA studies

• Most consistent associations: HLA-DR4, DR7, DRw53, DQB1*0302

• Others: DRB1*04, DQB1*0301/4, DQB1*0604/5/6/7/8/9, DQA1*0102, DQA1*0301/2

• DRB1*09 in Japanese patients

• C4A/C4B null alleles in African American patients

Human non-HLA

studies

• Several non-HLA genes associated with increased thrombosis [G20210 A, AT-III, F5G1691 A, b2GPI

val247leu polymorphism, F13A1, GP1a/IIa polymorphisms]

Environmental Infectious agents • Molecular mimicry [e.g. CMV, AdV,H. influenzae, N. gonorrhoae, C. tetani]

• Selective destruction/activation of unique lymphocyte subsets

• Cytokine release

• Cryptic antigen exposure (necrosis/apoptosis)

Drugs/vaccination • Neoantigen formation

• Altered antigen processing and presentation

Malignancies • Neoantigen formation (tumor, immunomodulatory therapy)

AdV adenovirus, AT-III antithrombin III, b2GPI val247leu beta-2 glycoprotein I valine 247 polymorphism, CMV cytomegalovirus, F13A1 factor

XIII val 34 polymorphism, F5G1691 A factor V Leiden mutation, G20210 A prothrombin mutation, GP Ia/IIa glycoprotein Ia/IIa, HLA human

leukocyte antigen, Yaa Y-linked autoimmune accelerator

Autoimmun Highlights (2011) 2:35–52 37

123



other autoantibodies [51–53]. The increased incidence of

aCL antibodies in first-degree relatives of patients with

primary or secondary APS with SLE has also been dem-

onstrated [54, 55]. A 1998 study which assessed seven

families with a high incidence of primary APS, 30 of 101

family members meeting diagnostic criteria, suggested

either a dominant or co-dominant model for inheritance of

the disease by segregation analysis but failed to find link-

age to HLA and other candidate genes including b2GPI and

Fas [56]. Other family studies however have reported

several HLA associations. The paternal haplotype A30;

Cw3; B60; DR4; DRw53; DQw3 has been shown to be

associated with aCL in an English Canadian family; both in

asymptomatic individuals and those with APS secondary to

SLE and autoimmune thyroid disease [57]. The occurrence

of LA in families with haplotypes containing either DR4 or

DR7 has also been demonstrated [58, 59]. In a family study

in which all members had SLE and presented with various

APS manifestations, a mother and her twins shared a

haplotype that included DR4, DRw53 and DQw7 [60].

Non-familial population studies also highlight several

HLA associations of APS. A 1991 study of 20 patients with

SLE and LA demonstrated an association with HLA-DQw7

(HLA-DQB1*0301) linked to HLA-DR4 and/or -DR5 [61].

In 13 English patients with primary APS, DR4 and DRw53

were found with increased frequency [62]. Other HLA

loci associated with primary APS include DRB1*04,

DR7, DQB1*0301/4, DQB1*0604/5/6/7/9, DQA1*0102,

and DQA1*0301/2 [63–65]. In a large Italian study in

SLE patients, aCL were positively associated with

HLA-DRB1*04, -DRB1*07, -DQA1*0201,-DQA1*0301,

-DQB1*0302,-DRB3*0301 and anti-b2GPI positively

associated with DQB1*0302 [66]. The association of aCL

with DRB1*09 has been reported in Japanese patients with

APS secondary to SLE [67] Anti-b2GPI in Caucasian and

Mexican Americans is strongly associated with HLA-

DR4 haplotypes, especially those carrying HLA-DQ8

(DQB1*0302) while in African American and white British

patients with primary APS, anti-b2GPI is strongly associated

with the HLA-DRB1*1302;DQB1*0604/0605 haplotype

[63, 68]. The association of C4A or C4B null alleles with the

presence of aCL has been reported in black American pop-

ulations, however, patients in the Hopkins Lupus Cohort who

were homozygous for C4A deficiency had a lower frequency

of aCL and LA than patients without this deficiency [69–71].

Other genes outside the MHC region also contribute to

both autoantibody production and disease expression in

APS. A polymorphism in domain 5 of b2GPI, valine

instead of leucine at position 247, is found more frequently

in patients with APS than matched controls and is associ-

ated with anti-b2GPI production in these patients [72–74].

One study found an increased frequency of this polymor-

phism in patients with arterial thrombosis than those

without [75]. There are other prothrombotic genetic factors

that can modify disease expression in APS patients. Those

genetic factors clearly related to thrombophilia that have

been seen in APS patients include factor V Leiden and

prothrombin mutations and antithrombin III, protein C and

protein S deficiencies [75]. The gain of function factor V

Leiden G1691A (FVL) mutation is highly prevalent in

Caucasian populations with population frequencies ranging

from 1 to 15% [76, 77]. Several reports have demonstrated

an increased incidence of thrombosis in APS patients with

FVL mutation when compared to those without but the

mutation seems to have a more moderate effect on the

development of thrombosis in APS than in the general

population [78–80]. The G20210A prothrombin mutation

(F2 G20210A) is associated with venous thromboembolism

in the general population but there have been conflicting

reports of the increased risk of thrombosis related to this

gene mutation in APS patients. Initial reports indicated no

increased risk but some of the subsequent studies have

demonstrated the association between the mutation and

thrombosis in APS patients, the first case being described

in a young female with SLE-associated APS homozygous

for the G20210A mutation [81–84]. Protein C, S and

antithrombin III deficiencies are uncommon diseases

making it difficult for an accurate assessment to be made of

the relative contributions of these mutations and aPL in

thrombus generation in APS. However there have been

reports of increased thrombosis rates in APS patients with

protein C and protein S deficiency [85, 86]. Other poly-

morphisms that potentially impact the risk of thrombosis in

APS patients affect platelet glycoproteins GP Ia/IIa and GP

IIb/IIIa, platelet Fcc receptor IIa, tissue factor pathway

inhibitor, thermolabile variant of methylenetetrahy-

drofolate reductase, type-I plasminogen activator inhibitor,

tumor necrosis factor a, thrombomodulin, annexin A5,

p-selectin, p-selectin glycoprotein ligand-1, toll-like

receptor 4, factor XIII and CD40 [87–97].

Origin of aPL: environmental factors

The processes underlying the production of aPL in APS

patients remain undetermined. When these antibodies were

first described, aPL were defined as antibodies reacting to

cardiolipin, however, it is now well accepted that these

antibodies recognize various PL and protein antigenic

complexes [4–7]. Indeed, as stated previously, the main

antigenic target for these antibodies is b2GPI, an abundant

serum protein that is a necessary co-factor for aPL binding

to phospholipid. In fact, efforts to induce high-titer pro-

duction of pathogenic aPL in animal models succeeded

only after immunization with heterologous b2GPI rather

than pure phospholipids [4, 98]. This led researchers to

believe that perhaps in vivo binding of foreign PL-binding
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proteins resembling b2GPI to self-phospholipids in APS

patients may lead to the formation of immunogenic com-

plexes against which aPL is produced. A synthesized 15

amino acid peptide, GDKV, which spanned an area of the

fifth domain of b2GPI known to be a major PL-binding site

of the molecule, was able to induce pathogenic aPL and

anti-b2GPI production in immunized mice [99]. A mono-

clonal Ab with aPL and anti-b2GPI activity generated from

these GDKV-immunized mice was shown to be pathogenic

using in vivo models for thrombus enhancement and

microcirculation [100]. Similar results were subsequently

obtained using peptides from microorganisms with func-

tional and sequence similarity to that of the PL-binding site

of b2GPI [101]. The peptides TIFI and VITT from cyto-

megalovirus (CMV), TADL from adenovirus (AdV) and

SGDF from Bacillus subtilis all had greater degrees of

PL-binding compared to GDKV and induced high-titer aPL

and anti-b2GPI production in mice. Subsequent in vivo and

in vitro experiments confirmed the pathogenicity of anti-

bodies induced in TIFI-immunized mice [101–103].

Further supporting evidence for molecular mimicry as a

possible mechanism for APS development was provided by

a study evaluating the APS-related pathogenic potential of

microorganisms carrying sequences related to a hexapep-

tide, TLRVYK, known to be specifically recognized by a

pathogenic monoclonal anti-b2GPI Ab [104]. Following

immunization with Haemophilus influenzae, Neisseria

gonorrhoeae or tetanus toxoid; high titers of antibodies

with anti-peptide (TLRVYK) and anti-b2GPI activity were

observed in BALB/c mice. These affinity-purified anti-

bodies were then infused into naive mice at day 0 of

pregnancy. At day 15, these mice had significant throm-

bocytopenia, prolonged activated partial thromboplastin

times (aPTT) and increased frequency of fetal loss com-

pared to controls.

Infections are thought perhaps to be the most prominent

environmental trigger for aPL production and APS devel-

opment. Syphilis was the first infectious disease recognized

to be linked to aPL production and these infectious type

aPL were initially thought to be non-pathogenic [105–107].

However, several subsequent reports have shown that

many infections not only trigger aPL production but are

associated with the development of APS manifestations as

well [108]. This is perhaps best exemplified by catastrophic

APS, a rare presentation of APS characterized by multiple

small vessel occlusions affecting multiple organ systems

with a high mortality rate, which is strongly linked to

preceding infections and/or trauma [15]. CMV, parvovirus

B19, Human immunodeficiency virus (HIV), Hepatitis B

and C viruses, Human T cell lymphoma/leukemia virus

(HTLV) and Varicella Zoster Virus (VZV) are just a few of

the infectious agents that have reported associations with

aPL production and APS manifestations [109]. In addition

to molecular mimicry, infectious agents can potentially

induce autoimmune responses by selectively activating or

destroying unique lymphocyte subsets, directing cytokine/

chemokine release or exposing cryptic autoantigens during

cell necrosis and/or apoptosis [110–112]. Other potential

environmental triggers of APS development include vac-

cination, drug therapy and certain malignancies. However,

to date there is no conclusive evidence linking vaccination

to the development of APS [113, 114]. The ability of

drugs to bind and perhaps alter the processing and pre-

sentation of self-antigens such that cryptic antigens are

presented makes the development of an autoimmune

response possible [115]. Indeed, agents such as chlor-

promazine, amoxicillin, phenytoin, chlorothiazide, pro-

pranolol, oral contraceptives, quinine, alpha-interferon and

infliximab have been associated with the presence of aPL

but data regarding the prevalence of drug-induced aPL in

APS is still lacking [105, 116]. The presence of aPL has

been reported in patients with both solid and hematological

malignancies and the significance of this finding lies in the

increased risk for thrombosis and the potential for precip-

itating CAPS in these patients. The mechanisms leading to

aPL production remain unclarified but may result from an

immune response directed against tumor antigens or per-

haps against neoantigens formed due to immunomodula-

tory drug therapy such as interferon-a (IFNa) [117].

The relative degree to which genetic and environmental

factors influence susceptibility to APS development is still

uncertain. It is likely that there is a complex interplay of

multiple environmental factors in a genetically susceptible

patient to produce the varied autoantibodies and myriad

clinical manifestations typical of this disease. Improved

understanding of the relative contributions of these many

factors would certainly aid in prevention and management

of these patients.

Thrombogenic mechanisms in APS pathophysiology

There is overwhelming evidence of the thrombogenic

capacity of aPL provided by both in vitro studies and in

vivo animal models [118]. The main targets of aPL action,

b2GPI and prothrombin (PT), are proteins that interact with

many factors involved in hemostasis making the central

role that aPL-mediated thrombosis plays in APS unsur-

prising [4, 5, 119]. Platelet, endothelial cell and monocyte

activation occurs in conjunction with disruption of natural

anticoagulant and fibrinolytic systems in response to aPL

resulting in a procoagulant phenotype in APS patients

(Fig. 1) [118]. However, the clinical observation that

thrombosis is only occasionally observed despite the per-

sistent presence of aPL suggests that the procoagulant state

induced by these antibodies (‘first hit’) only leads to
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thrombosis in the presence of an inciting factor (‘second

hit’) such as inflammatory responses or trauma [120]. The

role that inflammatory responses play in thrombus forma-

tion in APS is discussed later.

Cells of the coagulation system

A role for platelet activation in the pathophysiology of APS

was initially suggested by the frequent finding of throm-

bocytopenia in APS patients and APS animal models [121].

Elevated urinary secretion of 11-dehydro-thromboxane B2

(11-dehydro-TXB2), a major platelet derived thromboxane

metabolic breakdown product, in APS patients with ele-

vated LA levels indicates this as well [122]. Binding of

aPL Abs to platelets is dependent on both the presence of

dimeric b2GPI and the exposure of anionic phospholipids,

especially phospatidylserine (PS), on platelets which

occurs after stimulation by agonists such as thrombin,

collagen, and adenosine diphosphate (ADP) [123, 124].

aPL Abs enhance the expression of GPIIb/IIIa, a major

fibrinogen receptor, on platelets and Pierangeli et al.

showed that aPL-mediated thrombus formation was sig-

nificantly reduced in GPIIb/IIIa deficient (b3-null) mice

and mice treated with a monoclonal anti-GPIIb/IIIa anti-

body [125, 126]. The intracellular mechanisms through

which aPL activate platelets was also elucidated by this

group. They showed that aPL-induced TXB2 production in

platelets through the activation of p38 mitogen activated

protein kinase (MAPK) and subsequent phosphorylation of

cytosolic phospholipase A2 (cPLA2). Other MAPK path-

ways in platelets, such as ERK-1 (p44 MAPK) and ERK-2

(p42 MAPK), have a potential role in signaling after initial

activation through p38 MAPK [126]. Researchers have

demonstrated the role that apolipoprotein E receptor 20

(ApoER20) and the GPIba subunit of the GPIb-V-IX

receptor on the platelet membrane play in aPL-mediated

platelet activation through the p38 MAPK pathway

and subsequent thrombus formation in several studies

[124, 127]. Interestingly, these 2 receptors are able to form

a complex on the platelet membrane and recently Urbanus

et al. reported that anti-b2GPI/dimeric b2GPI complex

mediated signaling through both these receptors is required

Fig. 1 Thrombogenic mechanisms of antiphospholipid antibodies

(aPL). Y- inhibitory aPL action Y? aPL-induced activation, Straight
green arrow activation, broken red arrow inhibition. AnnA2 annexin

A2, APC activated protein C, ApoER20 apolipoprotein E receptor 20,
AT-III antithrombin III, b-2GPI beta-2 glycoprotein, C5a activated

complement component 5, C5aR C5a receptor, Flt-1 tyrosine kinase

receptor, GPIb-V-IX glycoprotein Ib-V-IX, GPIIb/IIIa glycoprotein

IIb/IIIa, ICAM-1 intercellular adhesion molecule-1, IL interleukin,

LPa lipoprotein a, MAC membrane attack complex, NF-jB nuclear

factor-kappa B, p38 MAPK p38 mitogen activated protein kinase,

PAI-1 plasminogen activator inhibitor-1, PMN polymorphonuclear

leukocyte, TF tissue factor, TLR4 toll-like receptor 4, TNFa tumor

necrosis factor alpha, tPA tissue plasminogen activator, TXB2
thromboxane-B2, VCAM-1 vascular cellular adhesion molecule – 1,

VEGF vascular endothelial growth factor
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for platelet activation [128]. This suggests that perhaps

there is a critical role for complex formation of these two

receptors in aPL-mediated platelet activation. A recent

study has demonstrated a putative role for platelet factor 4

(PF4), a CXC chemokine secreted and bound by platelets,

in the stabilization of dimeric b2GPI and subsequent

binding to ant-b2GPI Abs and exposed phospholipids and

receptors on the platelet surface [129].

Like platelet activation, a role for vascular endothelial

cell and monocyte activation in aPL-mediated thrombo-

genesis has been described. Several in vitro studies have

shown that endothelial cells express significantly higher

amounts of the adhesion molecules vascular cell adhesion

molecule 1 (VCAM-1), intercellular cell adhesion mole-

cule 1 (ICAM-1) and E-selectin [130–132]. Employing in

vitro and in vivo experiments utilizing ICAM-1, VCAM-1,

E-selectin and P-selectin knockout mice, Pierangeli et al.

demonstrated that the ability of human polyclonal and

monoclonal aPL to activate endothelium promoting leu-

kocyte adhesion and thrombus formation is mediated by

ICAM-1, E-selectin, P-selectin and VCAM-1 [133]. This

group and others have also demonstrated the upregulation

of tissue factor (TF) expression and microparticle forma-

tion with associated increases in interleukin-6 (IL-6) and

IL-8 secretion in endothelial cells and monocytes treated

with aPL [134–137]. This TF upregulation in monocytes

may occur as a result of stimulation of the Flt-1 tyrosine

kinase receptor by vascular endothelial growth factor

(VEGF); increased plasma levels of VEGF and surface

expression of both VEGF and Flt-1 on monocytes being

noted in APS patients [138]. The aPL-induced activation

and TF upregulation in both endothelial cells and mono-

cytes has been shown to be dependent on p38 MAPK

activation and nuclear factor jB (NF-jB) [139, 140]. Many

researchers have provided evidence that upregulated TF

mRNA and antigen expression and TF pathway activation

plays a key role in APS thrombotic manifestations. Indeed,

Pierangeli et al. found, in an ongoing clinical trial, that

mean serum levels of soluble TF, tumor necrosis factor-a
(TNFa) and VEGF were significantly elevated in APS

patients compared to controls and treatment with fluvast-

atin, a statin with efficacy in treating APS, resulted in

significant decreases of these pro-inflammatory markers in

most APS patients [141].

There is substantial evidence to show that b2GPI binds

to endothelial cells, providing suitable epitopes for aPL

binding to endothelial cells. However, the full details

regarding the identity of these receptors that bind b2GPI

and the mechanisms by which signaling cascade activation

occurs have not been elucidated [142]. Annexin A2 and

toll-like receptor 4 (TLR4) have been identified as candi-

date receptors on both endothelial cells and monocytes and

ApoER20 on endothelial cells as well [139, 143]. Annexin

A2 is able to bind anti-b2GPI/b2GPI complexes on both

endothelial cells and monocytes leading to activation and

expression of a procoagulant phenotype [143]. Romay-

Penabad et al. have also demonstrated the protective effect

of annexin A2 deficiency in mice against the development

of aPL-induced thrombosis [144]. However, annexin A2 on

the cell surface lacks an intracellular tail meaning that a

co-receptor would be required for intracellular signal

transduction and subsequent cell activation as a result of

anti-b2GPI/b2GPI complex binding [143]. Raschi et al.

showed that the myeloid differentiation factor 88 (MyD88)

signaling cascade, which is important in TLR signaling, is

triggered by binding of aPL on human endothelial cells in

vitro [139]. A subsequent in vivo study by Pierangeli et al.

in lipopolysaccharide (LPS) non-responsive mice (LPS

-/-) displaying a single point mutation on the TLR4 gene

demonstrated reduced TF expression, endothelial cell

activation and thrombosis in response to aPL [97]. These

findings indicate that TLR4 may serve as a co-receptor for

annexin A2 binding of anti-b2GPI/b2GPI complexes and

subsequent endothelial cell activation. There is also evi-

dence for annexin A2 and TLR4 acting as co-receptors for

these complexes on human monocytes [145]. A very

interesting study recently demonstrated that IgGs from

APS patients with differing clinical manifestations of the

disease vary in their ability to activate NF-jB and p38

MAPK and increase TF production in monocytes and that

this was possibly due to differential TLR4 activation [146].

Of note, TLR2 has been shown to play a role in anti-b2GPI

mediated activation of fibroblasts through a MyD88

dependent pathway [147]. Since TLR2 and TLR4 have

several shared ligands and TLR2 is also present on endo-

thelial cells, monocytes and platelets, it is possible that

TLR2 is involved in aPL-mediated activation of these cells

as well [148]. In fact, a recently published study presented

evidence for TLR2 being the major TLR involved in aPL-

induced endothelial cell activation [149]. Recently, Doring

et al. showed that monoclonal aPL and polyclonal IgG

from APS patients induced TNFa production in monocytes

by activating TLR8, a member of the endogenous group of

TLRs [150]. Previous evidence provided by the same group

had suggested a role for endogenous stimulation of both

TLR7 and TLR8 in the production of pro-inflammatory

mediators in APS patients [151]. ApoER20 is also expres-

sed on endothelial cells and in vitro studies utilizing anti-

ApoER20 antibodies have shown partial inhibition of b2GPI

dependent aPL binding to and subsequent activation of

endothelial cells [152]. A recent in vivo study by Romay-

Penabad et al. has demonstrated in ApoER20 deficient

(-/-) mice, a significant reduction in thrombus formation

and TF production induced by polyclonal IgG aPL, a

murine anti-b2GPI monoclonal Ab (E7) and a constructed

b2GPI dimer compared to wild type controls. A similar
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effect was noted in wild type mice treated with soluble

binding domain I of ApoER20 (sBD1), an inhibitor of

ApoER20, thus highlighting the importance of this receptor

in the pathogenesis of APS [153].

Anticoagulation and fibrinolytic systems

Interference with natural anticoagulant and fibrinolytic

systems also plays a role in thrombus formation in APS

patients [152, 154]. Activated protein C (APC), in con-

junction with its main co-factor protein S, is an important

anticoagulant that functions by binding and inactivating the

activated forms of coagulation factors V (FVa) and VIII

(FVIIIa) [155]. Anti-b2GPI/b2GPI complexes potentially

affect the assembly and function of APC thus inducing a

procoagulant phenotype [156]. Interestingly, anti-PT anti-

bodies in APS patients may also affect APC function [156].

The clinical relevance of these antibodies, as evidenced by

association with thrombosis and LA activity, seems to be

seen with anti-PT complexed to PS rather than anti-PT

itself [157]. Antithrombin III (AT-III) is another natural

anticoagulant that performs its function by inactivating the

activated forms of factors XII (FXIIa), XI (XIa), X (FXa),

IX (FIXa), VII (FVIIa) and thrombin (FIIa), these actions

being potentiated by heparin [158]. The inhibition of AT-

III activity in vitro by polyclonal IgG and IgM and purified

anti-heparan sulfate antibodies from APS patients has been

described [159–161]. Annexin A5 is a calcium dependent

cationic protein that binds anionic PL, especially PS, with

high affinity and functions as a protective anticoagulant

shield by competing for sites on PL membranes where

coagulation factors normally assemble into active com-

plexes. This protein is found in abundance in placental

tissue and is an important natural mediator of anticoagu-

lation at this site [162]. The disruption of this anticoagu-

lant’s function and its possible importance in aPL-mediated

pregnancy morbidity is discussed later in this review.

The fibrinolytic system is activated when the proenzyme

plasminogen is converted to plasmin which then degrades

fibrin, a major component of thrombi. This process is pri-

marily mediated through the action of tissue plasminogen

activator (tPA) or urokinase plasminogen activator, the for-

mer being more important in coagulation homeostasis. The

activity of tPA itself is primarily regulated by the serine

protease inhibitor, plasminogen activator inhibitor type I

(PAI-1) [154]. Anti-tPA antibodies correlated with reduced

tPA plasma levels and the ability to bind and inactivate tPA

have been described in APS patients [163]. Elevated PAI-1

levels and decreased tPA release after venous occlusion in

APS patients has also been reported [164]. Atrium et al. also

reported elevated levels of lipoprotein a (LPa), which shares

structural similarity to plasminogen, in the plasma of APS

patients. Their experiments suggested that LPa may compete

with plasmin or plasminogen for binding to fibrin and others

have demonstrated LPa upregulation of PAI-1 expression by

human endothelial cells [165]. Some aPL have been reported

to bind plasmin thus inhibiting fibrinolysis; one study

reporting a frequency of 28% of these antibodies in APS

patients [166].

In addition to the role of annexin A2 as a receptor for

anti-b2GPI/b2GPI complex mediated endothelial cell acti-

vation, experimental evidence has shown that cell surface

annexin A2 stimulates the activation of plasminogen by

tPA [167]. Antibodies that act against annexin A2 and

correlate with a history of thrombosis have been shown to

be significantly more prevalent in APS patients than in

healthy individuals, patients with non-autoimmune throm-

bosis and SLE patients without thrombosis [168]. IgG

anti-annexin A2 Abs have been shown to limit plasmin

generation in in vitro experiments on human umbilical vein

endothelial cells by 34–83% [9]. Interestingly, b2GPI has

demonstrated the capacity to block PAI-1 activity and also

to directly increase plasmin generation by binding to

plasminogen [169–171]. These mechanisms of b2GPI

mediated fibrinolysis enhancement have been inhibited by

monoclonal anti-b2GPI and polyclonal IgG from APS

patients [172].

Thrombosis in aPL-mediated pregnancy morbidity

Due to the prothrombotic nature of APS, impairment of

maternal-fetal blood exchange as a result of thrombus

formation in the uteroplacental vasculature was thought to

be the main pathogenic mechanism underlying pregnancy

morbidity in this condition [173]. Histological examination

has supported this hypothesis; placental thrombosis and

infarction being demonstrated in APS patients with first

and second trimester abortions [174, 175]. IgG fractions

from LA positive APS patients are able to induce a

procoagulant phenotype with significant increases in

thromboxane synthesis in placental explants from normal

human pregnancies [176]. As stated previously annexin A5

is thought to be an important anticoagulant during preg-

nancy acting as a shield on potentially thrombogenic

anionic membrane surfaces in the placenta [162]. Rand

et al. have reported significantly lower levels of annexin

A5 covering the intervillous surfaces of placentas in

women with aPL when compared to controls [177]. In vitro

studies have also demonstrated displacement of annexin V

from trophoblast and endothelial cell monolayers by aPL

while murine studies have demonstrated the necessity of

this protein in maintaining placental integrity [178, 179].

Anti-annexin A5 Abs have been reported in APS patients at

frequencies up to 30% and several studies have demon-

strated the association of these Abs with recurrent fetal loss

in APS patients [180, 181].
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Despite experimental models providing evidence for a

role of thrombosis in APS-related pregnancy losses, epi-

demiological studies fail to demonstrate this consistently.

In fact, histological evidence of thrombosis in the utero-

placental circulation cannot be demonstrated in the

majority of placentas from APS patients [182]. Other the-

ories have thus been put forward to explain APS-related

pregnancy morbidity such as defective trophoblast invasion

and decidual transformation in early pregnancy and pla-

cental injury as a result of local inflammatory events [183].

It is likely that abnormalities of early trophoblast invasion

and defective placentation rather than thrombosis may be

the primary pathological mechanism involved in first tri-

mester losses in these patients (Fig. 2) [184].

Non-thrombotic mechanisms in APS pathophysiology

Cellular dysfunction in obstetric APS

There is evidence for a direct effect of aPL on trophoblasts

resulting in increased apoptosis and abnormal proliferation,

human chorionic gonadotrophin (hCG) release, invasive-

ness and adhesion molecule expression. There is also evi-

dence for an effect of aPL on maternal spiral artery

transformation and the maturation and differentiation of

maternal decidual endometrial cells [183]. The direct

reactivity of aPL on these cells is supported by the fact that

b2GPI is normally expressed on trophoblast membranes

under physiological conditions which also explains the

placental tropism of aPL. There is a high level of tissue

remodeling during placentation so that trophoblasts, which

are able to synthesize b2GPI, normally express anionic

phospholipids on the outer leaflet of the cell membrane

allowing b2GPI binding [185].

Normal placentation involves a dynamic and complex

interaction between trophoblast and decidual cells requir-

ing finely regulated cell surface adhesion and signaling

molecule expression, activation of matrix metalloprotein-

ases (MMPs), angiogenesis and spiral artery transformation

[186]. In vitro studies utilizing murine and human mono-

clonal aPL and polyclonal IgG Abs from APS patients have

demonstrated b2GPI dependent binding of these Abs to

trophoblast monolayers [187, 188]. Bound murine mono-

clonal anti-PS Abs have been shown to react with syncy-

tiotrophoblast and to prevent intertrophoblast fusion,

trophoblast invasiveness and hCG secretion [189, 190].

Comparable results were reported using polyclonal IgG

fractions from APS patients and IgM monoclonal anti-

b2GPI Abs [187]. Similarly, anti-b2GPI mAbs have

Fig. 2 Pathogenic mechanisms leading to obstetric complications in APS. EGF-like GF epidermal growth factor-like growth factor, hCG human

chorionic gonadotrophin, MMP matrix metalloproteinases, TF tissue factor, VEGF vascular endothelial growth factor
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demonstrated an inhibitory effect on the proliferation of a

human choriocarcinoma cell line and on extravillous tro-

phoblast differentiation [189, 191]. In an in vitro model of

trophoblast invasion, aPL induced trophoblast expression

of particular integrins and cadherins, affecting decidual

invasion [192]. Di Simone et al. showed recently that

decreased expression of heparan binding epidermal growth

factor-like growth factor (EGF-like GF), an important

factor in blastocyst implantation, might also play a role in

defective placentation [193]. Increased apoptosis has been

demonstrated in rat embryos and placental explant cultures

incubated with polyclonal IgG from women with SLE/APS

and associated pregnancy loss as well as in rat embryos

incubated with monoclonal anti-PS Abs [194, 195]. How-

ever, human monoclonal IgM anti-b2GPI Abs failed to

induce apoptosis in trophoblast cell monolayers despite

affecting Bcl-2 and Bax expression [196].

It has been shown that aPL, particularly anti-b2GPI, also

react with human stromal decidual cells in addition to

trophoblasts thus affecting the maternal side of the pla-

centa. Polyclonal and monoclonal b2GPI dependent aPL

can bind stromal decidua cell monolayers and induce a

pro-inflammatory phenotype characterized by increased

ICAM-1 expression and TNFa secretion [197]. Impaired

endometrial differentiation as well as diminished expres-

sion of the complement regulatory protein DAF (decay

accelerating factor) have been demonstrated in endometrial

biopsy samples from APS patients with recurrent preg-

nancy loss [198]. In a recent study assessing in vitro human

endometrial endothelial cell (HEEC) angiogenesis and in

vivo angiogenesis in a murine model, aPL were shown to

significantly decrease the number and total length of tubule

formation, VEGF and MMP production and NF-jB DNA

binding activity in HEEC. Newly formed vessels were also

reduced in aPL inoculated mice suggesting that inhibition

of angiogenesis is a potential mechanism of defective

placentation in APS patients [199].

For the most part the candidate cell membrane receptors

and the signaling pathways involved in b2GPI dependent

aPL effects on trophoblast and stromal decidual cells

remain unknown. Both annexin A2 and TLR4 have been

reported to be expressed on trophoblast membranes and a

recent study by Mulla et al. has demonstrated that aPL

triggers a placental inflammatory response via the

TLR4/MyD88 pathway compromising trophoblast survival

[200–202]. The same group subsequently showed that anti-

b2GPI Abs limit trophoblast cell migration by down-

regulating trophoblast IL-6 secretion and signal transducer

and activator of transcription 3 (STAT-3) activation [203].

Inhibitory antibodies to candidate receptors in decidual

cells (i.e., TLR4, annexin A2 and ApoER20) have induced

partial inhibition of anti-b2GPI mediated binding and cel-

lular activation suggesting that perhaps more than one

receptor mediates the interaction between b2GPI and cells

of the decidua and trophoblast [197].

Non-thrombotic pathogenic mechanisms in other organ

systems

Thrombotic pathogenic mechanisms have failed to explain

several other clinical manifestations in APS apart from

those related to pregnancy morbidity. Renal involvement in

APS, although involving thrombosis in glomeruli and lar-

ger vessels, is also associated with non-thrombotic kidney

lesions that are associated with an increased risk of end-

stage renal disease development. Endothelial cell dys-

function induced by aPL is likely to play a major role

[204]. Central nervous system (CNS) involvement in APS,

although commonly due to stroke or transient ischemic

attack (TIA), is not always associated with a clearly

identified ischemic event [205]. Both cognitive dysfunction

and magnetic resonance imaging (MRI) white matter

hypodensities can occur in aPL positive patients but little is

known of the pathogenic mechanisms that lead to the

development of these manifestations. An association exists

among cognitive dysfunction, livedo reticularis and white

matter MRI lesions suggesting a microangiopathic mech-

anism [206]. In addition to small vessel thrombosis, cog-

nitive dysfunction in APS may be due to aPL binding to

CNS cells causing permeabilization and depolarization

[207]. Diffuse alveolar hemorrhage (DAH) is an unusual

disease presentation in APS. Although some case reports of

APS patients with DAH describe lung biopsy specimens

with microvascular thrombosis, others revealed pulmonary

capillaritis as the main pathogenic finding with no evidence

of thrombosis [208, 209]. Furthermore, the fact that

appropriately anticoagulated APS patients can present with

DAH suggests a vasculitic, non-thrombotic pathogenesis

[210]. Several in vivo and in vitro studies have highlighted

the contribution of aPL to atherosclerotic plaque formation

through endothelial cell and monocyte activation. The

formation of atherogenic oxidized low-density lipoprotein

(LDL)-b2GPI complexes and aPL promoting the binding of

these complexes to macrophages plays a central role in this

process [211, 212].

Inflammation in APS pathology

Inflammatory mediators in APS-related pregnancy

morbidity

Several pathogenic changes in maternal immune responses

occur during pregnancy in order to protect the developing

fetus from attack by the maternal immune system. Key

features of this change include the increased prevalence of
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a Th2 type cytokine profile and an anti-inflammatory

environment as dictated by a delicate dynamic equilibrium

between pro and anti-inflammatory mediators at different

stages of gestation. Acute inflammatory events are gener-

ally believed to be responsible for a negative pregnancy

outcome and it is therefore reasonable that APS-related

pregnancy morbidity may be associated with a pro-

inflammatory state in uteroplacental tissue [213]. Experi-

mental models have demonstrated a role for complement,

TF, TNFa and CC chemokines in aPL-mediated fetal loss

[214, 215].

Initial murine models used to evaluate the role of

complement activation in aPL-induced fetal loss had

focused on complement components C3 and C5. Passive

transfer of large amounts of human IgG-aPL from APS

patients with recurrent miscarriage to pregnant naı̈ve mice

induced extensive placental damage resulting in increased

resorption and fetal growth retardation at day 15 of preg-

nancy [214]. Placental inflammation in these mice was

characterized by recruitment of neutrophils, upregulated

TF and TNFa secretion, decidual focal necrosis and

apoptosis, loss of fetal membrane elements and comple-

ment deposition. Complement receptor 1 related gene/

protein y (Crry)-Ig, which is an inhibitor of classical and

alternative pathway complement C3 convertases, was

shown to reduce the frequency of fetal resorption, prevent

growth restriction in surviving fetuses and limit the

development of placental lesions [216]. The importance of

C3 in aPL-induced pregnancy complications was also

confirmed by the resistance of C3 deficient mice to these

antibody effects. Interestingly, C4 or factor B deficient

mice show similar resistance pointing to the involvement

of all complement pathways in aPL-mediated pregnancy

morbidity [217]. This indicates perhaps that the classical

and/or lectin pathways generate C3, a central component of

all the complement pathways, at sites of injury, which then

activates a positive feedback loop through the alternative

pathway thus amplifying the response.

Additional murine studies have demonstrated the key

role that complement component C5 plays in aPL-induced

placental injury; aPL-induced pregnancy complications

were reduced in C5 or C5a receptor (C5aR) deficient mice

and in mice treated with monoclonal anti-C5 Abs or a

highly specific peptide antagonist of C5aR (C5aR-AP)

[217]. These findings highlight the critical importance of

C5a-C5aR interaction in inducing aPL antibody mediated

placental injury. C6 deficient mice on the other hand are

not protected from aPL-mediated fetal loss indicating that

the membrane attack complex (MAC, C5b-9) is unlikely to

play an essential role in this process [218]. Interestingly,

deciduas from C5 -/- mice treated with aPL had normal

morphology with absent neutrophil infiltration and in

similar experiments mice depleted of neutrophils did not

have pregnancy loss, fetal growth restriction or inflam-

matory infiltrates [217]. In addition, murine studies utiliz-

ing mice treated with monoclonal anti-TF Abs or TF

deficient mice were similarly protected from aPL-induced

obstetric complications [218]. Redecha et al. showed that a

neutrophil oxidative burst associated with TF production

was an essential factor in IgG aPL-mediated fetal loss in a

murine model and that this pro-inflammatory response

could be induced by C5a activation of neutrophils [218].

Studies have also suggested a possible role for C5a acti-

vation of monocytes resulting in soluble VEGF receptor-1

(sVEGFR-1) and subsequently diminished VEGF levels in

conditions associated with fetal loss [219]. All these find-

ings together suggest a mechanism by which aPL bind

trophoblast and induce complement activation, generating

C5a and subsequent C5a-C5aR interactions including those

on neutrophils and monocytes. C5a induces TF expression

and superoxide production in neutrophils causing oxidative

damage and possibly sVEGFR-1 secretion in monocytes

causing diminished VEGF levels and inadequate placental

development and perfusion. This results in placental injury,

fetal growth restriction, or resorption. Pro-inflammatory

chemokines have also been shown to be important factors

in the development of aPL-induced pregnancy complica-

tions. Mice deficient in D6, an abundant chemokine

receptor in placental tissue that targets inflammatory CC

chemokines for destruction, are more susceptible to fetal

loss when passively infused with human IgG aPL from

women compared to wild type mice [215]. It is important

to note that the efficacy of heparin in preventing obstetric

complications in women with APS has been shown not to

be a function of its ability to inhibit thrombosis, as was

once believed, but rather its ability to limit aPL-induced

complement activation and subsequent placental inflam-

mation [220].

Conclusive immunohistological evidence of comple-

ment activation in abortive material and placentas from

women with APS is still lacking. While complement

deposition in abortive specimens from APS patients has

been reported in some case series, others were unable to

demonstrate this pathological finding [221, 222]. Although

increased inflammatory infiltrates have been noted in pla-

cental biopsies taken from women with APS compared to

controls, these inflammatory cells consist predominantly of

macrophages, not the polymorphonuclear leukocytes typi-

cal of murine models of aPL-induced placental injury

[223]. Further analysis of the applicability of murine

models to aPL-induced obstetric complications in APS

patients is thus required to translate these findings into the

development of targeted therapies for these patients. In that

line, a prospective multicentre observational study entitled

PROMISSE (PRedictors of PRegnancy Outcome: bio-

Markers in antiphospholipid antibody Syndrome and
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SLE - NCT00198068) has been initiated to examine the

role of complement as a potential surrogate marker that

predicts poor pregnancy outcomes in APS patients. This

study is scheduled for completion in 2013 [224].

Role of complement in endothelial cell activation

and thrombosis

In addition to its role in aPL-mediated pregnancy mor-

bidity, complement also plays an important role in endo-

thelial cell activation and thrombosis. In murine models of

thrombus formation due to aPL action, mice deficient in C3

and C5 were found to be resistant to thrombosis and

endothelial cell activation. Monoclonal Abs against C5

reduced thrombus formation and endothelial cell activation

in CD1 mice injected intraperitoneally with IgG aPL [225]

C5aR deficient and C6 deficient mice and those treated

with a C5aR antagonist were similarly protected from aPL-

induced endothelial cell activation and thrombosis thus

highlighting the importance of the membrane attack com-

plex (MAC) in addition to C5a-C5aR interactions in this

pathogenic process [226–228]. Complement activation,

through the binding of C5 and MAC to receptors on

endothelial cells, can upregulate TF expression and so

contribute to thrombus formation [134]. It is likely that

complement activation and subsequent generation of potent

vasoactive mediators occurs as a necessary intermediary

step between endothelial cell and platelet activation by aPL

and thrombosis. In fact, a recent cross-sectional retro-

spective study found that hypocomplementemia was com-

mon in patients with primary APS and that it was likely the

result of complement activation rather than deficiency.

However, no correlation was found between reduced

complement levels and thrombotic or obstetric manifesta-

tions in these patients [229].

Conclusion

The pathogenic mechanisms by which aPL induce disease

expression in APS are manifold and the corollary of this is

the exceptional variability in the clinical manifestations

observed in these patients. The specific genetic and envi-

ronmental interactions that occur in individual patients are

likely to be particularly important in determining the

makeup of the heterogenous aPL milieu found in each,

potentially impacting which aPL-induced effects are pref-

erentially activated. Unfortunately, the molecular mecha-

nisms that lead to aPL development and aPL-induced

disease expression remain incompletely understood.

The recent elucidation of some of the cell surface

interactions of aPL and subsequent intracellular events has

led to the identification of novel targets for the treatment

and prevention of APS disease manifestations, especially

thrombosis [230]. This is quite important as typical anti-

coagulation therapy with heparin and/or warfarin is

sometimes ineffective and has a myriad of side effects, not

the least of which is the increased propensity for hemor-

rhage. The development of therapies that target specific

aPL-receptor interactions and distinctive intracellular sig-

naling pathways would ideally result in fewer adverse side

effects without sacrificing therapeutic efficacy.

The future success of this ‘immunomodulatory’

approach to the treatment of APS relies on the improved

understanding of the molecular events that occur in the

disease, which can then inform basic and clinical research

for drug development and implementation.
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