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Abstract

Bipolar disorder (BD) is a highly heritable mental disorder and is estimated to affect about 50
million people worldwide. Our understanding of the genetic etiology of BD has greatly
increased in recent years with advances in technology and methodology as well as the adop-
tion of international consortiums and large population-based biobanks. It is clear that BD is
also highly heterogeneous and polygenic and shows substantial genetic overlap with other psy-
chiatric disorders. Genetic studies of BD suggest that the number of associated loci is expected
to substantially increase in larger future studies and with it, improved genetic prediction of the
disorder. Still, a number of challenges remain to fully characterize the genetic architecture of
BD. First among these is the need to incorporate ancestrally-diverse samples to move research
away from a Eurocentric bias that has the potential to exacerbate health disparities already
seen in BD. Furthermore, incorporation of population biobanks, registry data, and electronic
health records will be required to increase the sample size necessary for continued genetic dis-
covery, while increased deep phenotyping is necessary to elucidate subtypes within BD. Lastly,
the role of rare variation in BD remains to be determined. Meeting these challenges will enable
improved identification of causal variants for the disorder and also allow for equitable future
clinical applications of both genetic risk prediction and therapeutic interventions.

Definition of illness

Affective disorders are classified along a spectrum from unipolar depression to bipolar dis-
order (BD) type II and type I (Carvalho, Firth, & Vieta, 2020; Grande, Berk, Birmaher, &
Vieta, 2016). The presence of recurring manic or hypomanic episodes alternating with euthy-
mia or depressive episodes distinguishes BD from other affective disorders (American
Psychiatric Association, 2013; World Health Organization et al., 1992). BD type I (BDI) is
characterized by alternating manic and depressive episodes (Fig. 1). Psychotic symptoms
also occur in a majority of these patients which may lead to compromised functioning and
hospitalization. The Diagnostic and Statistical Manual of Mental Disorder, Fifth Edition
(DSM-5) also allows for individuals impaired by manic episodes without depression to still
be diagnosed with BDI (American Psychiatric Association, 2013). In comparison, a diagnosis
of BD type II (BDII) is based on the occurrence of at least one depressive and one hypomanic
episode during the lifetime, but no manic episodes (Fig. 1). A diagnosis of BD not otherwise
specified or BD unspecified may be given when a patient has bipolar symptoms that do not fit
within these major subtype categories. The DSM-5 also includes specifiers which define the
clinical features of episodes and the course of the disorder, namely, anxious distress, mixed
features, rapid cycling, melancholic features, atypical features, psychotic features (mood-
congruent and mood-incongruent), catatonia, peripartum onset, and seasonal pattern
(American Psychiatric Association, 2013). In addition, the DSM-5 includes schizoaffective
BD as a distinct diagnosis wherein individuals suffer from psychotic symptoms as well as epi-
sodes of mania or depression (American Psychiatric Association, 2013).

Epidemiology

BD is projected to affect about 50 million people worldwide (GBD 2016 Disease and Injury
Incidence and Prevalence Collaborators, 2017). The BD subtypes each have an estimated life-
time prevalence of approximately 1% (Merikangas et al., 2007, 2011) although large ranges in
lifetime prevalence have been reported (BDI: 0.1–1.7%, BDII: 0.1–3.0%) (Angst, 1998;
Merikangas et al., 2007, 2011). Most studies report no gender differences in the prevalence
of BD; however, women may be at increased risk for BDII, rapid cycling, and mixed episodes
(Diflorio & Jones, 2010; Nivoli et al., 2011). The mean age of onset of BD is at approximately
20 years. An earlier age of onset is associated with poorer prognosis, increased comorbidity,
onset beginning with depression, and more severe depressive episodes, as well as longer
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treatment delays (Joslyn, Hawes, Hunt, & Mitchell, 2016).
Additionally, initial depressive episodes may lead to a misdiag-
nosis of major depressive disorder until the onset of manic or
hypomanic episodes necessary to confirm BD (Zimmerman,
Ruggero, Chelminski, & Young, 2008).

BD is often comorbid with other psychiatric (Eser, Kacar,
Kilciksiz, Yalçinay-Inan, & Ongur, 2018; Frías, Baltasar, &
Birmaher, 2016; Salloum & Brown, 2017) and non-psychiatric
disorders (Bortolato, Berk, Maes, McIntyre, & Carvalho, 2016;
Correll et al., 2017; Vancampfort et al., 2016). It is estimated
that >90% of BD patients have at least one lifetime comorbid dis-
order, and >70% present with three or more comorbid disorders
during their lifetime (Merikangas et al., 2007). Such ubiquitous
comorbidity within BD suggests the disturbance of multiple sys-
tems and pathways, and the presence of comorbidities is asso-
ciated with increased premature mortality in BD when
compared to the general population (Kessing, Vradi, McIntyre,
& Andersen, 2015; Roshanaei-Moghaddam & Katon, 2009).

Classical genetic epidemiology

Family studies

Genetic factors for BD were first investigated using twin, family,
and adoption studies. These studies established that family history
of BD is an important clinical predictor of The onset of mood dis-
orders in a patient and that the risk of mood disorder decreases as
the genetic distance from the proband increases (Craddock &
Sklar, 2013; Merikangas & Yu, 2002). A large family-based
Swedish study showed the risk of BD was as much as 7.9, 3.3,
and 1.6 times higher for first-, second-, and third-degree relatives
of BD probands, respectively, than those without a proband in
their family (Song et al., 2015). In the largest family study to
date in the Swedish cohort with over 2 million individuals, the
transmission of BD was found to be statistically homogenous
across family type (intact family, families without fathers, and
adoptive families) (Kendler, Ohlsson, Sundquist, & Sundquist,
2020). This family-based study also estimated the heritability of
BD, which is a measure of the proportion of variation in a
given trait attributed to genetic variation, to be 44% (95% CI
36–48%). Estimates of heritability from twin studies, which com-
pare the concordance of disease between monozygotic and dizyg-
otic twins, were between 60% and 90% (Craddock & Sklar, 2013;
Merikangas & Yu, 2002; Smoller & Finn, 2003). Furthermore, by
comparing estimates from twin studies, the heritability of BD is

among the highest of all other psychiatric and behavioral disor-
ders (Bienvenu, Davydow, & Kendler, 2011).

It has also been well-established that familial risk of BD corre-
lates with increased familial risk of other psychiatric disorders
such as schizophrenia, depression, anxiety, drug abuse, attention-
deficit hyperactivity disorder (ADHD), personality disorders, and
autism spectrum disorder (ASD) (Craddock & Sklar, 2013;
Kendler et al., 2020; Song et al., 2015). Schizophrenia, ASD,
and depression have the strongest genetic correlations with BD
as identified through family studies.

Cohort and population studies

Sample sizes of studies have rapidly increased as genetic studies of
BD have moved from family-based designs to cohort and
population-based designs. With these, computationally-efficient
methods, such as linkage disequilibrium score regression
(LDSC), have been developed to estimate both heritability and
genetic correlation captured by the single nucleotide polymorph-
isms (SNPs) which are common locations in the genome where
variation occurs between individuals and are measured on a geno-
typing array (Bulik-Sullivan et al., 2015a).

Using this technique, the largest study of BD estimated an
SNP-based heritability (h2SNP), which is a measure of the propor-
tion of variation in a given trait attributed to the genetic variation
captured by a genotyping array, of 18.6% (Mullins et al., 2020).
Figure 2 compares the latest estimates of the twin-based heritabil-
ity and h2SNP for BD to a range of psychiatric, behavioral, and
neurological disorders (Bienvenu et al., 2011; Browne, Gair,
Scharf, & Grice, 2014; Cross-Disorder Group of the Psychiatric
Genomics Consortium, 2019; Demontis et al., 2019a; Faraone &
Larsson, 2019; Gatz et al., 2006; Jansen et al., 2019; Purves
et al., 2020; Walters et al., 2018; Zilhão et al., 2017). BD has the
greatest twin-based heritability estimate and, similar to other
traits, also has a substantial proportion not captured by common
variations.

New methodologies have also allowed the genetic correlation
between different traits to be estimated using the summary statis-
tics from overlapping sets of common SNPs in different samples.
A recent cross-disorder analysis of eight different psychiatric and
neurological disorders found that BD is most strongly genetically
correlated with schizophrenia (rg = 0.70) but also shares substan-
tial genetic overlap with major depression (rg = 0.36), obsessive-
compulsive disorder (OCD; rg = 0.31), anorexia nervosa (rg =
0.21), ADHD (rg = 0.14), and ASD (rg = 0.14) (Cross-Disorder
Group of the Psychiatric Genomics Consortium, 2019).
Furthermore, the high comorbidity of substance use in BD has
been linked to substantial genetic correlation with substance
use: cigarette use (rg = 0.1), cannabis use (rg = 0.27), and alcohol
use disorder (rg = 0.30) (Jang et al., 2020; Kranzler et al., 2019).

Molecular genetic epidemiology

Common variants

Genome-wide association studies (GWASs) have been the most
successful strategy for identifying specific genetic variants asso-
ciated with BD. Unlike linkage studies, a GWAS can be performed
on a set of unrelated cases and controls by testing for the associ-
ation of genetic variants across the genome with a trait. The first
GWAS of BD in 2007 included 2000 cases and 3000 controls and
only identified one independent association signal at p < 5 × 10–7

Fig. 1. Polarity of symptoms for bipolar disorder subtypes. Bipolar disorder type I is
characterized by at least one manic episode. Bipolar disorder type II is characterized
by at least one depressive and one hypomanic episode during the lifetime, but no
manic episodes. Major depressive disorder does not include episodes of hypomania
or mania.
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(Wellcome Trust Case Control Consortium, 2007). This associ-
ation was below the now established p < 5 × 10–8 threshold for
genome-wide significance and further, this association was not
supported in an expanded reference group analysis nor in an
independent replication. Since then, dozens of additional
GWASs of case–control cohorts, consisting of samples from
mostly European ancestries, have been published (Table 1).
Until the sample size of the GWASs increased to over 10 K,
these GWASs identified very few genome-wide significant loci.
The most recent GWAS was based on a meta-analysis of 52
case–control cohorts and five large population-based cohorts
and included over 40 K cases and 350 K controls identified 64
independent loci across the genome associated with BD
(Mullins et al., 2020). Thirty-three of these loci were novel for
BD, including the region containing the major histocompatibility
complex which is also strongly associated with schizophrenia
(Mullins et al., 2020; Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014). Furthermore, add-
itional novel loci identified in this GWAS are also reported as
risk loci for schizophrenia, depression, childhood-onset psychi-
atric disorders, and problematic alcohol use, highlighting shared
underlying genetic architecture between BD and these other psy-
chiatric disorders (Mullins et al., 2020). Still though, the SNPs in
this large study only explain 15–18% of the variance in the trait
(Mullins et al., 2020).

Furthermore, as shown in Fig. 3, univariate causal mixture
modeling suggests that we can expect to see substantial increases
in identified genome-wide significant loci and consequently in the
proportion of h2SNP explained by these variants as GWAS sample
sizes increase (Holland et al., 2020). This is particularly relevant
for BD where GWAS studies have now reached the ‘inflection’
point where the significant associations begin to accumulate
with smaller increases in sample size (Mullins et al., 2020). As
such, international collaborations in large-scale GWAS remain
imperative for the continued identification of common variants
underlying BD etiology, and the plan of the PGC Bipolar
Working Group to further increase GWAS sample sizes is encour-
aging (Sullivan et al., 2018).

Genetic overlap

In addition to genetic correlation (Bulik-Sullivan et al., 2015b)
(described above), the most common approach for assessing gen-
etic overlap at the genome-wide level is polygenic risk score (PRS)
analysis (International Schizophrenia Consortium et al., 2009).
The PRS for a given trait is typically a weighted sum of genetic
variants where the variants used and their weights are defined
by effects measured by previous GWASs of the trait. The genetic
liability for BD has been used to predict a number of other psy-
chiatric disorders as well as creativity, educational attainment
(Mistry, Harrison, Smith, Escott-Price, & Zammit, 2018), addic-
tion (Reginsson et al., 2018), as well as psychopathology
(Mistry, Escott-Price, Florio, Smith, & Zammit, 2019a), cognitive
functioning (Mistry, Escott-Price, Florio, Smith, & Zammit,
2019b), progression of unipolar to bipolar depression, and depres-
sion onset (Musliner et al., 2019, 2020).

PRSs for BD and other traits have also been used to explain
common comorbidities within BD. Suicide attempts by people
with BD have been associated with higher genetic liability for
depression (Mullins et al., 2019) as well as an interaction between
trauma and bipolar genetic liability (Wilcox et al., 2017). Previous
childhood ADHD diagnosis in those with BD was associated with
higher genetic liability for ADHD (Grigoroiu-Serbanescu et al.,
2020; Wilcox et al., 2017).

In addition to PRS analysis, cross-disorder GWAS meta-
analyses have also been performed for BD and ADHD (Bipolar
Disorder and Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2018; van Hulzen et al., 2017), SCZ
(Bipolar Disorder and Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2018), and MDD (Coleman,
Gaspar, Bryois, & Breen, 2020), identifying two, 114, and 73
genome-wide significant loci associated with these phenotype
pairs, respectively. Moreover, numerous genes mapped to BD
risk loci are also linked to schizophrenia, ASD, and OCD
(O’Connell, McGregor, Lochner, Emsley, & Warnich, 2018) fur-
ther highlighting common genetic architecture across psychiatric
disorders.

Fig. 2. Estimated heritability of psychiatric, behavioral, and neurological disorders. Mean twin-based and SNP-based (on liability scale) heritability for different
psychiatric (BIP, bipolar disorder; SCZ, schizophrenia; ADHD, attention-deficit/hyperactivity disorder; MD, major depression; ANX, generalized anxiety disorder),
behavioral (AN, anorexia nervosa; AUD, alcohol use disorder; CUD, cannabis use disorder), or neurological (ASD, autism spectrum disorder; AD, Alzheimer’s dis-
order; OCD, obsessive-compulsive disorder; TS, Tourette’s syndrome) disorders. Error bars are shown for SNP-based estimates from LDSC.
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The conditional/conjunctional false discovery rate statistical
tool has also been used to identify BD risk loci as well as shared
risk loci between BD and a number of phenotypes. This method
leverages the power of two GWAS to boost discovery by
re-adjusting the GWAS test statistics in a primary phenotype
and allows for the discovery of loci significantly associated with
two phenotypes simultaneously (Andreassen, Thompson, &
Dale, 2014; Smeland et al., 2020b). Utilizing this method, shared
genetic loci have been identified between BD and ADHD (n = 5)
(O’Connell et al., 2019), schizophrenia (n = 14) (Andreassen et al.,
2013), Alzheimer’s disease (n = 2) (Drange et al., 2019), intelli-
gence (n = 12) (Smeland et al., 2020a), body mass index
(n = 17) (Bahrami et al., 2020), and lifespan (n = 8) (Muntané
et al., 2021). This method is agnostic to the effect directions of
genetic variants and so shared loci were identified between BD

and Alzheimer’s disease, intelligence, body mass index, and life-
span despite observed null and non-significant genetic correla-
tions with these phenotypes.

Most recently (Mullins et al., 2020), the genetic relationship
between BD and 10 clinically and epidemiologically associated
traits (daytime sleepiness, morningness, sleep duration, insomnia,
mood instability, educational attainment, problematic alcohol use,
drinks per week, smoking initiation, and cigarettes per day) were
assessed using the MiXeR tool (Frei et al., 2019), to identify trait-
specific and shared genetic components, and Mendelian random-
ization (Zhu et al., 2018), to establish ‘causal’ relationships.
Extensive genetic overlap was identified between all traits and
BD, most notably that >90% of the genetic variants estimated
to influence BD were also estimated to influence educational
attainment. Moreover, bidirectional relationships were identified

Table 1. Summary of bipolar disorder GWAS

Reference
Discovery sample
(n case + n control)

Replication sample
(n case + n control)

Number of genome-wide
significant loci Ethnicity

(Wellcome Trust Case Control Consortium, 2007) 2000 + 3000 – 0 European

(Baum et al., 2008; Ferreira et al., 2008) 461 + 562 772 + 876 1 European

(Ferreira et al., 2008) 4387 + 6209 – 1 European

(Sklar et al., 2008) 1461 + 2008 365 + 351 0 European

(Hattori et al., 2009) 107 + 107 395 + 409 0 Japanese

(Scott et al., 2009) 2076 + 1676 1868 + 12 831 0 European

(Smith et al., 2009) 1001 + 1033 – 0 European

345 + 670 – 0 African-American

(Djurovic et al., 2010) 194 + 336 435 + 10 258 0 European

(Cichon et al., 2011) 682 + 1300 1729 + 2313
6030 + 31 749

1 European

(Kerner, Lambert, &Muthén, 2011) 1000 + 1034 – 2 European

(Psychiatric GWAS Consortium Bipolar
Disorder Working Group, 2011) – PGC1 BD

7481 + 9250 4496 + 42 422 2 European

(Smith et al., 2011) 1190 + 401 2191 + 1434 0 European

(Yosifova et al., 2011) 188 + 376 122 + 328 0 European

(Bergen et al., 2012) 836 + 2093 – 0 European

(Chen et al., 2013) 6658 + 8187 1115 + 2728 5 European +
Taiwanese

(Lee, Woo, Greenwood, Kripke, & Kelsoe, 2013) 2191 + 1434 – 0 European

(Kuo et al., 2014) 200 + 200 351 + 341 0 Taiwanese

(Mühleisen et al., 2014) 9747 + 14 278 – 5 European

(Xu et al., 2014) 950 + 950 – 0 European

(Hou et al., 2016) 7647 + 27 303 2137 + 3168 6 European

(Kao et al., 2016) 189 + 1773 283 + 500 0 Taiwanese

(Charney et al., 2017) 13 902 + 19 279 – 8 European

(Ikeda et al., 2018) 2964 + 61 887 – 1 Japanese

10 445 + 71 137 – 5 Japanese + European

(Fiorica & Wheeler, 2019) 359 + 686 – 0 African-American

(Stahl et al., 2019) – PGC2 BD 20 352 + 31 358 9412 + 137 760 30 European

(Mullins et al., 2020) – PGC3 BD 41 917 + 371 549 – 64 European
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between BD and sleep duration, mood instability, educational
attainment, and problematic alcohol use, while BD was identified
as ‘causal’ for morningness and drinks per week and smoking ini-
tiation was ‘causal’ for BD (Mullins et al., 2020).

Rare variants

In addition to genetic interactions, the difference in heritability
could also be explained by rare variants in the genome which
are often unmeasured and thus not included in GWASs. While
the cost of whole-exome sequencing (WES) and whole-genome
sequencing (WGS) has decreased, these technologies are still sub-
stantially more expensive than common genotyping arrays. As a
result, WGS/WES studies of BD have been limited to small studies
consisting mostly of large pedigrees to potentially enrich the sam-
ple with causal rare variants and increase power (Forstner et al.,
2020; Goes et al., 2016, 2019; Maaser et al., 2018; Sul et al.,
2020; Toma et al., 2018). While these studies have found evidence
of higher rare deleterious burden in cases (Sul et al., 2020), higher
disruptive variant burden in early-onset cases (Toma et al., 2018),
evidence of rare variant segregation in pedigrees (Forstner et al.,
2020; Goes et al., 2016; Maaser et al., 2018), and evidence of de
novo variation (Goes et al., 2019), much larger sample sizes will
be required to definitively identify rare variants conferring risk
for BD.

Copy number variants

Copy number variants (CNVs) refer to regions of the genome
where a duplication (three or more copies are present) or deletion
(only one copy remains) has occurred such that more or less than
the expected two copies in the diploid human genome are present.
Carriers of certain CNVs are known to be at considerably elevated
risk for developing neurodevelopmental (e.g. ASDs) and mental

disorders (e.g. schizophrenia) (Kirov, Rees, & Walters, 2015) as
well as somatic conditions (e.g. diabetes and hypertension)
(Crawford et al., 2019). The frequency of CNVs in BD is less
than that observed for neurodevelopmental disorders or schizo-
phrenia (Kirov, 2015), and correspondingly their role in the dis-
order appears less with only one CNV robustly associated with
BD to date. A 650 kb duplication at 16p11.2 was first described
as a de novo CNV for BD (Kirov, 2015; Malhotra et al., 2011)
and this association was replicated in a larger genome-wide ana-
lysis (Green et al., 2016). This CNV is also implicated in schizo-
phrenia, autism, and intellectual disability (Kirov, 2015). Two
additional CNVs, at 1q21.1 and 3q29, are also implicated in
BD; however, these associations fail to pass the genome-wide sig-
nificance threshold (Green et al., 2016). Interestingly, these two
CNVs are also associated with schizophrenia (Kirov, 2015). One
further study identified enrichment of genic CNVs in schizo-
affective BD, but not between BD cases and controls or other
BD subtypes (Charney et al., 2019).

These findings highlight that the genetic overlap between BD
and schizophrenia extends beyond common variation, but sug-
gests a difference in underlying mechanisms. One possible
explanation for the smaller role of CNVs in BD is that patients
with BD exhibit less cognitive deficits than patients with schizo-
phrenia who can exhibit substantial cognitive deficits, since the
same CNVs which are implicated in schizophrenia are also
known to cause cognitive problems (Kirov, 2015).

Genetic interactions

Other than increasing the sample size of GWAS, the difference
between observed twin-based and h2SNP (Fig. 2) may also be
explained by unaccounted for moderated genetic effects such as
interactions between genes and the environment (G×E) or
gene–gene interactions (epistatic effects). The role of G×E in

Fig. 3. Statistical power calculations for current and future GWAS. The variance explained by genome-wide significant variants ( y-axis) is calculated for increasing
GWAS sample sizes (x-axis) using the univariate causal mixture model (Holland et al., 2020). The legend describes the estimated GWAS sample sizes (SE) needed to
capture 50% of the genetic variance (horizontal dashed line) associated with each trait. Stars indicate the sample sizes of currently available GWAS, and circles
indicate the estimated sample sizes needed to capture 50% of the genetic variance for each trait. Traits include attention-deficit/hyperactivity disorder (ADHD)
(Demontis et al., 2019b), autism spectrum disorder (ASD) (Grove et al., 2019), bipolar disorder (BD) (Mullins et al., 2020), depression (MDD) (Howard et al.,
2019), and schizophrenia (SCZ) (Pardiñas et al., 2018). Height is included as a somatic control (no genetic correlation exists between height and bipolar disorder)
(Yengo et al., 2018). S.E., standard error.
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BD remains an under-researched area, however, but some interac-
tions have been identified (Aas et al., 2014, 2020; Hosang, Fisher,
Cohen-Woods, McGuffin, & Farmer, 2017; Oliveira et al., 2016;
Winham et al., 2014). Although these studies highlight the poten-
tial role of G×E in the etiology of BD, the lack of replication stud-
ies and small sample sizes suggest that they should be interpreted
with caution. As with G×E, studies of epistasis in BD are in their
infancy and lack replication (Judy et al., 2013). As the ability of
GWAS to identify risk variants with small effects increases, fur-
ther study of how implicated genes interact with environmental
or other genetic factors to modulate the risk of BD are required.

Clinical implications

Pharmacogenomics

Lithium, anti-epileptic drug mood stabilizers (such as valproate/
divalproex, lamotrigine, and carbamazepine), antipsychotics,
and antidepressants are commonly prescribed treatments for
BD. However, response to these medications can widely vary
between individuals, and some patients may cycle through differ-
ent medications before they find an effective treatment with min-
imal side effects. Pharmacogenomic studies aim to use genetics to
predict treatment response. A particular challenge to pharmaco-
genomics in BD has been the measurement of treatment response
which can be limited by the length of follow-up, adherence to
medication, and confounding due to the multi-drug treatment
strategy common to the illness. Consequently, a systematic rating
system with a high inter-rater reliability, the Alda score, was
developed to quantify the clinical improvement of BD during
treatment while also accounting for potential confounders of
treatment response (Nunes, Trappenberg, & Alda, 2020).
However, obtaining large samples with reliable measures has lim-
ited the statistical power to discover clinically-informative genetic
variants associated with treatment response. Furthermore, hetero-
geneity between study designs and the samples included have
yielded limited replication of any findings. While not yet replic-
able, promising pharmacogenomic findings for BD were summar-
ized in a recent review (Gordovez & McMahon, 2020). Most of
the previous pharmacogenomic studies have been focused on
either lithium treatment response or HLA haplotypes predicting
serious adverse reactions related to carbamazepine, phenytoin,
and lamotrigine. A recent study tested for genetic association
with treatment response to anti-epileptic drug mood stabilizers,
an alternative to lithium, and identified two SNP-level associa-
tions in THSD7A and SLC35F3 as well as two gene-level associa-
tions with ABCC1 and DISP1 (Ho et al., 2020).

With the exception of genetic predictors of adverse reactions to
medication, no large genetic effects on treatment response have
been identified. However, current pharmacogenomic testing has
already been shown to be useful by providing clinicians support
in reaching effective and well-tolerated treatments of BD
(Ielmini et al., 2018). Additionally, as the sample size of pharma-
cogenomic studies increases, PRSs derived from these studies
could further enable a precision medicine approach to BD treat-
ment. In addition to pharmacogenomic PRSs, PRSs derived
from large case–control studies could also improve the genetic
prediction of treatment response. For example, increased genetic
liability for depression and schizophrenia was associated with
worse response to lithium (Amare et al., 2020; International
Consortium on Lithium Genetics (ConLi+Gen) et al., 2018).
These PRSs could be explaining some of the clinical heterogeneity

in the sample as discussed below and thus improve the identifica-
tion of certain BD clinical profiles that respond best to lithium.

Finally, there is potential application of repurposing drugs and
focusing on different drug targets based on recent genetic find-
ings. For example, calcium channel blockers (CBBs), which have
been widely used to treat hypertension and other cardiovascular
conditions, were also once considered as a treatment in psychiatry
(Harrison, Tunbridge, Dolphin, & Hall, 2020). However, because
CACNA1C has now been implicated as one of the strongest asso-
ciations with BD (Gordovez & McMahon, 2020), there is renewed
interest in CBBs as a treatment for the disorder (Cipriani et al.,
2016).

Risk prediction

In addition to therapeutic intervention, PRSs may also provide
clinical utility to inform disease screening (Torkamani,
Wineinger, & Topol, 2018). While the PRS derived from the latest
GWAS of BD only explains about 4.75% of the phenotypic vari-
ance, the latest PRS could still be useful for risk stratification
(Mullins et al., 2020). Compared to individuals with average gen-
etic risk for BD, individuals in the top decile risk had an odds
ratio of 3.62 (95% CI 1.7–7.9) of being a case. An important cav-
eat to note about PRSs, however, is that prediction performance is
worse when applied to ancestries not included in the training
GWAS (Martin et al., 2019). For instance, the current BD PRS,
estimated using individuals with European ancestries, explains
only around 2% and 1% of the phenotypic variance in individuals
with East Asian or admixed African American ancestry, respect-
ively (Mullins et al., 2020). Encouragingly though, the trans-
ethnic prediction accuracy of the PRS has improved as the sample
size has increased. Furthermore, the PRS prediction accuracy will
also improve as new non-European ancestries are included in
future training GWASs.

Clinical heterogeneity

PRSs can also help dissect the high clinical heterogeneity
(i.e. bipolar type, psychosis, rapid cycling) present in the disorder
(Coombes et al., n.d.). For example, higher genetic liability for
schizophrenia is associated with bipolar type I (Charney et al.,
2017). This finding could be driven by the increased prevalence
of psychosis among those with BDI as multiple studies have
shown that higher genetic risk of schizophrenia is associated
with psychosis in BD, particularly during mania (Allardyce
et al., 2018; Bipolar Disorder and Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2018; Charney
et al., 2019; Coombes et al., 2020; Markota et al., 2018). Other
studies of bipolar subtypes have shown positive associations
between BDII and insomnia PRS, rapid cycling and ADHD
PRS, as well as early age-of-onset of BD and PRSs for risk-taking
and anhedonia (Coombes et al., n.d.; Lewis et al., 2019). While no
individual PRS is able to explain a large amount of variation
among bipolar subtypes, these findings give insight into the gen-
etic contributions to clinical heterogeneity and could help classify
the disorder more accurately as well as identify the risk of suicide,
psychosis, and other adverse outcomes in patients with BD.

Future directions

Significant advances in our understanding of the genetic architec-
ture of BD have been made, from initial linkage and family studies
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to current large consortia-driven genome-wide studies. Moreover,
integration of these genetic discoveries with other -omic and
imaging data will be key to comprehending the role of genetic
variation in the etiology of BD. However, distinct shortcomings
and limitations to genetic discovery highlight key areas to be
prioritized in future studies.

Diverse phenotype ascertainment

Identification of novel loci for BD, and other polygenic complex
phenotypes, requires increasing sample sizes (Fig. 3), which
remains a challenging and costly task (Lu, Campeau, & Lee,
2014). The majority of samples included in the PGC-BD were
clinically ascertained, with the inclusion of external biobank sam-
ples only in the most recent discovery GWAS (Mullins et al.,
2020). Numerous efforts have been made to combine electronic
health record and registry data with genetic data to facilitate
large population-based studies, such as the Electronic Medical
Records and Genomics network (https://emerge-network.org/),
the UK Biobank (https://www.ukbiobank.ac.uk/), All of Us
(https://allofus.nih.gov/), the Million Veterans Program (https://
www.research.va.gov/mvp/), and iPsych (https://ipsych.dk/en/).
Furthermore, GWAS summary statistics of self-reported pheno-
types for thousands to millions of individuals may be obtained
through collaboration with the personal genetics company
23andMe, Inc. (https://research.23andme.com/research-innov-
ation-collaborations/). The data generated by such population
studies and 23andMe provide a means by which to drastically
increase sample size without the costs associated with clinical
ascertainment. This approach was shown to be successful for
depression, where PGC cohorts were meta-analyzed with data
from the UK Biobank and summary statistics from 23andMe,
increasing the number of identified associated risk loci from 44
(Wray et al., 2018) to 102 (Howard et al., 2019). However, a limi-
tation to this use of ‘minimal phenotyping’ data is that the loci
identified, especially when based on self-report data, were non-
specific for depression highlighting potential differences in
genetic architecture when compared to clinically ascertained
depression (Cai et al., 2020). In line with this, the h2SNP estimates
of the biobank samples included in the latest PGC BD GWAS are
less than that observed for clinically ascertained samples which
may reflect more heterogeneous clinical presentations or less
severe illness (Mullins et al., 2020).

Data generated from ‘minimal phenotyping’ are likely to include
other psychopathological features which may underlie self-reported
BD such as personality disorders or mild temperamental traits,
thereby increasing heterogeneity in the sample and leading to the
possibility of non-specific or false-positive results. However, true
self-reported BD may reflect the non-hospitalized, non-psychotic
part of the BD spectrum, more typical of BDII, which is under-
represented in the current PGC BD sample. Moreover, expanding
genetic studies to include the full spectrum of BD in population-
based non-clinical samples increases the potential for novel discov-
eries with important implications for clinical management and
further research, and is therefore of high interest to both clinicians
and the pharmaceutical industry.

Thus, while adopting the ‘minimal phenotyping’ approach for
BD will allow GWAS to reach sample sizes not currently feasible
by clinical ascertainment and will likely identify numerous novel
risk loci, similar post-hoc analyses as that performed for depres-
sion (Cai et al., 2020), will be required to determine the specificity
of identified loci to BD.

Increased deep phenotyping

The high levels of heterogeneity amongst patients with BD,
including disorder type, features of episodes, and the course of
the disorder, contribute to the difficulty in identifying underlying
genetic risk factors. BDI (h2SNP = 25%) is shown to be more herit-
able than BDII (h2SNP = 11%), and the genetic correlation (rg =
0.89) between these types suggests that they are closely related,
yet distinct, phenotypes (Stahl et al., 2019). In support of this,
the most recent PGC GWAS for BD identified novel and distinct
loci specifically associated with BDI or BDII, which were not
identified when all bipolar cases were analyzed together
(Mullins et al., 2020). Genetic studies of the features and course
of BD have predominantly employed a PRS approach, as outlined
above, and GWAS data for these subtypes is lacking due to small
sample sizes [data from the PGC indicate that none of these sub-
types include more than 10 K samples (Bipolar Disorder and
Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2018)]. Thus, larger deeply phenotyped samples
are required in order to conduct a thorough investigation of the
genetic architecture of these subtypes within BD. Doing so
would aid subtype-specific discoveries, and may inform on nos-
ology, diagnostic practices, and drug development for BD.

In addition, the potential inclusion of ‘minimal phenotyping’
data, as described above, further emphasizes the need for
increased deep phenotyping. Results generated from deep pheno-
typed samples will serve as standards against which to compare
the specificity of results generated from the inclusion of ‘minimal
phenotyping’.

Increased ancestral-diversity

The majority of individuals included in GWASs for any trait have
overwhelmingly been of European descent and the lack of diver-
sity is even more pronounced in genetic studies of psychiatric dis-
orders (Martin et al., 2019; Peterson et al., 2019; Sirugo, Williams,
& Tishkoff, 2019). In BD, the largest GWAS includes only indivi-
duals from European ancestries (Mullins et al., 2020). This ‘miss-
ing diversity’ can greatly hinder our understanding of the etiology
of BD. For example, the inclusion of non-European ancestries
could substantially improve fine-mapping of disease-associated
loci (Peterson et al., 2019). Furthermore, the current Eurocentric
approach has the potential to exacerbate health disparities already
seen in BD (Akinhanmi et al., 2018) by limiting the therapeutic
advances gained by pharmacogenomics and improved genetic
risk predictions to those of European descent (Duncan et al.,
2019; Martin et al., 2019; Sirugo et al., 2019). Future inclusion of
diverse samples will come with new ethical, technological, and
methodological challenges (Peterson et al., 2019). Some of these
considerations include choosing ancestry-specific genotyping plat-
forms to improve genomic coverage, increasing sample sizes of
diverse reference panels to improve imputation accuracy, and
improving statistical methods to control for population stratifica-
tion and estimate ancestry-specific PRSs. Thus, the PGC Bipolar
Working Group has committed to expanding the future GWAS
to include non-European ancestries.

Larger sequencing efforts

As mentioned above, sequencing efforts in BD are currently in
their infancy (Forstner et al., 2020; Goes et al., 2016; Maaser
et al., 2018; Sul et al., 2020; Toma et al., 2018). Although studies
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provide evidence that rare variants might contribute to the eti-
ology of BD, weak statistical power due to small sample sizes
remains an issue. The Bipolar Sequencing Consortium (BSC)
was established to facilitate combining existing exome and WGS
studies of BD (http://metamoodics.org/bsc/consortium/), and
includes approximately 4500 BD cases and 9000 controls, as
well as 1200 affected relatives from 250 families. Moreover, a
collaboration between the Dalio Initiative in BD (https://www.
daliophilanthropies.org/initiatives/mental-health-and-wellness/),
the Stanley Centre (https://www.broadinstitute.org/stanley), and
iPSYCH (https://ipsych.dk/en/) aims to generate WES data from
approximately 7000 BD cases and 10 000 matched controls.
However, it is estimated that as many as 25 000 cases might be
necessary in order to identify significant rare variant associations
with BD (Zuk et al., 2014), confirmed by recent analyses in
schizophrenia (Singh et al., 2020), and so continued expansion
of these, or similar, efforts will be crucial to determine the role
of rare variation in BD.

Conclusion

Our knowledge of the genetic etiology of BD has rapidly acceler-
ated in recent years with advances in technology and method-
ology as well as the adoption of international consortiums and
large population-based biobanks. It is now clear that BD is highly
heritable but also highly heterogeneous and polygenic with sub-
stantial genetic overlap with other psychiatric disorders.
Encouragingly, genetic studies of BD have reached an ‘inflection
point’ (Fig. 3). Thus, the number of associated loci is expected
to substantially increase in larger future studies and with it,
improved genetic prediction of the disorder. Incorporation of
ancestrally-diverse samples in these studies will enable improved
identification of causal variants for the disorder and also allow
for equitable future clinical applications of both genetic risk pre-
diction and therapeutic interventions.
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