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Abstract: Control of fungal pathogens is increasingly problematic due to the limited number of
effective drugs available for antifungal therapy. Conventional antifungal drugs could also trigger
human cytotoxicity associated with the kidneys and liver, including the generation of reactive
oxygen species. Moreover, increased incidences of fungal resistance to the classes of azoles, such as
fluconazole, itraconazole, voriconazole, or posaconazole, or echinocandins, including caspofungin,
anidulafungin, or micafungin, have been documented. Of note, certain azole fungicides such as
propiconazole or tebuconazole that are applied to agricultural fields have the same mechanism of
antifungal action as clinical azole drugs. Such long-term application of azole fungicides to crop
fields provides environmental selection pressure for the emergence of pan-azole-resistant fungal
strains such as Aspergillus fumigatus having TR34/L98H mutations, specifically, a 34 bp insertion into
the cytochrome P450 51A (CYP51A) gene promoter region and a leucine-to-histidine substitution
at codon 98 of CYP51A. Altogether, the emerging resistance of pathogens to currently available
antifungal drugs and insufficiency in the discovery of new therapeutics engender the urgent need
for the development of new antifungals and/or alternative therapies for effective control of fungal
pathogens. We discuss the current needs for the discovery of new clinical antifungal drugs and the
recent drug repurposing endeavors as alternative methods for fungal pathogen control.

Keywords: antifungal; Aspergillus; Candida; Cryptococcus; drug repurposing; multidrug resistance;
pan-azole resistance

1. Introduction

Fungal infections, such as human invasive aspergillosis, candidiasis, or cryptococcosis caused
by Aspergillus, Candida, or Cryptococcus species, respectively, are persistent problems since effective
antifungal drugs are often limited [1]. In addition to 5-flucytosine (5FC), only three classes of antifungal
drugs are currently applied in clinical settings, namely, azoles, polyenes, and echinocandins; azoles and
polyenes were introduced before 1980, while the echinocandin drug caspofungin (CAS) was approved
for use in clinics after the year 2000 [2]. These are the three drug classes used in clinical routines to treat
invasive/systemic fungal infections and, therefore, emerging resistance incidences of fungal pathogens
to these drugs make fungal diseases a global human health concern [3]. Immunocompromised people
are at risk of developing fungal diseases.
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For instance, the yeast pathogen Candida species are the most common causative agents of
bloodstream infections, linked to high morbidity and mortality. While Candida albicans is the most
prevalent species infecting humans, cases of non-albicans infections are also continuously growing.
Of note, the non-albicans C. auris is an emerging yeast pathogen showing severe human infections
and multidrug resistance, with up to 323 United States (US) clinical cases reported in 2018 [4]. C. auris
spreads easily between hospitalized patients or nursing home residents, and it has been classified as an
“urgent threat” pathogen according to the United States Centers for Disease Control and Prevention’s
(CDC'’s) 2019 Antibiotic Resistance Threats Report (ARTR) [4]. Numerous other Candida species have
also been grouped as “serious threat” pathogens because they cause different types of fungal infections
including oral and vaginal infections or severe invasive diseases. Many species of this group are
resistant to conventional antifungal drugs, with estimated US hospitalization cases in 2017 of 34,800,
resulting in 1700 deaths [4].

In addition, azole-resistant strains of other fungal species, including Aspergillus fumigatus, also
cause life-threatening infections, especially in high-risk, immunocompromised people. Azoles are
broadly used for treating human fungal pathogens, where the mechanism of action is to inhibit
cellular lanosterol 14 alpha-demethylases involved in fungal ergosterol biosynthesis. Azoles are also
increasingly applied in agricultural fields to prevent or treat phytopathogenic fungal diseases in crops.
Currently, more than 25% of total fungicide sales are azoles [5]. This provides environmental selection
pressure for the emergence of pan-azole-resistant strains such as A. fumigatus having the TR34/L98H
mutation [5]. The development of azole resistance due to their increased use in human medicine and
agriculture is a public health concern, leading to the placement of azole-resistant A. fummigatus on the
microorganism watchlist, according to CDC’s 2019 ARTR [4].

The spectrum of activity for the current systemic antifungal drugs, including amphotericin B (AMB),
5FC, fluconazole (FLU), itraconazole (ITR), voriconazole (VOR), posaconazole (POS), isavuconazole
(ISA), CAS, micafungin (MICA), or anidulafungin (ANI), have been documented [6-8]. In brief, the
antifungal spectrum has been determined as follows: C. albicans, Candida glabrata, Candida parapsilosis,
and Candida tropicalis (AMB, 5FC, FLU, ITR, VOR, POS, ISA, CAS, MICA, and ANI); Candida krusei
(AMB, 5FC, ITR, VOR, POS, ISA, CAS, MICA, and ANI); Candida lusitaniae (5FC, ITR, VOR, POS, ISA,
CAS, MICA, and ANI); A. fumigatus (AMB, ITR, VOR, POS, ISA, CAS, MICA, and ANI); Cryptococcus
neoformans (AMB, 5FC, FLU, ITR, VOR, POS, and ISA); Fusarium species (AMB, ITR, VOR, POS, and
ISA); Scedosporium species (AMB, ITR, VOR, POS, and ISA); Blastomyces dermatitidis, Coccidioides immitis,
and Histoplasma capsulatum (AMB, FLU, ITR, VOR, POS, and ISA); Mucorales (AMB, POS, and ISA).
Studies indicated that differential susceptibilities of fungal pathogens to the drugs exist depending
on the types of fungi or drugs applied. For example, the yeast pathogens C. albicans, C. glabrata, C.
parapsilosis, and C. tropicalis were susceptible to all antifungal drugs described (AMB, 5FC, FLU, ITR,
VOR, POS, ISA, CAS, MICA, and ANI), while the other two Candida species (C. krusei and C. lusitaniae)
did not show sensitivity to FLU or AMB, respectively. Of note, except for the Candida species and A.
fumigatus, the other fungi mentioned (namely, C. neoformans, Fusarium species, Scedosporium species,
Blastomyces dermatitidis, Coccidioides immitis, and Histoplasma capsulatum) did not exhibit susceptibility
to the echinocandin drugs (CAS, MICA, and ANI), whereas the azoles POS and ISA were effective
against all fungal pathogens described above.

There have also been persistent efforts to improve the efficacy or to reduce the toxicity of
conventional antifungal drugs/intervention strategies. For instance, AMB was the first antifungal drug
introduced to clinics over five decades ago, for which several types of formulations have been developed
with varying toxicity such as infusion-related reactions and nephrotoxicity [9,10]. Three lipid-associated
AMB formulations have been developed, which include the AMB lipid complex (AMB-LC), liposomal
AMB (L-AMB), and colloidal dispersion of AMB (AMB-CD) with the recommended therapeutic doses
of 5, 3-6, and 3-4 mg/kg/day, respectively [9,10].

However, the development of entirely new antifungal drugs is a very expensive and
time-consuming process. It is estimated that the overall timelines and costs from new antifungal lead
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discovery to regulatory approval, especially for those overcoming drug-resistant fungal pathogens,
are 10 years and USD >300 million, respectively. In addition, marketing is estimated to cost USD 400
million over the lifespan of a product [11]. Recently, there have been alternative approaches termed
antifungal ‘drug repurposing” via which the new utility of various types of marketed, non-antifungal
drugs are repositioned as novel antifungal agents. Here, we discuss the current clinical needs for the
development of new antifungal therapy, and we comment on the recent antifungal drug repurposing
efforts as alternative approaches for the control of fungal pathogens.

2. Drug Repurposing Approaches

2.1. Repurposing Approaches for the Human Therapeutic Drugs (Non-Antifungals)

Drug repurposing for “medical treatments (other than fungal diseases)” is the repositioning
platform of already marketed drugs for treating human diseases to cure new, other types of
disorders/health problems such as viral infection, lupus nephritis, and neurodegenerative disease.
One of the merits of drug repurposing is that the mechanisms of action, cellular targets, toxicity
profile, or safety of the commercial drugs have already been identified, which enables expedited
regulatory approval [12,13]. The methodical drug repurposing pipeline largely involves two types
of approaches, “experimental testing” approaches such as microtiter plate-based high-throughput
screenings and “in silico/computational” approaches that utilize currently available data (omics,
drug target, and real-world data, such as the data pertaining to individual’s health status or to the
healthcare routinely provided) for the identification of potential new drugs to cure diseases. Systematic
drug repurposing needs the accession to and interpretation of molecular, protein, and real-world data,
as well as experimental analysis, where data validation in the multicellular or higher organism is the key
for industry implementation [12]. In principle, the “antifungal” drug repurposing processes also apply
similar approaches for successful drug/compound repositioning (Table S1, Supplementary Materials).

2.2. Repurposing Approaches for the New Antifungal Drugs

We performed a PubMed database search in the National Center for Biotechnology Information
(NCBI) [14] (https://www.ncbi.nlm.nih.gov/) by applying the keywords “antifungal drug repurposing”,
“repurposing [and] in silico [and] fungi (or antifungal, Candida, Cryptococcus, Aspergillus)” plus
“antifungal resistance [and] Food and Drug Administration (FDA) (or FDA-approved drug)”,
which retrieved a total of 747 articles (accessed on 14 August and 20 October 2020). Each repurposed
drug identified was then searched further in PubMed with the search terms “fungi [and] antifungal
[and] repurposed drug name (individual)” to provide a comprehensive antifungal spectrum.
Articles relevant to the new antifungal drug development are summarized in Table S1 (Supplementary
Materials) [15-170]. The remaining articles not selected here mainly described (1) antibacterial, antiviral,
or antiprotozoal drug development, (2) anticancer drug development, or (3) drug development for
other human diseases/conditions including metabolic diseases such as arachidonic acid metabolism,
Parkinson’s/neurodegenerative diseases, immune-mediated disease, altered gene expression, and ATP
synthase disorder. Six studies adopted “in silico/computational” approaches including experimental
validation (Table 1), while the remaining investigations used “experimental testing” approaches,
including the utilization of standard antifungal testing protocols such as CLSI M27-A, CLSI M38-A,
and EUCAST-AFST E.DEF 7.3 developed by the Clinical and Laboratory Standard Institute (CLSI) [171]
or the European Committee on Antimicrobial Susceptibility Testing (EUCAST) [172], respectively,
for breakout determination.
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3. Antifungal Drug Repurposing: Current Measures

3.1. In Silico/Computational Repurposing Approaches

In silico/computational repurposing approaches typically use four steps: (1) mining and
compilation of pathogen genome data, (2) homology modeling, (3) ligand preparation and molecular
docking, and (4) experimental validation in the target pathogens [173]. As described in Table 1,
public or nonprofit research sectors such as NCBI, Broad Institute (USA), and the European Molecular
Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI) provide updated fungal genome or
protein data, which makes the comprehensive mining and compilation of fungal genome/protein data
feasible. Protein or chemical databases such as the SWISS-MODEL server, Protein Data Bank (PDB),
and PubChem server allow the execution of protein structure homology modeling of drug targets or the
computation of 3D structures of candidate compounds. Other online tools, such as the Visual Molecular
Dynamics (VMD) program or LigPlot program that automatically plot the protein-ligand interactions,
are also currently available (Table 1). The execution of ligand preparation and the molecular docking
step rely mainly on the application software, as documented in Table 1.

Noteworthy is the repurposing study performed by de Oliveira et al. [15] targeting
the saprobic/dimorphic Paracoccidioides species, a causative agent of the systemic mycosis
paracoccidioidomycosis, which adopted three additional steps: (a) identification of “orthologs’
in different isolates of the target pathogen, (b) identification of “homologs” in the drug—target databases,
and (c) selection of essential targets in the model fungus Saccharomyces cerevisiae system. The study
compiled proteins of three Paracoccidioides species (P. lutzii, P. americana, and P. brasiliensis) via the Broad
Institute Fungal Genomics Database, followed by the identification of orthologs in Paracoccidioides
species. The study by de Oliveira et al. resulted in the selection of two anticancer drug candidates as
new, repurposed antifungals, where the mode of action was to inhibit the fungal phosphatidylinositol
3-kinase TOR2 (Target Of Rapamycin 2) [15].

The validation of antifungal activity of new, repurposed drugs to achieve more than 99.9% fungal
death (breakpoints) requires standard testing methods developed by CLSI [171] or EUCAST [172]
(Section 3.2). Of the six in silico/computational studies described in Table 1, two investigations adopted
the CLSI protocols while four other studies applied various agar- or liquid-based antifungal assays.
It is expected that the number of in silico/computational investigations will increase in the coming

7

years, especially with the increasing numbers of omics, drug target, and chemical structural data
being generated. The adoption of standard methods, such as CLSI or EUCAST, is highly desired
for the unbiased/repeatable determination of the breakpoints (and, thus, the efficacy) of repurposed
antifungal drugs.
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Table 1. Tools and procedures applicable to the in silico/computational antifungal drug repurposing.
Pathogens Purucoccr.dwtdes Candida albicans Candida, Aspergtllus,. and Pythium insidiosum Paracocct.dwldes Candida auris
Steps Species Trychophyton Species Species
Broad Institute TE)}:)T (l??’eisxsljr(}c)a ll\?al tli%)r::legteif;rr;gr UniProt database
Mining and Fungal Genomics - / . MOE 2014.09 (PDB search module); (https://www.uniprot.org);
o, Biotechnology Information (http: . .
compilation of Database (https: . . . Clustal Omega tool, UniProt server Protein Data Bank
. //www.ncbi.nlm.nih.gov/BLASTY/); . - -
pathogen genome //www.broadinstitute. (http://www.ebi.ac.uk/Tools/msa/ (https://www.rcsb.org);
CLUSTALW, European
data org/fungal-genome- L. . . clustalo/) BLASTP (blast 2.2.28_ program)
initiative) Bioinformatics Institute (https://www.ncbi.nlm.nih gov)
hatny (http://www.ebi.ac.uk/Tools/msa/) PS//WWW-NCOLIM.NIA-OY
Identification of
orthologs in pathogen OrthoVenn server - - - - -
isolates
MDL Drug Data
Report (MDDR)
(BIOVIA and
Identification of DrugBank; Thomson Reuters);
homologs in the Therapeutic targets - - - DrugBank (https: -
drug-target databases database (TTD) //www.drugbank.ca/);
TargetMol provider
(http:
//targetmol.com/)
Selection of essential
targets in the Database of Essential } ) } : }
Saccharomyces Genes (DEG)
cerevisiae system
SWISSE;I‘\I/L?DEL PubChem server
Protein Data Bank SWISS-MODEL server; AMBER99 (with S. cerevisiae (http://pubchem.ncbi.nlm.nih.gov/) Homology modghng Cytochrome P450 51
. Ramachandran plot, SAVES . (3D structure); for Candida albicans R
Homology modeling (PDB); S chorismate mutase; PDB entry code ) . . (CYP51) modeling
KoBaMIN server: (http://services.mbi.ucla.edu/ 4CSM) as a templat PreADMET server (https: thioredoxin reductase [175]
OHCC sersvee:'e ’ PROCHECK) S a template //preadmet.bmdrc.kr/introduction/) [174]

MolProbity

(3D structure)
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Pathogens Purucoccr.dwwles Candida albicans Candida, Asperglllus,. and Pythium insidiosum Pamcocct.dwldes Candida auris
Steps Species Trychophyton Species Species
Scaffold Hunter
program
(http://scaffoldhunter.
sourceforge.net/)
Protein Preparation Wizard of (selection of top ten
OMEGA v.3.0.0.1 Schrodinger Sl]silztl(; '8'5 (Chimeric bestezslrln gg;g::e?om Protein preparation
software by OpenEye . ol . MOE 2014.09 (Chemical ! wizard (C. albicans
P Docking between internal ligand - GOLD software
Scientific [176]; (fluconazole) and 1EAT in Computing Group Inc., Sherbooke (docking simulation CYP51);
QUACPAC v.1.7.0.2 X , . St, Montreal, QC, Canada) software; . . X gs i LigPrep module of
Schrodinger’s suite 8.5; . ; AutoDock Vina program; PyRx suite against Candida . .
software by OpenEye Leadit 2.1.2 (BioSolvelT GmbH, ! ! N . the Schrodinger suite
. . o GROMACS 5.0 for molecular open-source software version 0.9.7;  albicans thioredoxin .
Ligand preparation Scientific [177]; . . . Germany) software; . . . (sertraline);
. ; dynamics simulations with . AutoDock Vina program; reductase); . .
and Molecular OEDocking suite ) Gromacs 4.5.5 (Molecular dynamics); . s g . Schrodinger suite
R GROMOS9643al force field; Discovery Studio Visualizer version CORINA
docking v.3.2.0 by OpenEye PRODRG2 and GROMOS 53A6 force L . . (LLC, New York, NY)
e LIGPREP and . 17.2.0 (Dassault Systemes Biovia (three-dimensional . )
Scientific [178]; MAESTRO (fluvastatin 3D field (Topology); Corp,) models); (induced fit molecular
FRED program with Particle Mesh Ewald (PME) method P . 4 docking analysis);
structure); . . Visual Molecular .
the ChemGauss4 R . and linear constraint solver (LINCS); X Glide module (extra
L MATLAB version R2015b (plotting Dynamics (VMD) .
score function in the S Xmgrace and VMD software precision feature for
OEDocking suite and caleulations); program sertraline)
Dundee Prodrug 2.5; (http://www.ks.uiuc.
GLIDE 5.0 edu/Research/vmd)/);
LigPlot program
(https://www.ebi.ac.
uk/thornton-srv/
software/LIGPLOTY/)
. Modified Clinical and . .
E>.<per.1me.ntal Laboratory Standards L . . 3-(4,5—d1methy.lth1azol—27yl)—2,5- CLSIM27-A3 [171] Microdilution (killing
validation in the . Microtiter bioassay diphenyltetrazolium bromide (MTT) Agar- and broth-based assay L
Institute (CLSI) . S kinetics)
target pathogen microdilution assay
protocol
References [15,176-192] [18,193-195] [16,196-204] [17,205,206] [20,171,174,207-210] [21,175]
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3.2. Experimental Repurposing Approaches

3.2.1. Standard Dilution Methods: CLSI and EUCAST

The majority of articles (Table S1, Supplementary Materials) performed drug repurposing via
experimental testing approaches. These include CLSI, EUCAST, or other microdilution/agar assays such
as biofilm bioassay, high-throughput ATP content assay, microdilution, and fluorescent microscopic
analysis, metabolism and hyphal inhibitory assays, drug diffusion susceptibility testing, human
neutrophils, epithelial cell adhesion and invasion assays, murine model, and macrophage assay,
among others.

The standard dilution methods developed by the CLSI and EUCAST quantitatively determine
(1) minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFC) of
drugs/compounds via the microdilution assay settings, as well as whether the antifungal efficacy of
drugs/compounds is fungicidal or fungistatic, where fungicidal indicates a ratio of MFC/MIC <4 [211],
and (2) the levels and types of drug/compound interactions when two drugs/compounds are co-applied,
thus calculating the fractional inhibitory concentration indices (FICI) using MIC values or the fractional
fungicidal concentration indices (FFCI) using MFC values; synergism indicates FICI or FFCI values
<0.5, while indifference indicates FICI or FFCI values >0.5-4 [212].

The other method termed the “disc diffusion” test is a relatively inexpensive assay compared to
the standard dilution method, for which a few standard assay protocols have been documented in
CLSI. CLSI M44 was validated only for azoles and echinocandins for the isolates of Candida species,
while CLSI M51-A and supplement M51-51 qualitatively analyze the efficacy of CAS, triazoles, AMB,
etc. [213]. There is a lower agreement between the disc diffusion test results and that of the standard
dilution assays, especially in the values from Aspergillus flavus (AMB and VOR) and A. fumigatus (AMB),
suggesting that the standard dilution assay seems useful to determine the interpretative breakpoints
for both Candida and Aspergillus species.

3.2.2. Biofilm Analysis

Studies have shown that many fungi can alternate planktonic (freely floating, homogeneous cells)
and sessile (surface-aggregated, heterogeneous cells) growth, which significantly affects fungal
pathogenesis and human infection [214-216]. The sessile, multicellular communities of fungi,
also known as biofilms, are highly structured fungal communities, which are either adherent to biological
or physical surfaces, such as oral mucosa, denture acrylic substrates, and catheters, or form aggregates
within the protective extracellular matrix (ECM). The majority of clinically important fungi can produce
biofilms, which include filamentous fungal pathogens (Aspergillus, Fusarium, and zygomycetes),
yeast pathogens (Blastoschizomyces, Saccharomyces, Malassezia, Trichosporon, Cryptococcus, and Candida
species), and Pneumocysitis [214-216]. There are also variations in biofilm morphology depending on the
types of fungi, namely, (1) C. albicans forms complex morphology with blastospores, hyphae, and ECM,
(2) C. neoformans forms an organized structure having yeast cells with a matrix, (3) A. fumigatus forms
hyphal cells with ECM, (4) Trichosporon asahii forms yeast and hyphal cells with ECM, etc. [216].
Therefore, in addition to the standard in vitro testing for the planktonic cells, such as CLSI or EUCAST
assays, a highly reproducible microtiter plate-based colorimetric measurement determining metabolic
activities of the pathogen’s biofilm are also used [217].

In general, the development cycle of a fungal biofilm consists of initial adhesion,
colonization, proliferation with ECM production, biofilm maturation, and dispersion [214-216].
Various environmental factors induce surface attachment and biofilm formation of fungi, including
the flow of body fluids (urine, blood, saliva, mucus), pH, temperature, and host immune factors,
whereby biofilms protect fungi from the harsh environments including antifungal drugs (e.g., ECM
shields fungal cells from drugs and reduces drug penetration), chemical and physical stress, etc.,
or enable a community-coordinated gene regulation or metabolism [214-216].
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Biofilm-forming fungal infections are very difficult to treat, which often involve increased
drug-resistance phenotypes [218]. In particular, the triazoles and traditional formulations of polyene
drugs are considered inactive against fungal biofilms [219]. Differential antifungal activity of drugs has
also been documented against biofilms from different fungal pathogens. For instance, echinocandins
and AMB lipid formulations exhibited in vitro and in vivo antifungal activities against C. albicans
biofilms, while other fungal biofilms, such as A. fumigatus or C. auris biofilms, were resistant to
echinocandin drugs including CAS [214,219].

3.2.3. Phenotypic Variability of Infecting Fungi: Conidia, Hyphal, Yeast, and Filamentous Growth

In addition to biofilm formation, the phenotypic variability of fungi could also play an important
role in clinical outcomes of therapeutic interventions, including the repurposed drugs/compounds
(Table 2). In C. albicans, the morphological switch from yeast cells to hyphae (filamentous forms)
serves as a crucial virulence factor, which promotes infection and invasion in hosts. There was also a
positive correlation between the level of azole resistance and the capability to form a hyphal structure;
under hypha-inducing conditions, only the C. albicans resistant to azoles could form hyphae while
the susceptible isolates could not [220]. In the antifungal drug screenings, the manganese nitrosyl
[Mn(PaPy3)(NO)][(ClO4) ({Mn-NO}), a biocompatible NO-donating reagent that delivers NO under
visible light, has been determined more effective against the hyphal form of C. albicans, when compared
to the yeast cells [221]. Triclosan has also been used in oral hygiene products with a broad-spectrum
antimicrobial activity. Of note, in C. albicans, triclosan at subinhibitory concentrations antagonized the
antifungal activity of the azole drug FLU, which was specific under hypha-inducing conditions [222].
This antagonism could be due to the membranotropic characteristic of triclosan and also the unique
composition of hyphal membranes [222]. Meanwhile, in A. fumigatus, the conidia and hyphal forms of
fungal fragments were equally susceptible to the AMB and azole drugs, while hyphal clumps were
only susceptible to the relatively high concentrations of AMB [223].

Table 2. Examples of repurposed drugs negatively affecting biofilm formation, hyphal filamentation,
or yeast growth in fungi.

Compounds Fungi Effects Ref.
Haloperidol or C. albicans, Inhibition of filamentation, melanin
benzocyclane C. glabrata, production, and [78]
derivative C. neoformans biofilm formation
Aripiprazole C. albicans Inhibition of b1<?f11m formatlon and hyphal [152]
filamentation
. C. albicans
Alexidine S e ..
dihydrochloride C. auris, Antibiofilm activity [83]
A. fumigatus
Inhibition of the expression of virulence
. C. albicans, traits: filamentation in C. albicans and
Mefloquine . N [155]
C. neoformans, capsule formation/melanization in C.
neoformans
Pentamidine, bifonazole,
econazole, alexidine,
cetylpyridinium chloride, Inhibition of spore germination and yeast
otilonium bromide, C. neoformans pore & Y [100]

benzethonium chloride, growth

niclosamide, disulfiram,
temsirolimus

Sulfonamide drugs C. albicans Inhibition of biofilm [113]
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Table 2. Cont.

Compounds Fungi Effects Ref.
C. albicans,
C. auris,
C. dubliniensis, Inhibition of both planktonic growth and
. . C. glabrata, biofilm formation; inhibition of Coccidioides
Miltefosine C. krusei, posadasii filamentous phase and Histoplasma [116,117,119]
C. parapsilosis, C. capsulatum filamentous/yeast phases
tropicalis,
Sporothrix schenckii
Antifungal activity against phagocytized C.
Mebendazole C. neoformans neoformans: affected biofilms and reduced [157]
capsular dimensions
Inhibition of biofilm and [123]
Quinacrine C. albicans inhibition of planktonic growth (alkaline
pH) and filamentation
Auranofin,
pyrvinium pamoate, C. albicans Inhibition of biofilm formation [124]
benzbromarone
Finasteride C. albicans Inhibition of ur1.nary b10f1.1m formation and [164]
filamentation
C. albicans Inhibition of C. albicans and S. aureus
Auranofin ) ’ (bacterium) mono- and dual biofilm [161]
Staphylococcus aureus P .
ormation
Inhibition of biofilm, hyphal, and
Panobinostat C. albicans planktonic growth [143]
A. fumigatus,
1. C. albicans, Inhibition of yeast cell growth,
Robenidine C. neoformans, filamentation, and biofilm formation [167]
S. cerevisiae
bis-Biguanide alexidine . . e ..
dihydrochloride C. albicans Antifungal and antibiofilm activity [83]
Halogenated C. albicans
salicylanilide, ) . Antifilamentation and antibiofilm activities [169]
. . C. auris
niclosamide
C. albicans,
. L C. parapsilosis, i .
Arachidonic acid C. glabrata, Antibiofilm activity [88]
C. tropicalis
Aspirin, ibuprofen C. albicans, Antibiofilm and antiplanktonic activi [60,62]
pirn, bup Trichosporon asahii p ty ”
C. utilis,
Nortriptyline C. krusei, Antihyphal and antibiofilm activity [74]
C. glabrata
Quinine C. albicans Antifungal synergy with bicarbonate or [125]

hygromycin against biofilm

3.2.4. Animal Model Systems

Animal model systems (mammalian and nonmammalian models) are important components for
antifungal drug development/discovery including the validation of repurposed drugs [224] (Table 3).
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Table 3. Examples of animal models used in drug repurposing (see also Table S1, Supplementary

Materials).
Drug/Compound Animal Model Fungi Effect Reference
Repurposed
Reduction of the fungal burden,
Ralteeravir BALB/c mice, Paracoccidioides decreased alterations in the lung [20]
& male, 6 weeks old species structure of mice (1 mg/kg of
raltegravir)
Decreased the intracellular burden of
s Murine ]774 C. neoformans (2.7-fold at a
Thioridazine phagocytes C. neoformans concentration 16-fold below the MIC (751
(2 pg/mL))
Specific Reduction in tissue damage and
Beauvericin pathogen-free C. albicans or inflammatory cell infiltration in [85]
female ICR (Crl: C. parapsilosis kidneys (0.5 mg/kg beauvericin and :
CD-1) mice KET 1)
BALB/c (inbred) Beauvericin (4 mg/kg) and FLU L5
Beauvericin mice, female, 7 C. albicans mg/kg) combination exhibited a [84]
weeks old therapeutic benefit
Mice treated prophylactically with
pentamidine (for 3 days prior to
. C57BL/6], female, 8 infection) resulted in a 2-fold-lower
Pentamidine to 10 weeks old C. neoformans fungal burden than the control; (100]
minimized lung fungal burden in
spore-mediated infections of mice
C57BL/6 mice,
female, 4 to 6
weeks old; Preventive deferasirox treatment
Deferasirox immunosuppression C. albicans significantly reduced the fungal [137]
model of murine burden in tongue tissue
oropharyngeal
candidiasis
N-Acetylcysteine + AMB ! achieved
higher survival than the control and
C57/BL6 mice, reduced morbidity in murine-induced
N-Acetylcysteine female, 6 to 8 C. gattii cryptococcosis; reduced fungal [138]
weeks old burden in lungs/brain and lower
concentrations of proinflammatory
cytokines in the lungs
BALB/c mice,
. . female, 4 to 6 Cisplatin significantly inhibited C.
Cisplatin weeks old C. neoformans neoformans growth in a mouse model [168]
Galleria mellonella Panobinostat and FLU combination
Panobinostat C. albicans enhanced [143]
larvae .
survival rate of G. mellonella
Pilocarpine hydrochloride
Pilocarpine . protects G. mellonella larvae from C. )
hydrochloride G. mellonella larvae C. albicans albicans-induced mortality in a [154]
dose-dependent manner
.. Pitavastatin—-FLU combination
Caenorhabditis s .
. . . . reduced the biofilm formation of
Pitavastatin elegans animal C. albicans did . P [77]
model Candida species and the fungal

burdens in a C. elegans infection model

1 Drug abbreviations: amphotericin B (AMB), fluconazole (FLU), and ketoconazole (KET).

Mammalian models are represented by murine, rat, guinea pigs, and rabbits, including both naive
and compromised mice, whereby the antifungal activity of the repurposed drugs can be examined
for pharmacokinetics (PK) (e.g., tissue distribution, excretion), pharmacodynamics (PD), immune
responses elicited by fungal pathogens, and vaccination attempts [224,225] (see [138] in Table S1,
Supplementary Materials). There are various animal models and infection routes, together with
various immune suppression regimens. Examples include, but are not limited to, drug screening
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murine model, murine neutropenic thigh model for determining PK/PD of antifungal drugs, murine
model for testing mucocutaneous candidiasis, diabetic murine model of disseminated mucormycosis,
murine pulmonary mucormyecosis, cyclophosphamide/cortisone immunocompromised murine model
of pulmonary mucormycosis, persistently neutropenic rabbit model for investigating acute, invasive
pulmonary aspergillosis (IPA), and persistently granulocytopenic rabbit model for characterizing the
efficacy of L-AMB against IPA [224,225]. It is important to note that animal testing should be compliant
with animal welfare regulation, including Institutional Animal Care and Use Committee (IACUC)
review, for all proposed animal experiments [226].

Nonmammalian models currently consist of Drosophila melanogaster (fruit fly), Caenorhabditis
elegans (free-living nematode) and Galleria mellonella (wax moth). Examples include biofilm formation
in D. melanogaster, melanization and toxicity testing in G. mellonela, and slow and fast killing testing in
C. elegans, among others. [227]. When compared to the mammalian models, the nonmammalian models
are considered affordable and easy to handle (see [154] in Table S1, Supplementary Materials). While
studies have shown that many data from nonmammalian models are in parallel with those obtained
from mammalian models, some results did not correlate well. The major drawback of nonmammalian
models lies in their unsuitability for microbial vaccination, colonization assessment, challenge research,
and immune response. Accordingly, mammalian models are considered to better represent the human
condition during the efficacy assessment of the repurposed drugs [224], as also described in Section 4.1.

There have been several types of candidate drugs used for antifungal repurposing (Table S1,
Supplementary Materials). These include antipsychiatric, estrogen modulator, antidepressant,
antiplatelet aggregation, enzyme (serine palmitoyl-transferase) inhibitor, anticardiovascular,
antiarthritis, antistroke, antiatherosclerosis, anticancer, and anthelmintic drugs. However, the use of
various drug libraries in the antifungal drug repurposing process is also increasing recently; drug
libraries have been prepared/preserved by either public or commercial institutes/vendors, as shown in
Table 4.

Table 4. Summary of the drug/compound libraries used in the antifungal drug repurposing (see also
Table S1, Supplementary Materials).

Drug, Compound Libraries Sources Fungi Tested References
MDL Drug Data Report BIOVIA and Thomson
(MDDR), Reuters https: C. albicans, [20,167]
DrugBank, TargetMol databases //www.drugbank.ca/, Paracoccidioides species !
or library (L4200) http://targetmol.com/

Candida species,
Cryptococcus species,
Saccharomyces cerevisiae,
Aspergillus fumigatus,
Fusarium oxysporum, [23,25,66,75,83,94,96,124,
Fusarium solani, 165,228]
Lichtheimia species,
Lomentospora prolificans,
Paecilomyces variotii,
Rhizopus arrhizus,
Scedosporium apiospermum

Prestwick Chemical
Prestwick Chemical (Illkirch, France)
Library http://www.
prestwickchemical.com/

MicroSource Discovery

Systems (Gaylordsville, C. albicans,
Pharmakon1600 drug library CT, USA) C. glabrata [68,77,162]
http://www.msdiscovery. C. auris
com/

Sigma-Aldrich
Library of Pharmacologically (St. Louis, MO, USA)
Active Compounds (LOPAC!280) https://www.
sigmaaldrich.com/

Exserohilum rostratum [101]
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Drug, Compound Libraries Sources Fungi Tested References
C. albicans,
C. gatti,
C. neoformans,
- . L. prolificans,
Medicines for Malaria Fonsecaea pedrosoi
Medicines for Malaria Venture Vent'u.re Fonsecaea monophora, ,
. (Geneva, Switzerland) . [91,148]
(MMYV) Malaria Box https://www.mmv.org/ Fonsecaea nubica,
ps: [229'] or8 Cladophialophora carrionii,
Phialophora verrucosa,
Rhinocladiela similis,
Exophiala jeanselmei var. heteromorpha,
Exophiala dermatitidis
Enzo Life Sciences Aspergillus species,
Screen-Well Enzo library (Farmingdale, NY, USA) Candida, [110]
of 640 compounds https://www. Cryptococcus deuterogattii,
enzolifesciences.com/ Saccharomyces
. A. fumigatus,
L1300 Selleck library, Selleck Chemicals C. gattii,
1018 United States Food and
. . https: C. glabrata, [73,100]
Drug Administration . R
R //www.selleckchem.com/ C. neoformans,
(FDA)-approved Selleck library Trichophyton rabrum
Medicines for Malaria
Venture .
® . .
Pathogen Box® chemical library (Geneva, Switzerland) C. auris [119]
https://www.mmv.org/
. . . Developmental
United States National Institutes R .
of Health/National Cancer Therapeutics Program of A. fumigatus,
Institute (NIH/NCI) compound the NIH/NCI (Rockville, Candida species, [127]
librar P MD, USA) C. neoformans
y https://dtp.cancer.gov/
Johns Hopkins, USA C'Cal:ll;{:sns’
1547 or 1581 FDA-approved Johns Hopkins Clinical c : krusezi [133,163]
drug library Compound Library c ’;m silo;is w
(JHCCL) version 1.0 Cp thicalis !
Thermo Fisher Scientific
(Waltham, MA, USA)
. . https://www. C. albicans,
678 Maybridge collection thermofisher.com/us/en/ C. auris [169]

home/chemicals/
maybridge.html

3.3. Synergism between Repurposed Agents and Conventional Antifungals

Combination therapy in controlling fungal pathogens is defined as a co-application of two or more

antifungal drugs to treat fungal infections [230]. Combination therapy has been developed on the basis
that co-administration of antifungal drugs having different cellular/molecular targets could effectively
eliminate fungal pathogens, especially those resistant to conventional drugs. However, the efficacy of
combination therapies often varies depending upon the types of drugs co-applied. Although many
studies determined better results for fungal pathogen control with drug combinations, other data
exhibited no added merit of drug co-treatment over the individual application of each drug alone,
which may be associated with drug antagonism [231]. Risk factors also exist during combination
therapy, such as multidrug interactions and cytotoxicity.

Studies have shown the synergistic interaction between repurposed agents and conventional
antifungal drugs, such as FLU, AMB, or CAS (see Table 5 for a summary). For example, Spitzer et al.
determined that the antifungal capacity of chemicals can be systematically enhanced via the combined
application of known commercial drugs, such as FLU, with other types of bioactive compounds from
drug repurposing [23]. They found that the repurposed compounds did not have to possess potent
antifungal activity on their own, but that the compounds potentiated the FLU antifungal activity


https://www.mmv.org/
https://www.enzolifesciences.com/
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https://www.selleckchem.com/
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https://dtp.cancer.gov/
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https://www.thermofisher.com/us/en/home/chemicals/maybridge.html
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with considerable species specificity. These synergistic drug combinations were different from the
traditional combination therapies mentioned above [23].

Table 5. Summary of the drugs and compounds exerting synergism during co-application (see also
Table S1, Supplementary Materials).

Conventional Antifungal

Repurposed Drugs/Compounds Co-Applied. Drugs with Synergism

Azoles
(clotrimazole, fluconazole,
isavuconazole, itraconazole,
ketoconazole, miconazole,
posaconazole, voriconazole),

N-Acetylcysteine, alexidine dihydrochloride, amiodarone, arachidonic acid,
aspirin, beauvericin, bis-biguanide alexidine dihydrochloride, benzocyclane,
bromperidol derivative, chenodiol, chlorcyclizine, clomiphene, cloperastine,
colistin, L-cycloserine, deferasirox, drospirenon, ebselen, erythromyecin,
glimepiride, ibuprofen, idoxifene, lovastatin, methylene-idoxifene, miltefosine

. .. R . . . - . echinocandins
nisoldipine, nortriptyline, panobinostat, perhexiline, pitavastatin, polymyxin . . .
: . . . - (caspofungin, anidulafungin,
b, promazine, pyrvinium pamoate, quinacrine, quinine, micafungin)
ribavirin, riluzole, sertraline, suloctidil, tamoxifen, thioridazine, g,
polyene (AMB),

thiosemicarbazone, toremifene, trifluoperazine . .
allylamine (terbinafine)

Similarly, the anticholesterol drug lovastatin has been repurposed as a synergistic antifungal
modulator to the azole drug ITR against the planktonic cells and biofilms of the yeast pathogen
C. albicans; the lovastatin regulation of the ergosterol biosynthetic pathway has been the proposed
mechanism of antifungal action [45]. The antifungal mechanism of lovastatin in A. fumigatus also
involved ergosterol biosynthesis, which was controlled further by cellular iron homeostasis [65].
In A. fumigatus, iron starvation induces the production of the siderophore triacetylfusarinine C (TAFC),
for which mevalonate is the key intermediate for the synthesis of both ergosterol and TAFC, the critical
virulence factors [65]. Of note, the expression of the enzyme 3-hydroxy-3-methyl-glutaryl (HMG)-CoA
reductase (Hmg1), responsible for the production of mevalonate, was increased under iron starvation,
while the synthesis of TAFC was reduced following the lovastatin-mediated inhibition of Hmg1 [65].

In our prior study, considerable augmentation of the control of Cryptococcus species was
achieved by the co-application of repurposed compounds, such as octyl gallate or benzaldehydes,
with conventional antifungal agents [232]. The Cryptococcus species exhibited higher susceptibility to
the inhibition of mitochondrial respiration compared to other yeast pathogens Candida species [232].
This “species-specific” enhancement of sensitivity to the co-treatments resulted from the inability
of Cryptococcus species to produce cellular energy (ATPs) via the fermentation process. Studies by
Spitzer et al. mentioned above indicated that the differential susceptibility of pathogens to the newly
developed drugs or interventions is triggered by the differences in physiological/genetic settings of test
strains, which could result in species-specific antifungal responses.

Related antifungal “chemosensitization” has been developed recently as a new intervention
strategy, where co-application of a repurposed compound (chemosensitizer), such as food additives,
with conventional drugs enhanced the antifungal efficacy of the co-applied drugs [77,233].
A chemosensitizer causes the target pathogen to be more susceptible to the co-applied conventional
drug via the modulation of the pathogen’s defense system, such as the oxidative stress signaling
system or cell-wall integrity pathway. Considering that the chemosensitizers could also function as
probe-like chemicals by negatively affecting specific cellular targets such as antioxidant systems, types
of “drug—compound (repurposed) combinations” enable target-specific control of fungal pathogens,
including augmentation of the activity of the echinocandin drug CAS by the cell-wall-targeting octyl
gallate [234]. The chemosensitization strategy has been applied further to the development of a
high-efficiency drug repurposing protocol that could enhance the sensitivity of target pathogens to the
drug candidates, thus reducing time/costs for screening new antifungal drugs, as well as overcoming
drug/fungicide resistance of fungal pathogens [104].
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4. Challenges

4.1. Pioglitazone: Needs for In Vivo Drug Validation

Pioglitazone (PIO) has been used as an adjuvant of AMB for the treatment of cryptococcosis. AMB
causes excessive generation of reactive oxygen species linked to compromised renal function. PIO is an
agonist of peroxisome proliferator-activated receptor v, which is used to treat type 2 diabetes and is also
used as an adjuvant of many drugs triggering side-effects due to its redox-active and anti-inflammatory
characteristics [235]. In a murine model, co-application of PIO and AMB exhibited higher efficacy than
AMB alone for the inhibition of yeast pathogens, whereby the combination (PIO + AMB) disrupted yeast
transmission from the lungs to the brain, which also eliminated yeasts that reached the central nervous
system [236]. PIO did not exhibit in vitro antifungal activity, nor did it affect the AMB-mediated
fungicidal activity of macrophages; however, PIO as a therapeutic adjuvant counteracted the oxidative
bursts after the reduction of the fungal burden, thus relieving the oxidative stress damages to the host
(in vivo) and preventing the establishment of meningoencephalitis [236]. The fact that the in vitro
antifungal activity of PIO and AMB co-application was determined as “indifferent” while that of
in vivo administration increased the survivability of the animals, compared to AMB alone, strongly
suggests the importance of the in vivo validation of drug repurposing. The in vitro CLSI or EUCAST
testing alone could miss identifying highly effective antifungal adjuvants such as PIO (also observed
in other drug developments, personal communication [237], American Chemical Society National
Meeting, 2020).

4.2. Resistance to Repurposed Drugs/Compounds: Cinnamic and Benzoic Derivatives

The model yeast Saccharomyces cerevisiae has been used as a useful screening system for identifying
antifungal agents in view that (1) the S. cerevisine genome has been sequenced and well-characterized
([238], accessed 3 September 2020), (2) S. cerevisiae gene deletion mutants have been very useful for
investigating the mechanisms or target genes of screened leads [239], and (3) many genes in S. cerevisiae
are homologous to those of fungal pathogens [240]. The antifungal compounds screened via S. cerevisiae
(wild type or mutants) also exhibited broad-spectrum antifungal activities against pathogenic yeasts
(Candida and Cryptococcus species) and filamentous fungi (Aspergillus, Fusarium, and Scedosporium
species) [2].

Caution should be exercised during the high-throughput repurposing process so as not to overlook
the tolerant response of certain mutants. For instance, cinnamic acids are generally recognized as safe
(GRAS) compounds, which have been used as food additives [241]. In recent repurposing studies,
cinnamic acid derivatives have been investigated as antifungal alternatives which target fungal cell-wall
biosynthesis and integrity [242-244]. While the wild type and cell-wall integrity mutants of S. cerevisiae
showed a sensitive response to the selected cinnamic acids, such as 3- or 4-methoxycinnamic acids, the
glutathione reductase mutant (g/r1A) was hyper-tolerant to 4-methoxycinnamic acid when compared
to other test strains [243] (Figure 1). This type of hyper-tolerance was eliminated by 4-methylcinnamic
acid, which is the structural derivative of 4-methoxycinnamic acid having a deoxygenated para
methyl moiety (Figure 1). Glutathione reductase is necessary for the reduction of the oxidized
glutathione (GSSG) to reduced glutathione (GSH) to maintain cellular redox homeostasis [245].
While the study showed the structure-activity relationship of cinnamic derivatives in targeting fungal
cell-wall components where the para methyl moiety is critical to overcoming the glr1IA hyper-tolerance
to 4-methoxycinnamic acid, the investigation also highlighted the importance of comprehensive
determination of the “gene—compound” interaction/response, thus avoiding unfavorable outcomes
including fungal tolerance to the repurposed agents (Figure 1; Figure 2b for the scheme) during
drug repurposing.
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Figure 1. Yeast dilution bioassay showing differential susceptibility of S. cerevisiae slt2A, bck1A, and glr1A
mutants to cinnamic acid analogs (0.5 mM) (adapted from [243]). Numbers 109,1071,1072,1073, 1074,
and 1075 indicate the cell dilution rate for yeast spotting; growth scores 101, 102, 103, 104, 10°, and 10°
denote cell numbers which appeared following incubation. slt2A, mitogen-activated protein kinase
(MAPK) mutant; bck1A, MAPK kinase kinase (MAPKKK) mutant; glr1A, glutathione reductase mutant.

Stress defense system <j Cinnamics,

Benzoics
Wild type MAPK mutant glriIA
MAPI’( Mutants
w/ Repurposed ' / Escape
benzoic compound ‘ compound
I toxicity
- Structural
Sensitive, Tolerant, l ana!ogs (?r
No growth Growth b modification
Fungal pathogen control
(a) (b)

Figure 2. (a) A. fumigatus MAPK mutant showing tolerance to the repurposed benzoic ingredient
(Kim et al., unpublished observation); (b) scheme describing structural modifications of cinnamates
or benzoates that could overcome the tolerance of S. cerevisiae glr1A or A. fumigatus MAPK mutants,
respectively, to the repurposed compounds (see Figure 1 and [243] for cinnamates).

Edible plants including herbs are rich sources of bioactive metabolites that possess various
hepatoprotective, antihypertensive, antitumor, or immunomodulatory effects. However, natural
ingredients in plant extracts, such as benzoic derivatives, could negatively affect the fungal signaling
mutants (for example, A. fumigatus antioxidant mitogen-activated protein kinase (MAPK) mutants sakAA
and mpkCA [246,247]) where fungal MAPK mutants showed tolerance to the benzoic ingredients, while
the wild-type strains remain susceptible to the molecules (our unpublished observation; see Figure 2a
for fungal bioassay and Figure 2b for the scheme). Collectively, studies proved the significance of
“gene-compound” interaction analysis during the preclinical stage of drug repurposing (regardless
of the sources of the drugs or compounds whether synthetic, natural, crude extracts, or purified),
thus circumventing the unfavorable downside of repurposed drugs.
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5. Summary

Current antifungal intervention strategies often encounter limited efficiency in controlling
fungal pathogens. Infections of the bloodstream or lungs by Candida species or the airborne
Cryptococcus/Aspergillus species, respectively, that are resistant to conventional drugs cause serious
health issues. Resistance to drugs develops via the repeated usage of antifungal agents over time
(acquired resistance), while certain fungal species are intrinsically resistant to the conventional drugs
(intrinsic resistance); examples of intrinsic resistance include azole resistance (C. glabrata, C. krusei, and
C. auris), echinocandin resistance (Cryptococcus and Fusarium species), and polyene resistance (C. auris
and A. terreus) [248,249].

Drug repurposing for fungal treatments is an alternative strategy for developing new antifungals.
In this paper, two types of drug repurposing approaches were discussed, in silico/computational
approaches and experimental approaches. While the majority of drug repurposing studies adopted
experimental repurposing platforms, it is expected that the numbers of in silico/computational
investigations will be increased in the future considering the increasing numbers of in silico data
including omics, drug target, and chemical structural data. The preclinical validation of the efficacy of
the repurposed drugs will require the testing of molecules in the model systems with the unbiased
determination of breakpoints via the standard microdilution protocols developed by CLSI or EUCAST.

While repurposed drugs could be applied independently as novel antifungal agents for treating
fungal pathogens, they can also function as effective synergists/adjuvants in formulations to
conventional antifungal drugs such as FLU [23]. In contrast to traditional combination therapy,
co-application with a repurposed drug could avoid drug antagonism, multidrug interactions,
and cytotoxicity. The One Health approach acknowledges that human, animal, and environmental
health is closely linked [250], for which drug repurposing could provide solutions to eliminate resistant
fungi such as pan-azole-resistant Aspergillus species [251].

In summary, drug repurposing could provide promising alternatives to current antifungal practices.
Future inclusion of additional resources, in addition to the one described in this paper, such as the
DrugCentral database [252] and Aggregate Analysis of ClinicalTrials.gov (AACT) database [253],
would improve the antifungal drug repurposing processes that have the potential to benefit agriculture,
food security, and animal and human health.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/11/812/s1,
Table S1: Characteristics of repurposed drugs/compounds for control of fungal pathogens.
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