Received 18 March 2015
Accepted 24 March 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; organic salt; hydrogen bonding; hydrogenoxalate; dialkyammonium; oxalic acid.

CCDC reference: 1055825
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of dimethylammonium hydrogen oxalate hemi(oxalic acid)

Waly Diallo, ${ }^{\text {a }}$ Ndongo Gueye, ${ }^{\text {a }}$ Aurélien Crochet, ${ }^{\text {b }}$ Laurent Plasseraud ${ }^{\text {c }}$ and Hélène Cattey ${ }^{\text {c }}$ *

${ }^{\text {a }}$ Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, 'bDepartment of Chemistry, University of Fribourg, Chemin des Musée 9, CH-1700 Fribourg, Switzerland, and ${ }^{\text {cICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, } 9 \text { avenue Alain }}$ Savary, 21000 Dijon, France. *Correspondence e-mail: hcattey@u-bourgogne.fr, diallo_waly@yahoo.fr

Single crystals of the title salt, $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+} \cdot \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, were isolated as a side product from the reaction involving $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{Sn}(n-\mathrm{Bu})_{3} \mathrm{Cl}$ in a 1:2 ratio in methanol or by the reaction of the $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ salt and $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$ in a $2: 1$ ratio in ethanol. The asymmetric unit comprises a dimethylammonium cation $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}\right)$, an hydrogenoxalate anion $\left(\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right)$, and half a molecule of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ situated about an inversion center. From a supramolecular point of view, the three components interact together via hydrogen bonding. The $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$cations and the $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$anions are in close proximity through bifurcated $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds, while the $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ anions are organized into infinite chains via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, propagating along the a-axis direction. In addition, the oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ molecules play the role of connectors between these chains. Both the carbonyl and hydroxyl groups of each diacid are involved in four intermolecular interactions with two $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$and two $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ions of four distinct polymeric chains, via two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, respectively. The resulting molecular assembly can be viewed as a two-dimensional bilayer-like arrangement lying parallel to (010), and reinforced by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

1. Chemical context

Within the scope of our research on the crystal structure determination of new organotin compounds containing dialkyammonium, we recently reported the structures of bis(dimethylammonium) tetrachloridodimethylstannate(IV) [Diop et al., 2011] and dimethylammonium dichloridotriphenylstannate(IV) [Sow et al., 2012]. Continuing our quest in this field, we report herein on the crystal structure of the title salt, $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+} \cdot \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, isolated from two distinct reaction pathways, viz. mixing $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and $\mathrm{SnBu}_{3} \mathrm{Cl}$ in methanol or the reaction of the $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ salt and $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}$ in ethanol.

The title salt constitutes a new example of dialkylammonium hydrogenoxalates and thus supplements the number of crystal structures resolved to date for this type of salt (Birnbaum, 1972; Thomas \& Pramatus, 1975; Thomas, 1977; Gündisch et al., 2001; Warden et al., 2005). In addition,

Figure 1
A view of the molecular structure of the title salt, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
and because of their capacity to easily develop hydrogenbonding networks, carboxylic acids and their derivatives are of great interest in the field of crystal engineering, leading to a large diversity of supramolecular topologies (Ivasenko \& Perepichka, 2011).

2. Structural comments

In the asymmetric unit of the title salt there are three components: one dimethylammonium cation $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}\right)$, one hydrogenoxalate anion $\left(\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}\right)$, and half a molecule of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ which possess inversion symmetry (Fig. 1). All three entities are linked by intermolecular interactions (Table 1 and Fig. 2). The $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$cation is in close proximity with the $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$anion through bifurcated N $\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds $[\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1=2.854(1) \AA$ and $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4=2.964$ (1) \AA). The lengths of the $\mathrm{N}-\mathrm{C}$ bonds $[\mathrm{N} 1-\mathrm{C} 4=1.4822$ (12) and $\mathrm{N} 1-\mathrm{C} 5=1.4842$ (12) \AA] are nearly identical of those reported previously for $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+} \cdot \mathrm{HC}_{2} \mathrm{O}_{4}^{-}$(Thomas, 1977). The $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$cation is also involved in hydrogen bonding with one of the two carbonyl groups of the oxalic acid molecule $[\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 6=$ 2.846 (1) \AA § . The $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$hydrogenoxalate anions form a

Figure 2
Crystal packing of the title salt, viewed along the a axis, showing the twodimensional bilayer-like arrangement formed through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines; details are given in Table 1). H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots \cdot$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {i }}$	0.84	1.73	2.564 (1)	174
O5-H5 . . O 2	0.84	1.73	2.565 (1)	170
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\text {ii }}$	0.91	2.08	2.854 (1)	143
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\text {ii }}$	0.91	2.23	2.964 (1)	137
N1-H1B...O6	0.91	2.05	2.846 (1)	146
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{O} 4{ }^{\text {iii }}$	0.98	2.41	3.346 (1)	159

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+1$.
one-dimensional chain along the a-axis direction via the formation of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1=$ 2.564 (1) $\AA]$. Furthermore, the $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$anion is also involved in hydrogen bonding with one of the two hydroxyl groups of the oxalic acid molecule $[\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 2=2.565(1) \AA$. .

3. Supramolecular features

From a supramolecular point of view, the combination of these intermolecular interactions leads to the formation of a molecular assembly which can be described as a two-dimensional bilayer-like arrangement, parallel to (010), consisting of antiparallel infinite chains of $\mathrm{Me}_{2} \mathrm{NH}_{2}^{+} \cdot \mathrm{HC}_{2} \mathrm{O}_{4}^{-}$(Table 1 and Fig. 3), with an inter-chain distance of ca $3.0 \AA$. The oxalic acid molecules are organized in a parallel offset fashion, and act as hydrogen-bond connectors between the chains, involving both the carbonyl and hydroxyl groups (Table 1 and Figs. 2 and 3).

4. Database survey

The crystal structure of $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+} \cdot \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$, first reported by Thomas \& Pramatus (1975) and then completed in 1977

Figure 3
Crystal packing of the title salt viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details) and H atoms not involved in hydrogen bonding have been omitted for clarity.
(Thomas, 1977), shows a supramolecular structure qualified as a puckered layer. In particular, the $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ions are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[2.533(1) \AA$], leading to an infinite chain along [100]. In the title salt, the $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ions interact in the same manner but through slightly longer $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[2.564$ (1) \AA]. In addition, the oxalic acid molecules that co-crystallize with $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+} \cdot \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$act both as donors and acceptors of hydrogen bonds through $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds with the $\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$cation and $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$anion, respectively. Consequently, the degree of supramolecularity is increased here, resulting in a twodimensional architecture parallel to (010), which is reinforced by a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1 and Figs. 2 and 3).

5. Synthesis and crystallization

Crystals of the title compound were obtained by mixing in 20 ml methanol (98% purity) $\mathrm{Me}_{2} \mathrm{NH}(0.30 \mathrm{~g}, 6.67 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad(0.60 \mathrm{~g}, \quad 6.67 \mathrm{mmol})$ and $\mathrm{Sn}(n-\mathrm{Bu})_{3} \mathrm{Cl}(4.39 \mathrm{~g}$, 13.33 mmol). Another experimental method is the reaction between the $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ salt $(0.50 \mathrm{~g}, \quad 2.77 \mathrm{mmol})$, previously synthesized from oxalic acid and dimethylamine, and $\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Cl}(0.28 \mathrm{~g}, 1.39 \mathrm{mmol})$ in 15 ml of ethanol $(98 \%$ purity). In both cases, the reaction mixture was stirred for $c a$ 2 h at room temperature. Colourless crystals were obtained after one week by slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were placed in calculated positions and refined as riding: $\mathrm{O}-\mathrm{H}=0.84 \AA, \mathrm{~N}-$ $\mathrm{H}=0.91 \AA$, and $\mathrm{C}-\mathrm{H}=0.98 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ and $1.2 U_{\text {eq }}(\mathrm{N})$.

Acknowledgements

The authors gratefully acknowledge support from the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).

References

Birnbaum, K. B. (1972). Acta Cryst. B28, 1551-1560.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I \geq 2 \sigma(I)]$ reflections
$R_{\text {int }} \quad 0.023$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) \quad 0.651$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.028,0.075,1.07$
No. of reflections 1840
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}^{+} \cdot \mathrm{C}_{2} \mathrm{HO}_{4}{ }^{-} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$ 180.14

Triclinic, $P \overline{1}$
100
5.6519 (3), 7.5809 (4), 10.3100 (6)
75.467 (2), 88.120 (2), 69.487 (2)
399.76 (4)

2
Mo $K \alpha$
0.14
$0.5 \times 0.3 \times 0.1$

Bruker D8 Venture triumph Mo
Multi-scan (SADABS; Bruker, 2014)
0.693, 0.746

10413, 1840, 1655
0.023
0.651

113
H -atom parameters not refined $0.38,-0.26$

Computer programs: APEX2 and SAINT (Bruker, 2014), SUPERFLIP (Palatinus \& Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008.

Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Diop, T., Diop, L. \& Michaud, F. (2011). Acta Cryst. E67, m696.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Gündisch, D., Harms, K., Schwarz, S., Seitz, G., Stubbs, M. T. \& Wegge, T. (2001). Bioorg. Med. Chem. 9, 2683-2691.
Ivasenko, O. \& Perepichka, D. F. (2011). Chem. Soc. Rev. 40, 191-206.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sow, Y., Diop, L., Kociok-Kohn, G. \& Molloy, K. C. (2012). Acta Cryst. E68, m1015-m1016.
Thomas, J. O. (1977). Acta Cryst. B33, 2867-2876.
Thomas, J. O. \& Pramatus, S. (1975). Acta Cryst. B31, 2159-2161.
Warden, A. C., Warren, M., Hearn, M. T. W. \& Spiccia, L. (2005). Cryst. Growth Des. 5, 713-720.

supporting information

Crystal structure of dimethylammonium hydrogen oxalate hemi(oxalic acid)

Waly Diallo, Ndongo Gueye, Aurélien Crochet, Laurent Plasseraud and Hélène Cattey

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SUPERFLIP (Palatinus \& Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008; software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Dimethylammonium hydrogen oxalate hemi(oxalic acid)

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}^{+} \cdot \mathrm{C}_{2} \mathrm{HO}_{4}^{-} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$
$M_{r}=180.14$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.6519$ (3) \AA
$b=7.5809$ (4) \AA
$c=10.3100(6) \AA$
$\alpha=75.467(2)^{\circ}$
$\beta=88.120(2)^{\circ}$
$\gamma=69.487(2)^{\circ}$
$V=399.76(4) \AA^{3}$

Data collection

Bruker D8 Venture triumph Mo
diffractometer
Radiation source: X-ray tube, Siemens KFF Mo 2K-90C
TRIUMPH curved crystal monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\min }=0.693, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
$S=1.07$
1840 reflections
113 parameters
0 restraints

$$
Z=2
$$

$$
F(000)=190.1598
$$

$D_{\mathrm{x}}=1.497 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7049 reflections
$\theta=3.0-27.6^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.5 \times 0.3 \times 0.1 \mathrm{~mm}$

10413 measured reflections
1840 independent reflections
1655 reflections with $I \geq 2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-9 \rightarrow 9$
$l=-13 \rightarrow 13$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0375 P)^{2}+0.1325 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.26$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O1	$0.75407(12)$	$0.32103(10)$	$0.47166(7)$	$0.01407(16)$
O2	$0.57685(12)$	$0.40754(10)$	$0.26360(7)$	$0.01329(16)$
O3	$0.14369(12)$	$0.38767(11)$	$0.36954(7)$	$0.01625(17)$
H3	0.0215	0.3632	0.4083	0.024^{*}
O4	$0.36051(14)$	$0.20987(11)$	$0.56626(7)$	$0.02010(17)$
O5	$0.29036(13)$	$0.37192(10)$	$0.09144(7)$	$0.01471(16)$
H5	0.3683	0.3944	0.1497	0.022^{*}
O6	$0.01961(13)$	$0.67729(10)$	$0.07499(7)$	$0.01568(16)$
C1	$0.57857(16)$	$0.34999(13)$	$0.38821(9)$	$0.01061(18)$
C2	$0.34558(17)$	$0.30728(13)$	$0.45205(9)$	$0.01216(19)$
C3	$0.08336(17)$	$0.52128(13)$	$0.04793(9)$	$0.01171(19)$
N1	$0.22327(15)$	$0.83866(11)$	$0.24521(8)$	$0.01223(17)$
H1A	0.3034	0.7852	0.3284	0.015^{*}
H1B	0.1697	0.7490	0.2236	0.015^{*}
C4	$0.40571(19)$	$0.88277(15)$	$0.14735(10)$	$0.0182(2)$
H4A	0.3224	0.9359	0.0569	0.027^{*}
H4B	0.5500	0.7630	0.1500	0.027^{*}
H4C	0.4653	0.9785	0.1705	0.027^{*}
C5	$-0.00007(19)$	$1.01362(14)$	$0.24892(11)$	$0.0177(2)$
H5A	-0.0886	1.0711	0.1598	0.027^{*}
H5B	0.0557	1.1091	0.2751	0.027^{*}
H5C	-0.1149	0.9761	0.3143	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0100(3)$	$0.0212(4)$	$0.0119(3)$	$-0.0072(3)$	$-0.0008(2)$	$-0.0031(3)$
O2	$0.0113(3)$	$0.0178(3)$	$0.0107(3)$	$-0.0060(3)$	$-0.0004(2)$	$-0.0024(3)$
O3	$0.0089(3)$	$0.0274(4)$	$0.0131(3)$	$-0.0087(3)$	$0.0002(3)$	$-0.0030(3)$
O4	$0.0162(4)$	$0.0286(4)$	$0.0148(3)$	$-0.0123(3)$	$-0.0008(3)$	$0.0022(3)$
O5	$0.0134(3)$	$0.0149(3)$	$0.0150(3)$	$-0.0021(3)$	$-0.0044(3)$	$-0.0059(3)$
O6	$0.0178(3)$	$0.0130(3)$	$0.0166(3)$	$-0.0046(3)$	$-0.0040(3)$	$-0.0051(3)$
C1	$0.0087(4)$	$0.0105(4)$	$0.0127(4)$	$-0.0028(3)$	$0.0003(3)$	$-0.0039(3)$
C2	$0.0103(4)$	$0.0154(4)$	$0.0126(4)$	$-0.0057(3)$	$0.0004(3)$	$-0.0050(3)$
C3	$0.0127(4)$	$0.0138(4)$	$0.0091(4)$	$-0.0059(3)$	$-0.0003(3)$	$-0.0018(3)$
N1	$0.0145(4)$	$0.0118(4)$	$0.0107(4)$	$-0.0050(3)$	$-0.0005(3)$	$-0.0028(3)$
C4	$0.0166(5)$	$0.0202(5)$	$0.0186(5)$	$-0.0074(4)$	$0.0050(4)$	$-0.0055(4)$
C5	$0.0152(5)$	$0.0148(4)$	$0.0211(5)$	$-0.0037(4)$	$0.0033(4)$	$-0.0034(4)$

Geometric parameters ($A,{ }^{\circ}$)

O1-C1	1.2573 (11)	N1-H1A	0.9100
O2-C1	1.2480 (11)	N1-H1B	0.9100
O3-H3	0.8400	N1-C4	1.4822 (12)
O3-C2	1.3089 (11)	N1-C5	1.4842 (12)
O4-C2	1.2105 (12)	C4-H4A	0.9800
O5-H5	0.8400	C4-H4B	0.9800
O5-C3	1.3051 (11)	C4-H4C	0.9800
O6-C3	1.2111 (12)	C5-H5A	0.9800
C1-C2	1.5515 (13)	C5-H5B	0.9800
C3-C3 ${ }^{\text {i }}$	1.5501 (17)	C5-H5C	0.9800
C2-O3-H3	109.5	C5-N1-H1A	109.0
C3-O5-H5	109.5	C5-N1-H1B	109.0
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	114.27 (8)	N1-C4-H4A	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	126.60 (8)	N1-C4-H4B	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	119.13 (8)	N1-C4-H4C	109.5
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$	112.45 (8)	H4A-C4-H4B	109.5
$\mathrm{O} 4-\mathrm{C} 2-\mathrm{O} 3$	126.54 (9)	H4A-C4-H4C	109.5
O4-C2-C1	121.01 (8)	H4B-C4-H4C	109.5
O5-C3-C3 ${ }^{\text {i }}$	111.64 (10)	N1-C5-H5A	109.5
O6-C3-O5	126.87 (8)	N1-C5-H5B	109.5
O6-C3-C3 ${ }^{\text {i }}$	121.48 (10)	N1-C5-H5C	109.5
H1A-N1-H1B	107.8	H5A-C5-H5B	109.5
C4-N1-H1A	109.0	H5A-C5-H5C	109.5
C4-N1-H1B	109.0	H5B-C5-H5C	109.5
C4-N1-C5	112.87 (8)		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	162.31 (8)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-17.79 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	-17.45 (13)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 4$	162.45 (9)

Symmetry code: (i) $-x,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.84	1.73	$2.564(1)$	174
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$	0.84	1.73	$2.565(1)$	170
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.91	2.08	$2.854(1)$	143
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O}^{i i i}$	0.91	2.23	$2.964(1)$	137
$\mathrm{~N} 1 — \mathrm{H} 1 B \cdots \mathrm{O} 6$	0.91	2.05	$2.846(1)$	146
$\mathrm{C} 5 — \mathrm{H} 5 C \cdots \mathrm{O}^{\mathrm{iv}}$	0.98	2.41	$3.346(1)$	159

[^0]
[^0]: Symmetry codes: (ii) $x-1, y, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x,-y+1,-z+1$.

