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Age-relatedmacular degeneration (AMD) is a degenerative retinal disease and one of major
causes of irreversible vision loss. AMD has been linked to several pathological factors, such
as oxidative stress and inflammation. Moreover, Aβ (1–42) oligomers have been found in
drusen, the extracellular deposits that accumulate beneath the retinal pigmented
epithelium in AMD patients. Hereby, we investigated the hypothesis that treatment with
1,25(OH) 2D3 (vitamin D3) and meso-zeaxathin, physiologically present in the eye, would
counteract the toxic effects of three different insults on immortalized human retinal
pigmented epithelial cells (ARPE-19). Specifically, ARPE-19 cells have been challenged
with Aβ (1–42) oligomers, H2O2, LPS, and TNF-α, respectively. In the present study, we
demonstrated that the combination of 1,25(OH)2D3 and meso-zeaxanthin significantly
counteracted the cell damage induced by the three insults, at least in these in vitro
integrated paradigms of AMD. These results suggest that combination of 1,25(OH)2D3 and
meso-zeaxathin could be a useful approach to contrast pathological features of AMD,
such as retinal inflammation and oxidative stress.
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INTRODUCTION

Age-related macular degeneration (AMD) is a progressive neurodegenerative and multifactorial
disease that if not treated or managed can impair irreversibly the visual function (Cascella et al., 2014;
Pennington and DeAngelis, 2016) in the elderly population (usually older than 60 years) (Nowak,
2006). AMD affects the macula, that is, the central portion of the retina, which is highly sensitive to
visual stimuli due to the high density of retinal photoreceptors. In the macula of AMD patients,
between the retinal pigment epithelium (RPE) and Bruch’s membrane, lesions named drusen have
been found. These lesions are characterized by accumulation of extracellular material, lipid, and
protein aggregates. Moreover, the number and size of drusen, along with the presence of choroidal
neovascularization, have been found to correlate with the stage of AMD (early, intermediate,
or advanced) (Zajaç-Pytrus et al., 2015). Generally, AMD is classified into atrophic (dry or
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non-exudative form) and neovascular or exudative forms (wet
form). Wet AMD is characterized by overexpression of the
vascular endothelial growth factor (VEGF-A), which leads to
the breakdown of the blood–retinal barrier and choroidal
neovascularization (Kauppinen et al., 2016). Retinal
degeneration in wet AMD is tightly linked to choroidal
neovascularization (CNV) and growth of leaky blood vessels
under the macula, due to overproduction of pro-angiogenic
factors (VEGF family) and inflammatory cytokines. Dry AMD
can progress to the severe stage, wet AMD, which if not managed
can lead to macular edema, retinal detachment, and then to
irreversible blindness. Actually, only patients with the wet form
(neovascular AMD) can be benefitted from pharmacological
therapy, specifically the intravitreal administration of anti-
vascular endothelial growth factors (anti-VEGF) (Holekamp,
2019), although anti-VEGF agents, used in clinical practice,
such as ranibizumab, bevacizumab, and aflibercept, are
considerably different in terms of molecular interactions when
they bind with VEGF (Giurdanella et al., 2015; Platania et al.,
2015). Currently, one of the main unmet medical needs in AMD
management is the lack of effective pharmacological treatment
for the dry AMD, which represents the 90% of AMD cases
(Buschini et al., 2015). Moreover, the pathophysiology of the
AMD is only partially understood, considering that it is the result
of the interaction between environmental, metabolic, and genetic
factors. Main hallmarks of AMD are represented by tissue
dysfunctions (RPE, Bruch’s membrane, and choriocapillaris),
associated to chronic oxidative stress, autophagy decline,
inflammation (Levy et al., 2015; Eandi et al., 2016;
Guillonneau et al., 2017), and angiogenesis (Kauppinen et al.,
2016; Layana et al., 2017). Several studies highlighted that
inflammation is one of the main driving factors of AMD
pathogenesis. In fact, drusen deposits contain numerous
inflammation-related factors, along with lipids, amyloid-β (Aβ)
aggregates, and oxidation by-products (Bucolo et al., 1999; Wang
et al., 2009; Krohne et al., 2010). Furthermore, it has been
demonstrated that the formation of drusen is induced by
chronic low-level inflammation and complement activation, as
a result of the activation of inflammatory pathways, such as NFκB
(Hageman et al., 2001; D.H. et al., 2002; Johnson et al., 2011).
Moreover, the activation of the inflammasome, by amyloid-β, was
reported to contribute to RPE dysfunction during AMD
(Anderson et al., 2013; Liu et al., 2013). Macrophages,
attracted by drusen to the sub-RPE space, release tumor
necrosis factor α (TNF-α) that binds tumor necrosis factor
receptor 1 (TNFR1), and then stimulate RPE cells’
inflammatory response. AMD is also known as the “dementia
of the eye,” due to the age-dependent accumulation of amyloid
beta oligomers in drusen deposits. Several studies demonstrated
that Aβ-related damage is common to both the retina and brain,
as well as the disruption of the tight junctions in the blood–brain
barrier (BRB) and the blood–retinal barrier (BRB) (Parks et al.,
2004; Bruban et al., 2009; Biron et al., 2011). Together with
inflammation and Aβ-related damage, reactive oxygen species
(ROS) have a central role in AMD (Kohen and Nyska, 2002). The
altered cellular homeostasis in RPE cells, related to ROS

overproduction, can be induced by several factors, such as,
aging process, light exposure, diet, and cigarette smoking.

Indeed, because of the multifactorial pathophysiology of both
dry and wet AMD, we designed an integrated in vitro model of
AMD, stimulating RPE cells with three different challenges: Aβ
oligomers, hydrogen peroxide (H2O2), and inflammatory stimuli
(LPS and TNF-α), and testing the effects of in vitro treatment with
anti-inflammatory, anti-angiogenic, and antioxidant molecules:
1,25(OH)2D3 (vitamin D3), meso-zeaxanthin (MZ), and their
combination. Specifically, vitamin D3 is a secosteroid able to
modulate cell differentiation, homeostasis, and apoptosis through
direct and indirect mechanisms of action. The first one is
activated by the binding of the active form of vitamin D3 to
its receptor (VDR), a transcriptional factor. VDR is expressed in
most human cells, supporting the hypothesis that vitamin D3 has
a pleiotropic effect. Moreover, anti-inflammatory and anti-
angiogenic effects of vitamin D3 have been widely elucidated
both in in vitro and in vivo studies (Majewski et al., 1996; Albert
et al., 2007; Maj et al., 2018; Almeida Moreira Leal et al., 2020).
Interestingly, the vitamin D3 receptor is expressed in the RPE
layer, which along with enzymes is able to convert the inactive
form into the active form. The rationale of this in vitro study came
from previous reports that have shown a tight link between
vitamin D3 serum levels and AMD progression. In fact, it has
been found that a low vitamin D3 level in serum can be a risk
factor for the progression of AMD (Parekh et al., 2007; Millen
et al., 2011; Annweiler et al., 2016; Merle et al., 2017; Kan et al.,
2020). These findings could be linked to the activation of
macrophages phagocytosis of Aβ deposits, along with anti-
inflammatory and antioxidant action exerted by vitamin D3

(Lee et al., 2012).
Meso-zeaxanthin [(3R, 30S)-b, b-carotene-3, 30-diol, MZ] is

one of the three xanthophyll carotenoids localized in the macula
lutea. Carotenoids are lipid-soluble yellow–orange–red pigments
with antioxidant and immunomodulatory activity; reduction in
carotenoid levels has been linked to increased risk of
cardiovascular disease, diabetes, and cancer (Sesso et al., 2004;
Hozawa et al., 2006; Eliassen et al., 2015). In particular, MZ is one
of the powerful antioxidant carotenoids found in the RPE cell
layer. Basically, the source of meso-zeaxanthin in the eye is
represented by the endogenous conversion of lutein in the
retinal pigment epithelium (Shyam et al., 2017; Green-Gomez
et al., 2020). A specific carotenoid-binding protein (Z-binding
protein) regulates the retinal uptake from blood of lutein, which
can be converted into meso-zeaxanthin (Thurnham et al., 2008;
Nolan et al., 2013).

Given these premises on vitamin D3 and meso-zeaxanthin
activities, we tested the efficacy of these two compounds and their
combination in three different in vitromodels of AMD.We found
that their combination significantly counteracted the damage
induced by Aβ-amyloid oligomers, H2O2, and inflammatory
stimuli in immortalized human RPE (ARPE-19) cells.
Moreover, a bioinformatic analysis evidenced that the
combination of these compounds effectively covers the
pathways associated with the three stimuli, resembling the
AMD multifactorial pathology.
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METHODS

Human retinal pigment epithelial cells (ARPE-19) were
purchased from ATCC® (Manassas, Virginia, USA). Cells were
cultured at 37 °C (humidified atmosphere with 5% CO2) in
ATCC-formulated DMEM:F12 medium (ATCC number
30–2006) with 100U/ml penicillin, 100 μg/ml streptomycin,
and 10% fetal bovine serum (FBS). After reaching confluence
(70%), ARPE-19 cells were pretreated for 24 h with 50 nM of
1,25(OH)2D3 (Sigma Aldrich, D1530-1mg, St. Louis, MO),
0.1 µM of meso-zeaxanthin (MZ) (Sigma Aldrich, USP
reference standard #1733119, St. Louis, MO), and the
combination (combo) of 1,25(OH)2D3 (50 nM) and meso-
zeaxanthin (MZ, 0.1 µM). Both pretreatment and treatment
were performed in medium supplemented with 5% FBS to
starve cells. After pretreatment, ARPE-19 cells were challenged
with four different stimuli: amyloid-β oligomers (1 and 2.5 µM;
amyloid β-protein 1–42 HFIP-treated, Bachem H-7442.0100)
(Calafiore et al., 2012; Caruso et al., 2021), hydrogen peroxide
(400 µM H2O2), LPS (150 ng/ml and 10 μg/ml, Enzo ALX-
581–010-L001, Farmingdale, NY), and tumor necrosis-alpha
(TNF-α) (10 ng/ml, Thermo Fisher Scientific, Carlsbad, CA),
in order to simulate retinal degeneration, retinal oxidative
stress, and early and late inflammation, respectively.
1,25(OH)2D3, MZ, and the combo were also added to the
medium containing negative stimuli.

Cell Viability
The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrasodium
bromide (MTT; Chemicon, Temecula, CA) was used to assess
cell viability after Aβ (1–42) and H2O2 challenge. Optimal cell
density was obtained by seeding 3 × 104 cells/well in 96-well
plates (Costar, Corning, NY, United States). After pretreatment,
ARPE-19 cells were subjected to co-treatment in a fresh medium
for 48 h with Aβ (1–42) (1 µM) and for 6 and 24 h with H2O2

(400 µM). At the end of the treatment, ARPE-19 cells were
incubated at 37°C with MTT (0.5 mg/ml) for 3 h; then DMSO
was added, and absorbance was measured at 570 nm in a plate
reader (VariosKan, Thermo Fisher Scientific, Waltham, MA,
United States). Graphs were built converting absorbance (abs)
to viability (�% of control) using the following equation
(absx ÷ absctrl−) × 100, where absx is absorbance in the x
well, and absctrl− is the average absorbance of negative
control cells (untreated cells).

Lactate Dehydrogenase Cell Release
Lactate dehydrogenase (LDH) cell release was measured using the
Cytotoxicity Detection KitPLUS (LDH) (ROCHE, Mannheim,
Germany). ARPE-19 cells were seeded at 2 × 104 cells/well in 96-
well plates (Costar, Corning, NY, United States). After
pretreatment, cells were co-treated for 48 h with Aβ (1–42)
(1 µM) and for 6 and 24 h in the oxidative stress model (H2O2

400 µM). In control groups, only fresh medium was added. After
these time points, according to manufacturer’s protocol, lysis
solution was added to positive control wells (non-treated cells) for
15 min. After transferring 100 µl of medium in a new multi-well
plate, 100 µl of working solution was added. After 10–15 min at

room temperature, at last, 50 µl of stop solution was added. The
absorbance values were measured at 490 nm using a plate reader
(VarioSkan, Thermo Fisher Scientific, Waltham, MA,
United States). LDH release is reported as LDH (% control)
(absx ÷ absctrl+) × 100. In the equation, absx is absorbance in
the x well and absctrl+ is the average absorbance of positive control
cells (untreated lysed cells). Absorbance values were corrected by
subtracting medium absorbance.

Reactive Oxygen Species Production
ROS were measured by a 2′,7′-dichlorofluoresceindiacetate
(DCFDA)–Cellular Reactive Oxygen Species Detection
Assay Kit (Abcam, Cambridge, United Kingdom). DCFDA,
a cell permeable fluorogenic dye, is deacetylated by cellular
esterases to a non-fluorescent compound and later oxidized by
ROS to highly fluorescent 2′,7′-dichlorofluorescein (DCF);
fluorescence intensity is proportional to cell ROS
concentration. Optimal cell density was obtained by
seeding 20 × 103 cells/well in 96-well plates (Costar,
Corning, NY, United States). After reaching confluence
(70%), ARPE-19 cells were pretreated with 1,25(OH)2D3,
mesozeaxanthin, and the combo for 24 h. Subsequently,
cells were submitted to co-treatment for 48 h in amyloid-β
challenge (1 µM). After treatment, media were aspirated and
cells were washed by adding 100 µl/well of 1X buffer,
according to manufacturer’s protocol; after washing, ARPE-
19 cells were stained by adding 100 µl/well of the diluted
DCDFA solution (25 µM). Cells were also incubated with this
solution for 45 min at 37°C in the dark. After removing
DCDFA solution, 100 µl/well of 1X buffer was added, and
ROS concentration was measured immediately by detection of
DCF fluorescence (λex � 495 nm, λem � 529 nm) with a
Varioskan™ Flash Multimode Reader. According to
manufacturer’s protocol, for treatment lower than or equal
to 6 h, it is possible to treat cells after adding DCDFA solution.
Thus, after 24 h of pretreatment with drug formulations,
ARPE-19 cells were washed and stained with DCDFA for
45 min. After removing DCDFA solution and washing again,
ARPE-19 cells underwent co-treatment for 6 h in H2O2

challenge (400 µM). At the end of time point, ROS
concentration was measured immediately without washing.
Results were reported as percentage of control after
background subtraction; to determine total ROS formation,
the fluorescence was normalized to the fluorescent intensity of
control cells (untreated cells).

Extraction of Total Ribonucleic Acid and
cDNA Synthesis
Extraction of total RNA, fromARPE-19 cells, was performed with
a TRIzol Reagent (Invitrogen, Life Technologies, Carlsbad, CA,
United States). The A260/A280 ratio of optical density of RNA
samples (measured with Multimode Reader Flash di
Varioskan™) was 1.95–2.01; this RNA purity was confirmed
with the electrophoresis in non-denaturing 1% agarose gel (in
TAE). cDNA was synthesized from 2 µg RNA with a reverse
transcription kit (SuperScript™ II Reverse transcriptase,
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Invitrogen, Thermo Fisher Scientific, Carlsbad, CA,
United States).

Real-Time Reverse
Transcriptase–Polymerase Chain Reaction
Real-time PCR was carried out with the Rotor-Gene Q (Qiagen).
The amplification reaction mix included the Master Mix Qiagen
(10 µl) (Qiagen QuantiNova SYBR Green Real-Time PCR Kit)
and cDNA (1 µL, 100 ng). Forty-five amplification cycles were
carried out for each sample. Results were analyzed with the
2−ΔΔCt method. Quantitative PCR experiments followed the
MIQE guidelines. Gene expression levels were normalized with
levels of two housekeeping genes (18S and GAPDH). Primers
were purchased from Eurofins Genomics (Milan, Italy) and
Qiagen (Milan, Italy). Forward and reverse primer sequences
(for human genes) and the catalog number are herein listed:
human IL-1β (forward: 5′-AGCTACGAATCTCCGACCAC-3’;
reverse: 5′-CGTTATCCCATGTGTCGAAGAA-3′), human IL-6
(Catalog Number QT00083720), human TNF-α (forward 5′-
AGCCCATGTTGTAGCAAACC-3’; reverse 5′-TGAGGTACA
GGCCCTCTGAT-3′), human MMP-9 (forward 5′-CTTTGA
GTCCGGTGGACGAT-3’; reverse 5′-TCGCCAGTACTTCCC
ATCCT-3′), human VEGF-A (forward 5′-AGGGCAGAATCA
TCACGAAG-3’; reverse 5′-ATCCGCATAATCTGCATGGT-
3′), human 18S (forward 5′-AGTCCCTGCCCTTTG-3’;
reverse 5′-GATCCGAGGGCCTCACTAAAC-3′), and human
GAPDH (forward 5′-CTGCACCACCAACTGCTTAG-3’;
reverse 5′-AGGTCCACCACTGACACGTT-3′).

Western Blot
ARPE-19 cells were cultured in 60-mm petri dishes at a density of
1.3 × 106. After 24 h of pretreatment with drugs and co-treatment
with different stimuli (400 µM of H2O2 for 4 h, 10 μg/ml of LPS
for 2 h, amyloid-β oligomers 2.5 µM for 48 h, and TNF-α 10 ng/
ml for 2 h), cytoplasmic and nuclear proteins were extracted by
using the CER/NER kit (NE-PER, Invitrogen, Life Technologies,
Carlsbad, USA), according to the manufacturer’s protocol. The
protein content was determined by the BCA Assay Kit (Pierce™
BCA Protein Assay Kit, Invitrogen, Life Technologies, Carlsbad,
United States). Extracted proteins (20 μg) were loaded on a
NuPAGE ™ 10% Bis-Tris mini protein gel (Invitrogen, Life
Technologies, Carlsbad, CA, United States). After
electrophoresis, proteins were transferred to a nitrocellulose
membrane (Invitrogen, Life Technologies, Carlsbad, CA,
United States). Membranes were blocked with milk, 5% Tris-
buffered saline, and 0.2% Tween 20 (TBST) for 1 h at room
temperature. Membranes were incubated overnight (4°C) with
appropriate primary phospho-NFκB p65 (Ser536; mouse mAb
#3036 Cell Signaling Technology, MA, United States, 1:500
dilution), anti-GAPDH (Rabbit mAb #2118 Cell Signaling
Technology, MA, United States; 1:1,000 dilution), and anti-
lamin B (Mouse monoclonal IgG2b, sc-365214 Santa Cruz
Biotechnology; 1:1,000 dilution) antibodies. After overnight
incubation, the membranes were then incubated with
secondary chemiluminscent antibodies (ECL anti-mouse,
NA931 and ECL anti-rabbit, NA934, 1:2000 dilution) for 1 h

at room temperature. After secondary antibody, the membranes
were incubated with ECL (SuperSignal™ West Pico PLUS
Chemiluminescent Substrate, Thermo Fisher Scientific,
Carlsbad, CA, United States) and were detected through
I-Bright™ 1500 (Invitrogen, Life Technologies, Carlsbad, CA,
United States) by using chemiluminescence. Densitometry
analyses of blots were performed at non-saturating exposures
and analyzed using ImageJ software (NIH, Bethesda, MD).
Values were normalized to GAPDH and lamin B, which were
used as housekeeping control for cytoplasmic and nuclear
fraction, respectively.

Bioinformatics
The STITCH compound app of Cytoscape v. 3.7.0 was used to
build an integrated network resembling all the experimental
results obtained with our integrated in vitro model. Inputs
were (i.e., query terms) β amyloid, LPS, TNF-α, H2O2, meso-
zeaxanthin, vitamin D3, IL-6, Il-1β, VEGF-A, and MMP-9. The
number of interactors was limited to 15, and the default
confidence score was set to 0.40. Enrichment of information
was included in the analysis. A centrality metrics analysis was
carried out treating the network as an indirect graph (Platania
et al., 2015, 2018). Functional clusters were identified with
Cytoscape using specific terms: β amyloid, H2O2, LPS, TNF-α,
vitamin D3, and meso-zeaxanthin.

Statistical Analysis
Statistical analysis was performed with GraphPad Prism 7
(GraphPad software, La Jolla, California). All experiments
were repeated five times (n � 5), and the data are reported as
mean ± SD. One-way analysis of variance (ANOVA) was carried
out, and Tukey’s post hoc test was used for multiple comparisons.
Differences between groups were considered statistically
significant for p-values< 0.05.

RESULTS

Aβ-Oligomers Damage
In this study, we tested the protective effect of 1,25(OH)2D3,
meso-zeaxanthin (MZ), and their combination against Aβ (1–42)
oligomer-induced cytotoxicity, through measurement of ARPE-
19 cell viability, after challenge with Aβ (Figure 1). Preliminary
studies were carried out with the MTT assay to evaluate Aβ-
oligomer toxicity on ARPE-19 cells, and we found that 1 μMAβ-
oligomers for 48 h induced roughly 17% cell death. Indeed,
1 μMAβ-oligomers concentration was used also for LDH and
ROS assays. In preliminary studies, ARPE-19 cells were
pretreated with different concentrations of 1,25(OH)2D3, MZ,
and their combination for 24 h. Therefore, cells were incubated
with 1 μMAβ for 48 h, the most effective compound
concentrations were 50 nM and 0.1 μM for 1,25(OH)2D3 and
MZ, respectively; indeed we used these concentrations also in the
combination of the two compounds [combo: 1,25(OH)2D3 50 nM
+ MZ 0.1 μM]. 1,25(OH)2D3 and the combo pretreament
significantly (p < 0.05) counteracted cell toxicity induced by
challenge with Aβ (MTT assay, Figure 1A). Moreover, LDH
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FIGURE 1 | 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination show protective effect in ARPE-19 cells treated with Aβ (1–42). Cells were pretreated for
24 h with tested compounds and for 48 h with Aβ insult. At the end of treatment were carried out MTT (A), LDH (B), and the ROS assay (C). Values are reported as
mean ± SD (n � 5). Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. control; †p < 0.05 vs. Aβ, ‡p < 0.05 vs. 50
nM 1,25(OH)2D3 or 0.1 µM MZ.

FIGURE 2 | Treatment of ARPE-19 cells with 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination (combo) counteract inflammation after Aβ (1–42)
exposure. The treatment with 1,25(OH)2D3, MZ, and their combo reduced IL-1β (A), IL-6 (B), and TNF-α (C) mRNA expression. The mRNA levels were evaluated by
qPCR. (D)Western blot analysis. Densitometry analysis of each band (ratio of nuclear p-NFκB p-65/lamin B and cytoplasmic p-NFκB p-65/actin) was carried out with the
ImageJ program. (E) Representative blots of nuclear and cytoplasmic extracted proteins from control and treated cells. Each bar represents the mean value ±SD
(n � 5; each run in triplicate). One-way ANOVA and Tukey’s post hoc test for multiple comparisons were carried out. *p < 0.05 vs. control; †p < 0.05 vs. Aβ.
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release was significantly increased (p < 0.05) after treatment with
Aβ; the tested compounds 1,25(OH)2D3 and MZ, and their
combination (combo), induced a significant (p < 0.05)
reduction of cell damage after 48 h (Figure 1B). Finally, we
analyzed the antioxidant activity of tested compounds. After
48 h of exposure, Aβ-oligomer insult significantly increased
(p < 0.05) ROS release in ARPE-19 cells. Only the
combination of 1,25(OH)2D3 and MZ was able to significantly
reduce the amount of ROS after 48 h (p < 0.05) (Figure 1C),
compared to Aβ-positive control cells.

After 24h, Aβ oligomers exposure (1 µM) significantly (p <
0.05) increased mRNA expression of IL-1β, IL-6, and TNF-α
(Figures 2A–C) in ARPE-19 cells. The treatment with 1,25
(OH)2D3, meso-zeaxanthin (MZ), and their combination
significantly decreased IL-1β (Figure 2A) and IL-6
(Figure 2B), while only 1,25(OH)2D3 and the combo
significantly reduced TNF-α mRNA expression (Figure 2C).
Furthermore, Aβ treatment significantly (p < 0.05) increased
nuclear translocation of p-NFκB p65 after 48 h of insult
(Figure 2D). On the other hand, pretreatment for 24 h with

1,25(OH)2D3, MZ, and combo significantly (p < 0.05) reduced the
translocation p-NFκB p65, confirming the anti-inflammatory
effect of these two compounds and their combination, in
retinal pigmented epithelial cells, challenged with Aβ
oligomers (Figures 2D,E).

Oxidative Stress
Preliminary studies on ARPE-19 cells were carried out to assess
the best H2O2 concentration and time of exposure to oxidative
stress able to elicit roughly 15% cell death. Therefore, human
retinal pigmented epithelial cells were pretreated for 24 h with
1,25(OH)2D3 (50 nM), meso-zeaxanthin (MZ) (0.1 µM), and
combo (1,25(OH)2D3 50 nM, MZ 0.1 µM), and then cells were
incubated in 400 µM H2O2 for 6 h (Figure 3A) and 24 h
(Figure 3B). After 6 h of challenge, 1,25(OH)2D3 was not
able to counteract H2O2-induced cell damage, instead after
24 h both compounds and their combination significantly
restored cell viability. Moreover, H2O2 significantly (p <
0.05) increased LDH levels in ARPE-19 cells, and the
pretreatment with tested compounds induced a significant

FIGURE3 | 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination protect ARPE-19 cells from oxidative damage. ARPE-19 cells were pretreated for 24 hwith
1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo (1,25(OH)2D3 50 nM, MZ 0.1 µM), and then treated with H2O2 (400 µM) for the MTT assay at 6 (A) and 24 h (B). (C)
LDH release of ARPE-19 cells treated for 24 h with H2O2 (400 µM). (D) Pretreatment with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combination decreased ROS
(fluorescent units, FU) production in ARPE-19 cells, challenged for 6 h with 400 µM H2O2. The results are expressed as mean ± SD (n � 5; each run in triplicate).
Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. ctrl; †p < 0.05 vs. H2O2; ‡p < 0.05 vs. 1,25(OH)2D3.
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FIGURE 4 | 1,25(OH)2D3, MZ, and their combination attenuate H2O2-induced inflammation. 1,25(OH)2D3, MZ, and the combination reduced IL-1β (A), TNF-α (B),
and MMP-9 (C)mRNA expression. The combo decreased VEGF-A mRNA expression induced after 6 h of H2O2 treatment (D). ARPE-19 cells were pretreated for 24 h
with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo (1,25(OH)2D3 50 nM + meso-zeaxanthin 0.1 µM), and then challenged with H2O2 (400 µM) for 6 h. The mRNA
levels were evaluated by qPCR. (E)Western blot analysis. Densitometry analysis of each band (ratio of nuclear p-NFκB p-65/lamin B and cytoplasmic p-NFκB p-65/
actin) was carried out with ImageJ program. (F) Representative blots of nuclear and cytoplasmic proteins. Each bar represents mean value ±SD (n � 5; each run in
triplicate). Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. control; †p < 0.05 vs. H2O2; ‡p < 0.05 vs.
1,25(OH)2D3 and MZ.
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FIGURE 5 | 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combination protect ARPE-19 cells from LPS-induced damage. 1,25(OH)2D3, meso-zeaxanthin (MZ),
and their combo reduced IL-1β (A), IL-6 (B), TNF-α (C), and VEGF-A (D) mRNA expression. ARPE-19 cells were pretreated for 24 h with 1,25(OH)2D3 (50 nM), MZ
(0.1 µM), and their combo (1,25(OH)2D3 50 nM + MZ 0.1 µM), and then challenged with LPS (150 ng/ml) for 2 h. The mRNA levels were evaluated by qPCR. (E)
Densitometry of p-NFκB p65 nuclear translocation in treated cells. ARPE-19 cells were pretreated for 24 hwith 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo
(1,25(OH)2D3 50 nM + MZ 0.1 µM), and then challenged with LPS (10 μg/ml) for 2 h. (F) Representative images of blots of nuclear and cytoplasmic protein. Each bar
represents the mean value ±SD (n � 5; each run in triplicate). Data were analyzed by one-way ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs.
control; †p < 0.05 vs. LPS; ‡p < 0.05 vs. 1,25(OH)2D3 and MZ; #p < 0.05 vs. combo.
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reduction of cell damage (Figure 3C). Furthermore, we
evaluated the effect of the tested compounds and their
combination in terms of ROS production on ARPE-19 cells
after H2O2 exposure. After 6h, H2O2 significantly increased (p <
0.05) ROS in ARPE-19 cells, compared to control cells
(Figure 3D). Pretreatment with 1,25(OH)2D3, MZ, and their
combination significantly (p < 0.05) counteracted oxidative
stress in retinal cells, reducing ROS release.

Furthermore, we analyzed IL-1β and TNF-α mRNA levels to
assess the effect of 1,25(OH)2D3 and meso-zeaxanthin (MZ) in
modulation of inflammatory response, in ARPE-19 cells
challenged with H2O2 (400 µM) for 6 h. H2O2 challenge led to
significant (p < 0.05) increase in IL-1β and TNF-α mRNA
expression (Figures 4A,B). Treatment with 1,25(OH)2D3

(50 nM), MZ (0.1 µM), and their combination reverted the
effect of H2O2 (Figures 4A,B). Furthermore, we assessed
effects of those compounds in reducing MMP-9 and
VEGF-A mRNA levels, both involved in retinal
angiogenesis and neovascularization. H2O2 treatment
induced a significant (p < 0.05) upregulation of both
factors (Figures 4C,D). The MMP-9 mRNA levels were
significantly (p < 0.05) reduced by 1,25(OH)2D3, MZ, and
their combination, compared to H2O2-treated cells
(Figure 4C). Only the combination of 1,25(OH)2D3 and
MZ significantly reduced VEGF-A mRNA levels, in
comparison to cells exposed to H2O2 (p < 0.05)
(Figure 4D). Furthermore, we assessed the effect of tested
compounds in terms of p65-NFκB nuclear translocation.
H2O2 challenge led to a higher (p < 0.05) p-p65 nuclear
translocation after 4 h. This process was significantly (p <
0.05) counteracted by pretreatment with 1,25(OH)2D3

(50 nM), MZ (0.1 µM), and their combination. Particularly,
the combo significantly inhibited p65-NFκB translocation,
compared to tested compounds and H2O2-exposed cells
(Figures 4E,F).

LPS Insult
ARPE-19 cells were pretreated with 1,25(OH)2D3 (50 nM),
meso-zeaxanthin (MZ, 0.1 µM), and their combination
(combo: 1,25(OH)2D3 50 nM + MZ 0.1 µM) for 24h, and
then exposed to LPS (150 ng/ml) for 2 h. IL-1β, IL-6, and
TNF-α mRNA levels were significantly increased in the LPS-
stimulated cells, compared to control cells (p < 0.05). Both
compounds and their combination (p < 0.05) significantly
reduced cytokine mRNA levels (Figures 5A–C). MZ
significantly reduced TNF-α mRNA expression, compared
to 50 nM 1,25(OH)2D3 and the combo (50 nM 1,25(OH)2D3

+ 0.1 µM MZ). Furthermore, LPS treatment significantly
induced the upregulation of VEGF-A mRNA (p < 0.05)
(Figure 5D), and the treatment with 1,25(OH)2D3, MZ, and
their combo significantly reduced the expression of the latter
(p < 0.05). After 2 h exposure, LPS (10 μg/ml) led to a
significant increase of p-NFκB p65 nuclear translocation, in
comparison to control cells (p < 0.05) (Figures 5E,F). The
treatment with 1,25(OH)2D3, MZ, and their combo
significantly inhibited this translocation, leading to a

reduction in p-p65 nuclear protein amount (p < 0.05)
(Figures 5E,F).

TNF-α Insult
To evaluate ARPE-19 cells response to TNF-α challenge (10 μg/
ml), we analyzed TNF-α, IL-6, and IL-1βmRNA levels. After 2 h,
those cytokines were significantly increased by TNF-α treatment
(10 ng/ml) (p < 0.05) and were strongly downregulated by
1,25(OH)2D3, meso-zeaxanthin (MZ), and the combo
pretreatments (p < 0.05) (Figures 6A–C). We confirmed the
anti-inflammatory effects of tested compounds against TNF-α
exposure also through evaluation of the p-NFκB p65 nuclear
translocation (Figures 6D,E). TNF-α challenge significantly
increased the nuclear translocation of p-NFκB p65 (p < 0.05).
Only the combination of 1,25(OH)2D3 and MZ significantly
reduced the amount of nuclear p-NFκB p65 (p < 0.05)
(Figures 6D,E).

Bioinformatic Analysis
We built the protein–compound interaction network that
resembled our integrated in vitro model of AMD through the
STITCH compound app of Cytoscape v. 3.7.0, according to the
approach described in the Methods section. The network was
characterized by 136 nodes and 463 edges; a centrality metrics
analysis was carried out treating the network as an indirect graph.
Nodes with highest betweenness centrality have represented
using a color scale (blue < red) (Figure 7), and the following
nodes were characterized by the highest betweenness centrality
and the average shortest path: APP > TLR4> IL6> TNF-α>
PSEN1> H2O2> CAT > IL-1β, VEGF-A. We identified in this
network functional clusters associated to the in vitromodels used
in our study: amyloid β (Supplementary Figure S1), H2O2

(Supplementary Figure S2), and inflammation, that is, LPS
(Supplementary Figure S3) and TNF-α challenge
(Supplementary Figure S4).

The cluster related to vitamin D3 covered most of the network
(Figure 8), but meso-zeaxanthin was linked only to RPE65 and
VEGF-A. This last result would be linked to lack of literature data
on meso-zeaxanthin, beyond compound antioxidant properties,
and the documented RPE65 “lutein to meso-zeaxanthin”
isomerase activity (Shyam et al., 2017).

DISCUSSION

Although several pathogenic mechanisms have been linked to
onset and progression of AMD, management, and treatment of
AMD is still affected by several unmet medical needs. Specifically,
only wet AMD could be therapeutically managed through costly
and invasive treatments, such as the anti-VEGF intravitreal
injections, which can be ineffective in about 15% of patients
(Krebs et al., 2013). Non-responders to intravitreal anti-VEGF
treatments can encounter to irreversible vision loss, leading to
burden of care linked to direct and indirect costs of blindness.
Moreover, no therapy has been already approved for treatment of
dry AMD, or for treatment of early phases of the disease.
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Multivitamins and mineral supplementation are largely
marketed for AMD patients, and clinical trials were carried
out regarding specific formulations; the first was the Age-
Related Eye Disease Study (2001) formulation, containing
vitamins C and E, beta-carotene, and zinc with copper (Age-
Related Eye Disease Study Research Group 2001; Kassoff et al.,
2001; Chew et al., 2013a, 2014). A second trial “The Age-Related
Eye Disease Study 2” (AREDS2) evidenced that substitution of β-
carotene with lutein/zeaxanthin was safer for smokers and former
smokers. In this AREDS2 study, lutein or zeaxanthin was
compared with placebo. The authors found that there was a
modest or no effect on AMD progression, but this was not
statistically significant since all participants took the AREDS
formula, and there was no proper control group (Chew et al.,
2013b). On this regard, a systematic review with a meta-
analysis evidenced that lutein and zeaxanthin supplements
have little or no effect in AMD progression (Evans and
Lawrenson, 2017), although this conclusion had a low level
of certainty. In the same systematic review, authors evidenced

that AMD subjects taking antioxidants multivitamin
supplementation, including vitamin D3, were at lower risk
of AMD progression, but no evidence on visual acuity was
found by meta-analysis. Since, there is no intervention to
slow down the progression of the disease, depending on the
AMD stage, correct supplementation of antioxidants and
vitamins would be of benefit, but up to now, current
supplement formulation trials did not provide evidence-
based efficacy.

Therefore, in search of an improved formulation of
supplements, we hereby explored for the first time, in an
integrated in vitro model of AMD, the effects of 1,25(OH)2D3

(vitamin D3) and meso-zeaxanthin combination on several
endpoints related to inflammation, oxidative stress, and
cellular damage: amyloid β, H2O2, and inflammatory insults,
that is, LPS and TNFα. The rationale of these integrated
in vitro models of AMD is behind its multifactorial pathogenic
etiology (Bucolo et al., 2006; Di Filippo et al., 2014; Fisichella
et al., 2016; Platania et al., 2017, 2019; Romano et al., 2017;

FIGURE 6 | 1,25(OH)2D3, meso-zeaxanthin (MZ), and the combination inhibit LPS-induced inflammation. 1,25(OH)2D3, meso-zeaxanthin (MZ), and their combo
reduced TNF-α (A), IL-6 (B), and IL-1β (C) mRNA expression. ARPE-19 cells were pretreated for 24 h with 1,25(OH)2D3 (50 nM), MZ (0.1 µM), and their combo
(1,25(OH)2D3 50 nM + MZ 0.1 µM), and then challenged with TNF-α (10 ng/ml) for 2h, both for mRNA and protein analyses. The mRNA levels were evaluated by qPCR.
(D) Densitometric analysis of each band (ratio of nuclear p-NFκB p65/lamin B and cytoplasmic p-NFκB p65/actin) was carried out with the ImageJ program. (E)
Representative images of nuclear and cytoplasmic proteins. Each bar represents the mean value ±SD (n � 5; each run in triplicate). Data were analyzed by one-way
ANOVA and Tukey’s post hoc test for multiple comparisons. *p < 0.05 vs. control; †p < 0.05 vs. TNF-α; ‡p < 0.05 vs. 1,25(OH)2D3 and MZ.
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Giordano et al., 2020; Micera et al., 2021), involving amyloid-β
and oxidative stress, has already been mentioned. As regards as,
the LPS challenge is widely used as an experimental model of
AMD, involving the activation of Toll-like receptor 4 (TLR-4)
and the downstream activation of NFκB (Sung et al., 2019; Hikage
et al., 2021), and then triggering the expression of inflammatory
cytokines. While, the most potent downstream inflammatory
cytokine, TNF-α has been found to promote, in ARPE-19
cells, secretion of proteins involved in AMD pathology, such
as complement C3 (An et al., 2008). Worthy of note, antioxidant
and anti-inflammatory strategies have been largely explored for

treatment of ocular diseases (Bucolo et al., 1999; Shafiee et al.,
2011).

As shown by our data, vitamin D3 and meso-zeaxanthin
combination effectively protected cells from damage induced by
β-amyloid, H2O2, LPS, and TNF-α. However, based on analyzed
endpoints, we cannot hypothesize an additive or synergistic effect
between vitamin D3 and meso-zeaxanthin. Specifically, the
combination of vitamin D3 and meso-zeaxanthin was
significantly effective, compared to the two single components, in
decreasing Il-1β, TNF-α, and VEGF-A (H2O2 insult). Moreover, the
combination of 1,25(OH)2D3 + meso-zeaxanthin, compared to the

FIGURE 7 | Gene activated by amyloid β, H2O2, and LPS are connected. STITCH protein–compound network representing the in vitro models. Nodes are
represented on the basis of betweenness centrality values (color scale blue < red) and closeness centrality values (node dimension); edge thickness is proportional to
edge betweenness values.
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two single components, significantly reduced NFκB nuclear
translocation, in ARPE-19 cells challenged with H2O2, LPS, and
TNF-α. While in the β-amyloid model, both vitamin D3 and the
combination with meso-zeaxanthin inhibited NFκB pathway
activation but not the meso-zeaxanthin treatment alone.

Our findings about vitamin D3 activity on ARPE-19 cells
challenged with H2O2 and LPS are supported by recent
findings on 1,25(OH)2D3 antioxidant and anti-inflammatory
activity (Fernandez-Robredo et al., 2020; Hernandez et al.,
2021). Preclinical and clinical studies evidenced protective
effects of vitamin D3 in Alzheimer disease, an amyloid-

β–related pathology (Sultan et al., 2020; McCarty et al., 2021).
The link between AMD and AD pathology has been largely
documented (Romano et al., 2017), and low-vitamin D3 levels
in serum were linked to progression of AMD, however with small
effect (i.e., small adjusted odd ratio) (McKay et al., 2017). We
proved for the first time that in ARPE-19 cells, vitamin D3, meso-
zeaxanthin, and their combination protected cells from damage
induced by β-amyloid exposure, oxidative stress, and
inflammatory stimuli. Recently, it has been demostrated
that lutein and meso-zeaxanthin are taken up by ARPE-19
cells via different mechanisms with preferential uptake of

FIGURE 8 | Vitamin D3–interacting nodes cover most of the STITCH protein–compound network. Red edges highlight direct interactions with vitamin D3, and
yellow nodes represent direct and indirect interactors of vitamin D3.
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meso-zeaxanthin (Thomas and Harrison, 2016). Additionally, it is
known that the enzyme RPE65 converts dietary lutein to meso-
zeaxanthin in the retinal pigment epithelium of vertebrates (Shyam
et al., 2017). Meso-zeaxanthin is a well-known antioxidant
compound that accumulates as other xanthophyll carotenoids in
the macula, increasing macular pigments and then protecting
pigmented epithelial cells and photoreceptors from photo-
oxidative stress (Bone et al., 2007). Up to now, there is an
evidence of non-inferiority of meso-zeaxanthin enriched
formulation, compared to AREDS2 formulation (Akuffo et al.,
2017). On the contrary, non-advanced AMD subjects taking the
meso-zeaxanthin–enriched formulation have shown significant
higher meso-zeaxanthin and zeaxanthin serum levels and total
serum carotenoids, than AREDS2 subjects (Akuffo et al., 2017).
Despite large-scale clinical trials that showed the benefits of
xanthophyll carotenoids against AMD, recommendations for
nutritional interventions are underappreciated by
ophthalmologists. Besides the well-known antioxidant activity of
meso-zeaxanthin, only few non-ocular studies have reported an
anti-inflammatory activity (Firdous et al., 2015; Sahin et al., 2017).
Lack of literature findings about meso-zeaxanthin’s anti-
inflammatory activity was also emerged in our in silico analysis.
Interestingly, meso-zeaxanthin decreased levels of nuclear p-NFκB
and TNF-α secretion in the insulin-resistant rodent model (Sahin
et al., 2017); this anti-inflammatory activity has been evidenced
also in our experimental settings, since the single treatment with
meso-zeaxanthin effectively delivered anti-inflammatory effects.

In conclusion, we hereby provided in vitro evidence that
vitamin D3 and meso-zeaxanthin association protected retinal
pigmented epithelium from several damages that recapitulate the

multifactorial pathogenic mechanisms of AMD.With this regard,
vitamin D3 and meso-zeaxanthin supplementation would be of
value in AMD patients, especially for subject diagnosed with early
diagnosis of AMD, as already evidenced by several systematic
reviews.
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