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Primary open angle glaucoma (POAG) and normal tension glaucoma (NTG) cause irre-
versible blindness while current medications cannot completely inhibit disease progression.
An understanding of immunopathogenesis is thus a keystone to develop novel drug targets
and genetic markers are still required for early diagnosis. Toll-like receptor 4 (TLR4) is an es-
sential player in inflammation in various diseases. However, the TLR4 polymorphisms have
not been completely elucidated in both types of glaucoma. The aim of the present study was
to identify the association between TLR4 polymorphism and glaucoma (POAG and NTG)
via the use of a comprehensive review and meta-analysis. The relevant studies were col-
lected from PubMed, Excerpta Medica Database (EMBASE), and Web of Science to identify
eight included articles, assessed for quality by a modified Newcastle-Ottawa Scale (NOS)
for gene association study. A meta-analysis was applied to calculate the pooled odds-ratio
and 95% confidence intervals (CIs) to evaluate the association between TLR4 polymor-
phism and glaucoma. The results revealed that TLR4 rs1927911 A/G, rs12377632 C/T, and
rs2149356 G/T significantly decrease the risk of POAG and NTG in allele contrast mod-
els 0.71-, 0.71-, and 0.67-fold, respectively. Moreover, rs4986790 A/G and rs4986791 C/T
showed a stringent association with POAG in allele contrast, heterozygous, recessive, and
overdominant models. In conclusion, this meta-analysis represented a significant correla-
tion between TLR4 polymorphisms and both types of glaucoma suggesting that TLR4 might
be involved in the pathogenesis of glaucoma and may be applied as a genetic marker for
disease screening.

Introduction
Glaucoma, characterized by retinal ganglion cell (RGCs) death and optic nerve fiber loss, is a common
optic neuropathy which is the second-highest cause of blindness worldwide [1,2]. It was estimated that
there will be approximately 79.6 million people living with glaucoma by 2020, increasing to 111 million
by 2040. The vast majority of glaucoma types are POAG, which is associated with elevated intraocular
pressure (IOP) without a recognizable secondary cause such as ocular surgery, ocular trauma, or laser
iridotomy [3,4]. On the other hand, some POAG patients are able to appear normal in terms of IOP of
<22 mmHg. This type is classified as NTG. POAG and NTG share similarities in phenotypes composed
of having normal anterior chamber angles, peripapillary retinal nerve fiber layer (RNFL) thinning, glau-
comatous optic neuropathy (GON), and corresponding visual field (VF) defects. Therefore, it is believed
that POAG and NTG illustrate a continuum of open-angle glaucoma in which there is a difference in some
causative factors and IOP [5,6]. Although the precise and accurate molecular mechanisms of POAG and
NTG have not been investigated, it is possible that patients with POAG and NTG have some overlapping
factors in both multiple genetic and environmental interactions.
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The emerging roles of inflammation and immunity were suggested as a paradigm shift in glaucoma pathogene-
sis. A gain-of-function mutation of pro-inflammatory gene TBK1-tumor necrosis factor (TNF) receptor associated
factor NF-κB activator (TANK) binding kinase1 associated with NTG [7,8]. In a mouse model of inherited glau-
coma, DBA/J2 mice showed a correlation between microglia activation and axon loss [9]. Moreover, early stages of
the glaucoma model showed that neuroinflammatory response and inhibition of pro-inflammatory pathways play a
role in the neuroprotective effect [10]. Amongst inflammatory molecules, Toll-like receptors (TLRs), referred to as
transmembrane pattern recognition receptors (PRRs), play a significant role in innate immunity. The TLR activation
initiates the inflammatory process via recognition with pathogen-associated molecular patterns (PAMPs), derived
structure from microorganisms known as exogenous ligands, damage-associated molecular patterns (DAMPs), and
derived cellular motifs from tissue damage known as endogenous ligands [11]. Currently, there are approximately
ten TLRs which are identified in humans. TLR4 was the first to be discovered and is well known through study to
bind to lipopolysaccharide (LPS) in Gram-negative bacteria, a lipoprotein of the RNA virus, and several heat shock
proteins (HSPs) of host components [12–15]. In recent years, evidence suggests that the TLR4 plays multiple roles
which are related to POAG. Activation of TLR4 alters the trabecular meshwork fibrosis during TGF-β stimulation
and subsequently causes elevated IOP [16]. TLR4/HMGB1 binding activates RGC apoptosis in the acute glaucoma
model [17–19]. The HSPs and LPS, being ligands of TLR4, were previously implicated as candidate antigens of NTG
[20]. Moreover, Tenascin-C, another DAMP of TLR4, has been increased in astrocytes of the glaucomatous optic
nerve head [21]. Therefore, the TLR4 may play a role in glaucoma pathogenesis.

In this decade, advanced sequencing technology has resulted in personal medicine and biomarker development.
To achieve this aim, gene association studies are required as personalized information to predict the disease out-
comes. Single nucleotide polymorphisms (SNPs) in the TLR4 gene were associated with both infectious diseases and
non-communicable diseases [22–24]. To date, several positions of TLR4 polymorphisms have been examined for pro-
posal as risk or protective factors of glaucoma. However, the results are still controversial, both for POAG and NTG.
To solve this, we applied a comprehensive review and meta-analysis between genetic models of TLR4 polymorphism
and glaucoma. Our results will provide supporting evidence relating to glaucoma as an autoimmune disease.

Materials and Methods
Searching strategy
To identify the related article, the searching, dependent on electronic literature databases, was performed in PubMed,
EMBASE, and Web of Science. The search terms were updated until 4 December 2018 and used the following key-
words: (variants OR genetic polymorphisms OR genetic polymorphism OR genotyping OR SNP OR SNPs OR SNP
OR SNPs OR polymorphisms OR polymorphism OR nucleotide polymorphism OR gene variation OR haplotype)
AND (TLR-4 OR TLR4 OR receptor, TLR4 OR TLR4 receptor OR toll 4 receptor OR toll-4 receptor OR toll-like
receptor 4) AND (POAG OR POAG OR NTG OR NTG). Two independent investiators searched and subsequently
screened the titles and abstracts to identify eligible articles based on inclusion and exclusion criteria. The investiga-
tor entered into a discussion to resolve disagreements to achieve the final consensus. An additional publication was
considered via related article screening.

Inclusion and exclusion criteria
Selected publications included in our study were: (1) case-control or cohort study on the association of TLR4 polymor-
phisms and POAG; (2) odds-ratio (OR) or relative risk with a 95% CI; (3) human study, and (4) providing information
for all genetic models. The exclusion criteria were: (1) abstract, case-report review, and systematic review; (2) other
TLRs study; (3) non-relevant study, and (4) insufficient data.

Quality assessment
The modified NOS for genetic association study was applied for quality assessment of included articles which were
evaluated by two independent investigators [25]. The NOS criteria are separated into three outlines: (1) subject se-
lection; (2) the comparability of subjects; and (3) exposure. The total score is 9, with 0–3 classified as a low-quality
study, 4–6 classified as a moderate-quality study, and 7–9 classified as a high-quality study. The moderate-quality and
high-quality studies were considered for inclusion in the meta-analysis. Any disagreement was resolved by discussion
for any final consensus.
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13 articles screened by full-text

5 articles excluded for the following reasons:

- In-sufficient data (2 article) 
- Non-human study (3 articles) 

13 articles excluded for the following reasons:

- Conference abstract and review article (9 articles)
- Study in other TLRs (2 articles)  
- Not relevant study (1 article)
- Other diseases (1 article)

8 articles were quality assessment

8 articles were included in our study

Figure 1. Flow diagram showing review protocol for eligible studies

Data extraction and synthesis
Briefly, the name of the first author, the publication year, the number of cases and controls, genotype distribution
of cases and controls, genotyping methods, and case definition were extracted by two investigators independently
extracted relevant information from the eligible studies. An external participant was invited as an expert to resolve
some disagreements.

Statistical analysis
To decrease the selection bias, the Hardy-Weinberg equilibrium (HWE) was evaluated by using chi-square testing in
control groups with P<0.05 showing a deviation from HWE. The strength of association between TLR4 polymor-
phisms and glaucoma was represented as OR with 95% CIs. All allelic models (allele contrast, homozygous com-
parison, heterozygous comparison, dominant model, recessive model, and overdominant model) were examined for
association by using an adjusted P-value for multiple testing via the Bonferroni method. The I2 value was considered
to assess the heterogeneity amongst different studies. I2 <50% and P>0.05 was considered a homogeneous popula-
tion. Consequently, the pool OR was combined using the fixed-effect model otherwise the random-effect models were
performed when I2 >50% and P<0.05. Moreover, publication bias was tested by funnel plot and Egger’s regression
test. Sensitivity analysis was considered to evaluate the stability of the meta-analysis result and root of heterogeneity
by all studies removing one by one. The statistical analysis and meta-analysis were carried out using MetaGenyo [26].
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Table 1 General demographics of TLR4 gene polymorphisms and POAG which were included in our study

Authors
Study/ disease
setting Criteria case

Mean
case age
(years)

Mean
control

age
(years)

Genotyping
methods Positions NOS

Navarro-Partida
et al. 2017 [27]

Mexican population/
POAG

IOP > 22 mmHg in each eye, cup-to-disc ratio
>0.7, VF defects determined by Humphrey
24-2 standard automated perimetry and open
anterior chamber angle

66.49 +−
14.3

63.28 +−
7.93

Real-time PCR rs4986790
rs4986791

5

Navarro-Partida
et al. 2017 [28]

Mexican population/
POAG

IOP > 22 mmHg in each eye, cup-to-disc ratio
>0.7, VF defects determined by Humphrey
24-2 standard automated perimetry and open
anterior chamber angle

66.49 +−
14.4

63.28 +−
7.94

Real-time PCR rs11536889
rs1927911
rs12377632
rs2149356

4

Mousa et al.
2016 [29]

Saudi Arab population/
POAG

Not stated. The author stated that the case
participants were clinically confirmed
diagnosed

60.90 +−
12.7

57.7 +− 10.4 Real-time PCR rs4986791 4

Abu-Amero et
al. 2017 [30]

Saudi Arab population/
POAG

(1) Appearance of the disc and retina nerve
fiber layer, (2) VF abnormalities, and (3) open
anterior chamber angles bilaterally on
gonioscopy

60.90 +−
12.8

69.7 +− 11.3 Real-time PCR rs4986790 4

Takano et al.
2012 [31]

Japanese population/
POAG and NTG

(POAG): IOP >22 mmHg in each eye,
cup-to-disc ratio >0.7, VF defects determined
by Goldmann perimetry and/or Humphrey VF
analysis and open anterior chamber angle
(NTG): IOP < 22 mmHg, and the same
characteristic as that of POAG group. The
patients with glaucoma secondary causes
were excluded

POAG:
64.60 +−

14.3 NTG:
58.60 +−

13.1

57.7 +− 10.6 PCR-sequencing A 4

Chen et al. 2012
[32]

Chinese population/
POAG

(1) Shaffer grade III or IV open iridocorneal
angle on gonioscopy, (2) Humphrey VF
analysis, and (3) IOP ≥22 mmHg was
measured by applanation tonometry

48.57 +−
17.5

72.2 +− 6.7 Real-time PCR rs7037117 5

Suh et al. 2011
[33]

South Korean
population/ NTG

IOP <24 mmHg in each eye was measured by
Goldmann tonometer, VF defects determined
by Humphrey 30-2 standard automated
perimetry in association with an open angle on
gonioscopy. These are not history of angle
closure, ocular trauma, corneal opacity, laser
iridotomy, inflammatory eye disease, or ocular
surgery

NA NA Real-time PCR A 6

Shibuya et al.
2008 [34]

Japanese population/
NTG

NTG: (1) the presence of GON with
corresponding VF loss, (2) normal open angle
with angle width of Shaffer grade 2 or higher
and (3) IOP <22 mmHg on repeat
measurement with Goldmann applanation
tonometry

NA NA Real-time PCR A 5

A represents TLR4 polymorphism at rs10759930, rs1927914, rs1927911, rs12377632, rs2149356, rs11536889, rs7037117, and rs7045953

Results
Characteristics of included studies
By using a systematic searching strategy, we identified a total of 48 records relating to POAG from three electronic
databases. After removing duplicate articles, 26 studies were enrolled by title and abstract screening and 13 studies
were excluded in this step. This resulted in 13 articles being downloaded and the full text being considered. Five arti-
cles were excluded. Eventually, eight articles (Figure 1) [27–34], containing ten polymorphisms of TLR4 (rs4986790,
rs4986791, rs10759930, rs1927914, rs1927911, rs12377632, rs2149356, rs11536889, rs7037117, and rs7045953), were
applied in our quality assessment (Supplementary Table S1) and meta-analysis. Amongst these studies were six arti-
cles which studied POAG with IOP >22 mmHg (two articles on rs4986790, two articles on rs4986791, two articles on
rs1927911, rs12377632, rs2149356, rs11536889, and one article on rs7037117: Table 1). All the studies of POAG with
IOP >22 were based on Mexican, Saudi Arabian, Japanese, and Han Chinese populations. On the other hand, there
were three studies conducted on TLR4 polymorphisms (rs10759930, rs1927914, rs1927911, rs12377632, rs2149356,
rs11536889, rs7037117, and rs7045953) with NTG of which two studies were carried out with Japanese populations
and one study was carried out with a South Korean population.

4 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 2 The genotype distribution of TLR4 polymorphisms in cases and controls

Authors Allele (1/2) Cases Controls
HWE

P-value MAF

11 12 22 11 12 22 Cases Controls

rs4986790 A/G

Navarro-Partida et al. 2017 [27] 166 20 1 106 3 0 0.88 0.06 0.01

Abu-Amero et al. 2017 [30] 70 14 1 86 8 1 0.13 0.09 0.05

rs4986791 C/T

Navarro-Partida et al. 2017 [27] 165 21 1 105 4 0 0.85 0.06 0.02

Mousa et al. 2016 [29] 73 11 1 87 8 0 0.67 0.08 0.04

rs10759930 T/C

Takano et al. 2012 [31] 190 262 97 103 85 28 0.12 0.42 0.33

Suh et al. 2011 [33] 52 72 23 126 191 63 0.51 0.40 0.42

Shibuya et al. 2008 [34] 81 127 42 137 141 40 0.69 0.42 0.35

rs1927914 A/G

Takano et al. 2012 [31] 184 270 95 105 82 29 0.05 0.42 0.32

Suh et al. 2011 [33] 52 72 23 126 192 62 0.44 0.4 0.42

Shibuya et al. 2008 [34] 82 126 42 137 141 40 0.69 0.42 0.35

rs1927911 G/A

Navarro-Partida et al. 2017 [28] 83 87 17 64 34 11 0.06 0.32 0.26

Takano et al. 2012 [31] 190 267 92 106 85 25 0.22 0.41 0.31

Suh et al. 2011 [33] 53 71 23 129 190 61 0.52 0.40 0.41

Shibuya et al. 2008 [34] 87 122 41 141 135 42 0.29 0.41 0.34

rs12377632 C/T

Navarro-Partida et al. 2017 [28] 27 89 71 27 51 31 0.51 0.62 0.52

Takano et al. 2012 [31] 190 280 79 104 87 25 0.30 0.40 0.32

Suh et al. 2011 [33] 54 70 23 127 191 62 0.49 0.39 0.41

Shibuya et al. 2008 [34] 86 122 42 140 138 40 0.51 0.41 0.34

rs2149356 G/T

Navarro-Partida et al. 2017 [28] 61 100 26 61 36 12 0.07 0.41 0.28

Takano et al. 2012 [31] 192 262 95 107 85 24 0.26 0.41 0.31

Suh et al. 2011 [33] 54 70 23 128 191 61 0.46 0.39 0.41

Shibuya et al. 2008 [34] 87 122 41 140 138 40 0.51 0.41 0.34

rs11536889 G/C

Navarro-Partida et al. 2017 [28] 146 40 1 84 22 3 0.30 0.11 0.13

Takano et al. 2012 [31] 291 228 30 127 76 13 0.72 0.26 0.24

Suh et al. 2011 [33] 77 62 8 221 139 20 0.76 0.27 0.24

Shibuya et al. 2008 [34] 146 93 11 177 119 22 0.74 0.23 0.26

rs7037117 A/G

Takano et al. 2012 [31] 333 189 27 153 54 9 0.14 0.22 0.17

Chen et al. 2012 [32] 124 46 14 145 77 8 0.57 0.20 0.20

Suh et al. 2011 [33] 85 51 11 211 143 26 0.79 0.25 0.26

Shibuya et al. 2008 [34] 138 98 14 213 94 11 0.87 0.25 0.18

rs7045953 A/G

Takano et al. 2012 [31] 465 81 3 191 24 1 0.79 0.08 0.06

Suh et al. 2011 [33] 126 19 2 314 60 6 0.12 0.08 0.09

Shibuya et al. 2008 [34] 203 45 2 269 49 0 0.14 0.10 0.08

Bold text indicates minor allele.

All studies were of case-control design and published between 2008 and 2017. The case definition of POAG was
based on clinical manifestation. Briefly, the patient has VF defects or abnormalities, no history of angle closure or
secondary causes. Only one study in NTG applied IOP <24 mmHg which has a difference from two studies (IOP <

22 mmHg) (Table 1).
One study performed genotyping using PCR-sequencing and eight studies assessed using real-time PCR. The geno-

type details are presented in Table 2. The genotype distribution of control in all studies was in accordance with the
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Figure 2. Forest plot of association between two TLR4 polymorphisms and POAG

The area of the square was proportional to the study’s weight. The horizontal line represents 95% CI. The overall effect was

illustrated as diamonds with the lateral points showing the CI. The forest plots of rs4986790 and rs4986791 associated with POAG

were shown as an allele contrast model.

Hardy-Weinberg equilibrium. Moreover, we also showed the minor allele frequency (MAF) for which nine poly-
morphisms represented the same minor allele except for rs12377632 for which there was one study which showed a
different result (Table 2).

Meta-analysis results and publication bias
To investigate the potential association of other TLR4 polymorphisms with glaucoma (POAG and NTG), three studies
about rs10759930 polymorphism (946 cases and 914 controls), three studies about rs1927914 polymorphism (946
cases and 914 controls), four studies about rs1927911 polymorphism (1133 cases and 1023 controls), four studies
about rs12377632 polymorphism (1133 cases and 1023 controls), four studies about rs2149356 polymorphism (1133
cases and 1023 controls), four studies about rs11536889 polymorphism (1133 cases and 1023 controls), four studies
about rs7037117 polymorphism (1130 cases and 1144 controls), and three studies about rs7045953 polymorphism
(946 cases and 914 controls) were enrolled for meta-analysis resulting in three positions (rs1927911, rs12377632, and
rs2149356) showing significant association with glaucoma (Table 3) in five genetic models, three genetic models, and
five genetic models, respectively. The allele contrast model, homozygous model, and recessive model were associated
with glaucoma in all positions (allele contrast model, rs1927911; OR = 0.78, P=0.02, rs12377632; OR = 0.78, P=0.02,
rs2149356; OR = 0.71, P=0.02, homozygous model, rs1927911; OR = 0.68, P=0.01, rs12377632; OR = 0.65, P=0.00,
rs2149356; OR = 0.62, P=0.02, recessive model, rs1927911; OR = 0.69, P=0.02, rs12377632; OR = 0.70, P=0.04,
rs2149356; OR = 0.64, P=0.03). An Egger’s test and funnel plot suggested that no publication bias exists in these
genetic models (Supplementary Table S1 and Supplementary Figure S1). Altogether, the results suggest that the TLR4
polymorphism (rs1927911, rs12377632, and rs2149356) is related to glaucoma in both POAG and NTG.

Subgroup analysis of POAG and NTG
Due to limitations of materials of NTG in TLR4 rs4986790 and rs4986791 studies, there were two studies in POAG
which were combined by a meta-analysis that included 272 cases and 204 healthy controls (Table 4). The meta-analysis
results showed that four genetic models were statistically related between these positions and the susceptibility of
POAG: allele contrast model (rs4986790; OR = 0.40, P =0.01, rs4986791; OR = 0.41, P=0.01) (Figure 2), heterozy-
gous model (rs4986790; OR = 0.36, P=0.01, rs4986791; OR = 0.44, P=0.03), recessive model (rs4986790; OR = 0.37,
P=0.01, rs4986791; OR = 0.42, P=0.02), and overdominant model (rs4986790; OR = 2.73, P =0.01, rs4986791; OR
= 2.21, P =0.03) (Table 4).

Previous results in combined glaucoma types showed great heterogeneity amongst studies relating to rs1927911,
rs12377632, and rs2149356 (I2 > 50%, P<0.05). Therefore, we employed stratification by using the glaucoma types
(POAG and NTG). All positions were associated with POAG in the recessive model (rs1927911; OR = 0.60, P=0.00
(Table 5), rs12377632; OR = 0.60, P=0.01 (Table 6), rs2149356; OR = 0.51, P=0.03 (Table 7). However, the rs1927911
correlated with NTG in the homozygous model (OR = 0.70, P=0.025 (Table 5)).

6 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 3 The meta-analysis of TLR4 polymorphisms and glaucoma (POAG and NTG)

SNPs 1/2 Genetic models
A B C D E F G

rs10759930 T/C

OR (95% CI) 0.80 (0.62;1.04) 0.68 (0.43;1.07) 0.91 (0.68;1.22) 0.74 (0.52;1.04) 0.79 (0.60;1.04) 0.73 (0.50;1.05) 1.23 (1.00;1.50)

p-valuea 0.099 0.0969 0.5602 0.0917 0.0972 0.0946 0.0395

I2(%) 69.49 55.13 0.00 61.23 0.00 69.73 21.27

p-valueb 0.03 0.10 0.87 0.07 0.40 0.04 0.28

rs1927914 A/G

OR (95% CI) 0.80 (0.61;1.04) 0.68 (0.44;1.05) 0.95 (0.71;1.27) 0.72 (0.48;1.07) 0.80 (0.61;1.06) 0.71 (0.47;1.07) 1.25 (0.94;1.67)

p-valuea 0.0957 0.0845 0.7305 0.1117 0.1248 0.0002 0.1201

I2 (%) 70.85 52.25 0.00 71.07 0.00 74.80 52.19

p-valueb 0.03 0.12 0.86 0.03 0.50 0.00 0.12

rs1927911 G/A

OR (95% CI) 0.78 (0.63;0.97) 0.68 (0.52;0.91) 0.98 (0.74;1.30) 0.69 (0.50;0.94) 0.82 (0.63;1.09) 0.69 (0.51;0.94) 1.32 (1.10;1.59)

p-valuea 0.0227 0.0095 0.8788 0.0186 0.147 0.0169 0.0033

I2 (%) 57.17 34.69 0.00 58.89 0.00 61.98 47.70

p-valueb 0.07 0.20 0.62 0.06 0.51 0.04 0.13

rs12377632 C/T

OR (95% CI) 0.78 (0.63;0.97) 0.65 (0.49;0.85) 0.90 (0.69;1.17) 0.72 (0.52;1.00) 0.78 (0.61;1.00) 0.70 (0.50;0.98) 1.20 (1.00;1.45)

p-valuea 0.0245 0.0024 0.4159 0.3675 0.0471 0.0397 0.0442

I2 (%) 59.28 44.68 0.00 59.31 0.00 66.11 40.13

p-valueb 0.06 0.14 0.86 0.06 0.60 0.03 0.17

rs2149356 G/T

OR (95% CI) 0.74 (0.57;0.96) 0.62 (0.41;0.92) 0.91 (0.69;1.20) 0.65 (0.43;0.99) 0.76 (0.58;0.98) 0.64 (0.43;0.96) 1.35 (0.97;1.88)

p-valuea 0.0241 0.0229 0.4955 0.0425 0.0371 0.0309 0.0747

I2 (%) 72.99 50.68 0.00 76.15 0.00 77.88 67.73

p-valueb 0.01 0.10 0.75 0.00 0.51 0.00 0.02

rs11536889 G/C

OR (95% CI) 0.97 (0.83;1.13) 1.20 (0.78;1.84) 1.40 (0.90;2.16) 0.87 (0.72;1.06) 1.27 (0.84;1.94) 0.91 (0.75;1.10) 1.17 (0.96;1.41)

p-valuea 0.7054 0.4045 0.1351 0.1599 0.594 0.3168 0.1153

I2 (%) 11.33 3.39 0.00 0.00 0.00 0.00 0.00

p-valueb 0.33 0.38 0.64 0.54 0.48 0.39 0.66

rs7037117 A/G

OR (95% CI) 0.83 (0.65;1.04) 0.67 (0.44;1.00) 0.76 (0.50;1.16) 0.88 (0.58;1.32) 0.70 (0.47;1.04) 0.84 (0.59;1.18) 1.11 (0.74;1.66)

p-valuea 0.1116 0.0476 0.2056 0.5233 0.0752 0.311 0.6291

I2 (%) 56.82 0.00 23.83 77.33 0.00 72.32 78.02

p-valueb 0.07 0.62 0.27 0.00 0.59 0.01 0.00

rs7045953 A/G

OR (95% CI) 0.87 (0.67;1.13) 0.78 (0.23;2.60) 0.76 (0.22;2.64) 0.88 (0.66;1.17) 0.78 (0.23;2.59) 0.87 (0.66;1.15) 1.13 (0.85;1.50)

p-valuea 0.2853 0.6812 0.6672 0.3715 0.6789 0.3194 0.3852

I2 (%) 27.21 0.00 0.00 16.26 0.00 23.98 14.22

p-valueb 0.25 0.50 0.60 0.30 0.52 0.27 0.31

aOR p-value, b heterogeneous p-value
A: Allele contrast model, B: Homozygous model, C: Heterozygous (12 vs. 22), D: Heterozygous (11 vs. 12), E: Dominant model, F: Recessive model,
and G: Overdominant model.
Bold text showed statistical significance in meta-analysis model. Italic text represented Egger’s test P-value < 0.05.

Since the stratification by using the glaucoma types still showed heterogeneity, we conducted a sensitivity analysis
to reveal the influence of each study on the pooled OR of glaucoma. The sensitivity analysis of the association between
SNPs (rs1927911, rs12377632, and rs2149356) and glaucoma was performed in the allele contrast model and shown in
Table 8. The result suggested that there is one study which is the root of heterogeneity which affected the pooled OR.
Finally, the source of heterogeneity was excluded from the meta-analysis resulting in TLR4 polymorphism association
with glaucoma (Figure 3).

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 4 Meta-analysis of rs4986791 and rs4986790 associated with POAG

Genetic models OR (95% CI) p-valuea I2(%) p-valueb

rs4986791

Allele contrast C vs. T 0.41 (0.20;0.82) 0.0117 0.00 0.38

Homozygote compairison CC vs. TT 0.38 (0.04;3.71) 0.4074 0.00 0.79

Heterozygote comparison CT vs. TT 1.84 (0.08;8.92) 0.8861 0.00 0.6

Heterozygote comparison CC vs. CT 0.44 (0.21;0.92) 0.0294 0.00 0.34

Dominant model CC+CT vs. TT 0.41 (0.04;3.97) 0.4408 0.00 0.78

Recessive model CC vs. CT + TT 0.42 (0.20;0.86) 0.0173 0.00 0.36

Overdominant model CT vs. CC+TT 2.21 (1.07;4.56) 0.0315 0.00 0.33

rs4986790

Allele contrast A vs. G 0.40 (0.20;0.80) 0.0096 26.49 0.24

Homozygote comparison AA vs. GG 0.67 (0.08;0.51) 0.7112 0.00 0.84

Heterozygote comparison AG vs. GG 1.83 (0.20;16.67) 0.5905 0.00 0.96

Heterozygote comparison AA vs. AG 0.36 (0.17;0.76) 0.0075 0.00 0.38

Dominant model AA+AG vs. GG 0.73 (0.08;6.03) 0.7745 0.00 0.83

Recessive model AA vs. AG + GG 0.37 (0.18;0.76) 0.0074 1.54 0.31

Overdominant model AG vs. AA+GG 2.73 (1.30;5.73) 0.0077 0.00 0.38

aOR P-value, b heterogeneous P-value.

Table 5 Meta-analysis result of rs1927911 based on subgroup analysis

SNPs OR (95% CI) P-value Heterogeneity Effect models Egger’s P-value
I2 (%) P-value

Allele contrast

POAG 0.58 (0.61–1.00) 0.0538 0 0.58 F -

NTG 0.82 (0.65–1.04) 0.0969 59.27 0.09 R 0.329

Homozygous model

POAG 0.79 (0.46–1.35) 0.3891 0 0.85 F -

NTG 0.70 (0.51–0.95) 0.0258 38.59 0.19 F 0.37

Heterozygous model (GA vs. AA)

POAG 1.35 (0.80–2.28) 0.2574 0 0.56 F -

NTG 0.91 (0.67–1.23) 0.5256 0 0.88 F 0.95

Heterozygous model (GG vs. GA)

POAG 0.56 (0.39–0.81) 0.0023 0 0.5618 F -

NTG 0.77 (0.62–0.96) 0.0208 46.34 0.15 F 0.03

Dominant model

POAG 1.05 (0.64–1.71) 0.8558 0 0.8274 F -

NTG 0.80 (0.60–1.07) 0.1329 0 0.49 F 0.68

Recessive model

POAG 0.60 (0.43–0.86) 0.0047 0 0.64 F -

NTG 0.77 (0.56–1.05) 0.1024 58.24 0.09 R 0.0437

Overdominant model

POAG 1.64 (1.17–2.33) 0.0042 0 0.40 F -

NTG 1.18 (0.96–1.44) 0.1139 0 0.37 F 0.11

Bold text showed statistical significance in meta-analysis model.

Discussion
Our meta-analysis was based on systematic collected studies relating to TLR4 gene polymorphisms and glaucoma. To
our knowledge, this is the first study that attempted to combine the POAG and NTG studies because these two types
of glaucoma are overlapping in some factors [5,6]. Interestingly, combined analysis showed rs1927911, rs12377632,
and rs2149356 in the allele contrast model were strongly associated with glaucoma (POAG and NTG) suggesting that
the POAG and NTG share some pathogenesis factors that may relate to TLR4. Additionally, the different MAS in
rs12377632 did not disturb the meta-analysis result [28] suggesting that there is a different population structure in

8 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 6 Meta-analysis result of rs12377632 based on subgroup analysis

SNPs OR (95% CI) P-value Heterogeneity Effect models Egger’s P-value
I2 (%) P-value

Allele contrast

POAG 0.71 (0.56–0.90) 0.0050 0 0.60 F -

NTG 0.86 (0.70–1.07) 0.1807 54.03 0.11 R 0.27

Homozygous model

POAG 0.51 (0.32–0.83) 0.0062 0 0.52 F -

NTG 0.81 (0.60–1.11) 0.1932 33.83 0.22 F 0.18

Heterozygous model (CT vs. TT)

POAG 0.80 (0.53–1.21) 0.2875 0 0.80 F -

NTG 1.03 (0.76–1.41) 0.8091 0 0.37 F 0.35

Heterozygous model (CC vs. CT)

POAG 0.65 (0.43–0.97) 0.0365 0 0.63 F -

NTG 0.77 (0.53–1.12) 0.1787 65.02 0.05 R 0.12

Dominant model

POAG 0.68 (0.46–1.01) 0.0564 0 0.10 F -

NTG 0.92 (0.69–1.23) 0.589 0 0.38 F 0.03

Recessive model

POAG 0.60 (0.41–0.88) 0.0091 0 0.5 F -

NTG 0.78 (0.55–1.11) 0.1701 64.95 0.06 R 0.01

Overdominant model

POAG 1.10 (0.79–1.54) 0.5772 0 0.71 F -

NTG 1.23 (0.90–1.69) 0.2082 59.83 0.08 R 0.43

Bold text showed statistical significance in meta-analysis model.

Table 7 Meta-analysis result of rs2149356 based on subgroup analysis

SNPs OR (95% CI) P-value Heterogeneity Effect models Egges’s P-value
I2 (%) P-value

Allele contrast

POAG 0.69 (0.46–1.03) 0.0716 63.21 0.10 R -

NTG 0.82 (0.63–1.06) 0.1260 67.34 0.05 R 0.36

Homozygous model

POAG 0.61 (0.36–1.02) 0.0596 0 0.34 F -

NTG 0.69 (0.44–1.09) 0.111 53.44 0.12 R 0.40

Heterozygous model (GT vs. TT)

POAG 1.18 (0.72–1.97) 0.4993 0 0.80 F -

NTG 0.85 (0.63–1.16) 0.3116 0 0.8 F 0.9

Heterozygous model (GG vs. GT)

POAG 0.49 (0.34–0.71) 0.0243 63.57 0.1 R -

NTG 0.80 (0.58–1.11) 0.1811 52.76 0.12 R 0.07

Dominant model

POAG 0.88 (0.55–1.41) 0.5936 0 0.64 F -

NTG 0.77 (0.57–1.02) 0.0695 2.26 0.36 F 0.69

Recessive model

POAG 0.51 (0.28–0.93) 0.0277 65.20 0.09 R -

NTG 0.78 (0.55–1.10) 0.1552 65.02 0.06 R 0.07

Overdominant model

POAG 1.76 (1.03–3.02) 0.0391 59.76 0.11 R -

NTG 1.14 (0.93–1.39) 0.2054 2.94 0.36 F 0.15

Bold text showed statistical significance in meta-analysis model.

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 8 Sensitivity analysis for the allele contrast model in the meta-analysis

Omitting study OR 95% CI I2 P-value

rs1927911

Navarro-Partida et al. 2017a 0.80 (0.61;1.04) 70.74 0.03

Takano et al. 2012 0.84 (0.67;1.06) 48.09 0.14

Suh et al. 2011 0.71 (0.61;0.82) 0.00 0.66

Shibuya et al. 2008 0.79 (0.58;1.08) 71.29 0.03

overall effect 0.78 (0.64;0.97) 57.17 0.07

rs12377632

Navarro-Partida et al. 2017a 0.82 (0.63;1.06) 68.36 0.04

Takano et al. 2012 0.82 (0.62;1.09) 67.12 0.04

Suh et al. 2011 0.71 (0.61;0.83) 0.00 0.86

Shibuya et al. 2008 0.80 (0.59;1.09) 71.92 0.03

overall effect 0.79 (0.64;0.97) 72.99 0.01

rs2149356

Navarro-Partida et al. 2017a 0.80 (0.60;1.07) 75.42 0.02

Takano et al. 2012 0.78 (0.55;1.10) 76.64 0.01

Suh et al. 2011 0.66 (0.56;0.78) 9.06 0.33

Shibuya et al. 2008 0.73 (0.49;1.08) 81.96 0.00

overall effect 0.74 (0.57;0.96) 72.99 0.01

Figure 3. Forest plot of association between two TLR4 polymorphisms and NTG

The area of the square was proportional to the study’s weight. The horizontal line represents 95% CI. The overall effect was illustrated

as diamonds with the lateral points showing the CI. The forest plots of rs1927911, rs12377632, and rs214356 associated with NTG

were shown as an allele contrast model.

this position [35]. This was supported by stringent heterogeneity. To eliminate this limitation, the sensitivity analysis
was applied and illustrated a similar result after removing one publication in NTG, which is a source of heterogeneity.
It is possible that Suh et al. [33] performed in a different setting and the Korean ethnic group may have some factors
which interfere with the result.

Besides the combined analysis, we conducted a subgroup analysis by using types of diseases (POAG or NTG). Sur-
prisingly, rs1927911, rs12377632, and rs2149356, which exist in an intron, were still associated with POAG. However,

10 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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the functions of polymorphisms have not been examined. Only rs1927911 was associated with NTG. It is possible
that there are functions relating to RNA stability and regulation, resulting in alteration of protein expression because
several translated regions or a part of intron might relate to miRNA [36]. Moreover, previous in silico analysis showed
that rs2149356G is able to form miRNA which targets autophagy genes [37]. Therefore, rs1927911 and rs12377632
should be under this circumstance. Definitely, all positions should be validated by in vitro functional assay to prove
this hypothesis.

Additionally, coding polymorphisms of TLR4 rs4986790 A/G (Asp299Gly) and rs4986791 C/T (Thr399Ile), for
which both mutations exist in a co-segregation, were also robustly associated with POAG. Taken together, this implied
that the TLR4 might play an essential role in POAG pathogenesis. Although the exact functions of these mutations are
underinvestigated, there is evidence indicating that these mutations enhance cell death in hepatic stellate cells [38].

Moreover, Asp299Gly and Thr399Ile impair the ability to respond to TLR4 ligands in colorectal cancer cell lines
[39]. On the contrary, crystallography studies show that it did not intrude upon LPS binding [40]. Therefore, these
mutations may cause RGC apoptosis in POAG, by which several endogenous ligands of TLR4 were up-regulated in
the glaucomatous eye [41].

TLR4 activation plays a role in innate immunity and subsequently the adaptive immune response [42]. Currently,
several lines of evidence showed that TLR4 relates to the pathophysiology of various diseases as well as autoimmunity
[43]. For instance, TLR4 knockout mice reduce autoantibody production and vasculature inflammation in systemic
lupus erythematosus (SLE) and atherosclerosis, respectively [44,45]. The activated TLR4 by using endogenous ligands
induces pro-inflammatory cytokine and chemokine production in both human synovial fibroblasts and peripheral
blood mononuclear cells (PBMC) from rheumatoid arthritis patients leading to cartilage inflammation and degen-
eration [46–48]. In multiple sclerosis patients and experimental autoimmune encephalomyelitis models, the TLR4
was up-regulated and HMGB-1, a TLR4 ligand, plays a role in the disease progression [49–51]. Additionally, TLR4
polymorphisms are associated with various inflammatory diseases such as aortic aneurysmal disease, periodontitis,
psoriasis arthritis, and Crohn’s disease [52–55].

In the recent year, there is new evidence suggesting that CD4+ T cells enter into the retina and cause neurodegen-
eration in the glaucoma model. The CD4+ T cells are primed by HSP of normal flora and subsequently crossreacted
with mouse or human HSP, TLR4 ligands [56]. Moreover, increasing oral microflora is correlated with microglial
activation and neuronal loss via TLR4 signaling, while inhibition of TLR4 causes the neuroprotective effect [57]. In
addition, several previous studies indicated that glaucoma (POAG and NTG) has a paradigm shift into inflamma-
tory disease and autoimmunity [21,58–60]. However, to support this paradigm, further evidence is still required. Our
study reported that the TLR4 polymorphisms are associated with POAG and NTG which serve as supporting material
for glaucoma relating to inflammatory disease and autoimmunity.

There are limitations which appeared in this meta-analysis and these should not be ignored to improve validity and
reliability. First, the sample size should be expanded. Second, a relative descent is biased in the Japanese population.
The other population descents are still required, especially for the African, Caucasian, and Han Chinese populations.
Moreover, additional factors may affect the results, such as co-segregation events whereby our meta-analysis cannot
assess the haplotype between TLR4 polymorphisms and glaucoma. At last, the natural history of IOP is not simpli-
fied by a single measurement. However, several included articles, which were enrolled in our meta-analysis, did not
mention in this regard. It is well known that the IOP is fluctuation over 24 h [61]. Therefore, this may decrease the
power of this meta-analysis.

In conclusion, the present study demonstrated that there are associations between TLR4 rs1927911, rs12377632,
and rs2149356 and glaucoma (POAG and NTG), while rs4986790 A/G and rs4986791 C/T strongly decrease the risk
of POAG suggesting that TLR4 may play a role in glaucoma pathogenesis, which should be classified as a neuroin-
flammatory and autoimmune disease, and should be considered as a genetic marker for POAG. Previously, the role
of TLR4 in POAG was exploited and suggested that it may save as a potential therapeutic strategy [62]. However,
the functions of TLR4 polymorphisms in the glaucoma model are unidentified. Therefore, to confirm these associ-
ations, the laboratory experiment and a well-designed case-control study are still required for the authentication of
the results.
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