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Abstract

We present CellSpatialGraph, an integrated clustering and graph-based framework, to investigate 

the cellular spatial structure. Due to the lack of a clear understanding of the cell subtypes in the 

tumor microenvironment, unsupervised learning is applied to uncover cell phenotypes. Then, we 

build local cell graphs, referred to as supercells, to model the cell-to-cell relationships at a local 

scale. After that, we apply clustering again to identify the subtypes of supercells. In the end, 

we build a global graph to summarize supercell-to-supercell interactions, from which we extract 

features to classify different disease subtypes.
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1. Introduction

The tumor is a complex ecosystem that emerges and evolves under selective pressure from 

its microenvironment, involving trophic, metabolic, immunological, and therapeutic factors. 

The relative influence of these biological factors orchestrates the abundance, localization, 

and functional orientation of cellular components within the tumor microenvironment 

(TME) with resultant phenotypic and geospatial variations, a phenomenon known 

as intratumoral heterogeneity [1]. With the advent of digital pathology, machine 

learning empowered computational pipelines have been proposed to profile intratumoral 

heterogeneity with H&E tissue sections to enhance cancer diagnosis and prognostication 

[2–4].

Most studies phenotype the textural patterns of tissue slides in a top-down manner with the 

deep convolutional neural networks (CNN) to extract versatile features tailored specifically 

for particular clinical scenarios [5–8]. Though these studies have achieved promising 

performance, they ignore the connections among individual cellular components and face 

challenges in biological interpretation. A few bottom-up studies focused on profiling cellular 

architectures from digital pathology slides have emerged using the graph theory approach 

and graph convolution network (GCN) approach [9–13]. The graph theory approach first 

constructs either local or global graph structures and then extracts hand-crafted features to 

test their clinical relevance. By contrast, the GCN approach aims to automatically learn 

representations from the global graph formed at the cellular level and abstract the features. 

However, a common limitation to these algorithms is their lack of ability to interpret the 

spatial patterns among different cellular levels.

To address these limitations, we propose a new computational framework that integrates 

graph modeling and unsupervised clustering algorithms to hierarchically decode cellular and 

clonal level pheno-types, explore their spatial patterns, and wrap up as CellSpatialGraph. 

In particular, we dissect the process into four key steps. First, we segment each cell and 

based on their features to identify intrinsic subtypes. Second, we focus on spatial interaction 

among neighboring cells via building local graphs factoring in their subtypes so that closely 

interacting cells are merged to form supercells. Third, we pool the supercells together to 
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discover the cellular community at a population level. At last, we build global graphs 

incorporating community information to extract features for disease diagnosis purposes. 

We expect this framework can serve the research community to facilitate the in-depth 

understanding of intratumoral heterogeneity.

2. Description

2.1. Framework modules

This proposed framework in CellSpatialGraph mainly comprises four modules. In the “Cell 

Phenotyping via Unsupervised Learning” module, cells are segmented with a combination 

of multi-pass adaptive voting and local optimal threshold method [14,15]. Then the 

pheno-types of the cells are identified by their appearance features via the unsupervised 

clustering. In the “Supercell via Local Graph” module, we focus on spatial interaction 

among neighboring cells by building local graphs factoring in their subtypes so that 

closely interacting cells are merged to form supercells. Next, in the “Cell Community 

Identification by Clustering of Supercells” module, we pool the supercells together and 

apply spectral clustering to discover the cellular community at a population level. In the 

“Global Supercell Graph Construction and Feature Extraction”, we build global graphs 

incorporating community information to extract supercell interacting features for diagnosis 

purposes. CellSpatialGraph is written with Matlab and applicable across different operating 

systems, including Windows, macOS, and Linux.

2.2. Benchmark

We conduct the benchmark experiment on lymphoid neoplasms to test the proposed 

framework’s performance in diagnosing three hematological malignancy subtypes [16]. 

We compare with three cell-level graph-based algorithms, including the Global Cell Graph 

(GCG) [9], Local Cell Graph (LCG) [10], and FLocK [11]. The comparison results are 

shown in Table 1. The proposed framework shows superior performance on two evaluation 

metrics, including accuracy and area under the receiver operating characteristic curve 

(AUC), among the compared methods. The preliminary data suggests that our proposed 

hierarchical graph-based framework can better profile the multi-scale (both local and global) 

cellular interactions and intratumoral heterogeneity.

3. Impact

CellSpatialGraph is an open-source graph-based cell spatial analysis framework that 

provides a modularized pipeline to study the cellular spatial patterns to advance our 

understanding of intratumoral heterogeneity. This framework is among the first to integrate 

local and global graph approaches to interrogate cellular patterns within TME, and 

demonstrates superior performance in the diagnosis of lymphoid neoplasms [16]. Hereby, 

we hypothesize that the proposed design can overcome the limitations inherent in solely 

adopting either the global or local graph approaches, and conduct a more robust profiling 

intratumoral heterogeneity.

Besides, the clustering algorithms are employed to obtain the phenotypes at both cell and 

supercell (cell community) levels, given that their cellular components in TME are still 
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under investigation. The unsupervised manner would shed light on uncovering new insight 

into biological subtypes of heterogeneous cells and clones.
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Table 1

Performance of the three compared algorithms and the proposed framework.

Method Accuracy AUC (CLL) AUC (aCLL) AUC (RT-DLBL)

GCG [9] 0.436 ± 0.037 0.421 ± 0.054 0.730 ± 0.027 0.770 ± 0.023

LCG [10] 0.471 ± 0.042 0.555 ± 0.049 0.669 ± 0.050 0.763 ± 0.032

FLocK [11] 0.601 ± 0.045 0.545 ± 0.054 0.816 ± 0.025 0.847 ± 0.022

Proposed 0.703 ± 0.030 0.915 ± 0.009 0.724 ± 0.033 0.866 ± 0.028
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