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Abstract  
Exogenous electrical nerve stimulation has been reported to promote nerve regeneration. Our previous study has suggested that en-
dogenous automatic nerve discharge of the phrenic nerve and intercostal nerve has a positive effect on nerve regeneration at 1 month 
postoperatively, but a negative effect at 2 months postoperatively, which may be caused by scar compression. In this study, we designed 
four different rat models to avoid the negative effect from scar compression. The control group received musculocutaneous nerve cut and 
repair. The other three groups were subjected to side-to-side transfer of either the phrenic (phrenic nerve group), intercostal (intercostal 
nerve group) or thoracodorsal nerves (thoracic dorsal nerve group), with sural nerve autograft distal to the anastomosis site. Muscu-
locutaneous nerve regeneration was assessed by electrophysiology of the musculocutaneous nerve, muscle tension, muscle wet weight, 
maximum cross-sectional area of biceps, and myelinated fiber numbers of the proximal and distal ends of the anastomosis site of the mus-
culocutaneous nerve and the middle of the nerve graft. At 1 month postoperatively, compound muscle action potential amplitude of the 
biceps in the phrenic nerve group and the intercostal nerve group was statistically higher than that in the control group. The myelinated 
nerve fiber numbers in the distal end of the musculocutaneous nerve and nerve graft anastomosis in the phrenic nerve and the intercos-
tal nerve groups were statistically higher than those in the control and thoracic dorsal nerve groups. The neural degeneration rate in the 
middle of the nerve graft in the thoracic dorsal nerve group was statistically higher than that in the phrenic nerve and the intercostal nerve 
groups. At 2 and 3 months postoperatively, no significant difference was detected between the groups in all the assessments. These findings 
confirm that the phrenic nerve and intercostal nerve have a positive effect on nerve regeneration at the early stage of recovery. This study 
established an optimized animal model in which suturing the nerve graft to the distal site of the musculocutaneous nerve anastomosis pre-
vented the inhibition of recovery from scar compression. 
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Introduction 
Electrical nerve stimulation has been reported to improve 
axon growth and is conducted as a regular treatment for 
peripheral nerve regeneration (Willand, 2015; Willand et al., 
2015; Gordon, 2016; Gordon and English, 2016; Bueno et 
al., 2017). Exogenous electrical stimulation has been report-
ed to be effective in an animal model (Al-Majed et al., 2000; 
Gordon, 2016) and in clinical patients with carpal tunnel 
syndrome, in which the stimulation improved target muscle 
recovery (Gordon, 2009, 2016; Gordon and English, 2016). 
The application of endogenous discharge, such as from the 
phrenic nerve and intercostal nerve, is less common than 
exogenous stimulation, even though the phrenic nerve (Gu 
et al., 1989) and intercostal nerve (Takahashi, 1983) have 
been used in nerve transfer for brachial plexus injury.

Compared with artificial exogenous discharge, endoge-
nous discharge occurs inside the body under physiological 
conditions, and is continuous. Therefore, we thought it 
might also have a similar effect on nerve regeneration. Our 
previous study has shown that the phrenic and intercostal 
nerves have rhythmic clusters of discharge, which are con-
sistent with breathing frequency (Rui et al., 2018). In the 
study we designed a surgical model in rat using the phrenic 
nerve and intercostal nerve as donor nerves. In the model, 
the sural nerve is autografted to connect the donor and the 
anastomosis site of the musculocutaneous nerve via side-
to-side neurorrhaphy to maximize the neural endogenous 
discharge function and minimize the damage of respira-
tory function. The result suggested a positive effect at the 
early stage of recovery, but a negative effect in the middle 
stage, which may be caused by scar compression (Rui et al., 
2018). 

This study aimed to avoid the scar compression problem 
that happened in our previous study. We have redesigned 
the animal model by avoiding suturing multiple nerve ends 
at the same site. We have optimized the animal model to 
maximize the endogenous electrical stimulation and mini-
mize the scar compression. 

Materials and Methods   
Animals
Seventy-two healthy, specific-pathogen-free, adult, male 
Sprague-Dawley rats aged approximately 6 weeks old and 
weighing 200 ± 10 g were provided by the Shanghai Experi-
mental Animal Center of the Chinese Academy of Sciences, 
China (certificate No. SYXK (Hu) 2014-0029). 

The rats were randomly divided into four groups: control 
group (n = 18), phrenic nerve (PN) group (n = 18), inter-
costal nerve (ICN) group (n = 18) and thoracic dorsal nerve 
(TDN) group (n = 18) (Rui et al., 2018). In each group, the 
rats were further randomized into three subgroups for mea-
surement at 1, 2 and 3 months postoperatively. 

The rats were housed on clean sawdust in plastic cages, 
with six animals per cage. They had access to food and wa-
ter ad libitum and were housed under a 12-hour light/dark 
cycle. All surgery and experimental procedures were per-
formed during the light cycle and approved by the Animal 

Ethics Committee of Fudan University of China (approval 
No. 20150628A284). All efforts were made to reduce animal 
numbers.

Surgical procedure 
The right side was chosen as the operation side. The rats 
were anesthetized intraperitoneally with pentobarbital (50 
mg/kg; Shanghai Reagent Company, Shanghai, China). All 
surgical procedures were conducted under a surgical micro-
scope at 10× magnification. The procedure was carried out 
with the rat in a supine position under appropriate anesthe-
sia at 25°C. 

In the control group, the brachial plexus bundle branches 
were exposed in the subclavian area. The musculocutaneous 
nerve was identified at the terminal point into the biceps. 
The muscular branch was proximally exposed for 10 mm, 
and then transected at the middle point of the initial site and 
the inserting site to the biceps. The two nerve ends were di-
rectly coated with 12-0 prolene sutures tension-free (Rui et 
al., 2018). The skin was closed using an interrupted 5/0 silk 
suture.

The PN, ICN and TDN groups underwent the same basic 
procedure as the control group with the following additional 
procedures. A 2-cm-long sural nerve was harvested and used 
as an autograft to connect the site 5 mm distal to the mus-
culocutaneous nerve anastomosis (Figure 1) and the donor 
nerve, PN (the PN group), the third external ICN (the ICN 
group) or TDN (the TDN group) by 12-0 prolene sutures 
tension-free (Rui et al., 2018). The epineurium of both the 
donor nerve and musculocutaneous nerve was removed but 
the perineurium was preserved at the site of coaptation. This 
study optimized the animal model by suturing the graft nerve 
5 mm distal to the musculocutaneous nerve anastomosis in-
stead of directly to the musculocutaneous nerve anastomosis 
to avoid suturing three nerve ends at the same site.

Figure 1 Intraoperative morphology of phrenic nerve, intercostal 
nerve, and thoracodorsal nerve under a surgical microscope at 10× 
magnification. 
A 2-cm-long sural nerve was used as an autograft to connect the site, 
which was 5 mm distal to the musculocutaneous nerve anastomosis, 
and the donor nerve, phrenic nerve, the third external intercostal nerve 
or thoracic dorsal nerve for each respective group, which are not shown 
in this figure. The epineurium of both the donor nerve and musculocu-
taneous nerve were removed, but the perineurium was reserved at the 
site of coaptation. 
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Evaluation of receptor nerve recovery function
At 1, 2 and 3 months postoperatively, six rats from each 
group were randomly obtained using a random number 
generator for assessments of nerve function, including a 
nerve conduction study, muscle tetanic contraction force 
test, muscle weights, muscle histological examination, nerve 
histological examination and nerve fiber counting (Wang et 
al., 2010, 2011; Rui et al., 2012) and nerve observation with 
electron microscopy. 

Nerve conduction study
The nerve conduction study was performed as described in 
our previous study (Rui et al., 2018). Briefly, the Keypoint 4 
channel electrophysiological apparatus (Dantes, Skovlunde, 
Denmark) was used for collecting the maximum amplitude 
of the compound muscle action potential (CMAP), which 
was recorded from the right biceps muscle (Jiang et al., 
2016). The operation was carefully performed to dissect the 
musculocutaneous nerve from the distal to proximal end 
and to expose the nerve terminal point into the biceps and 
the coaptation site, including the nerve graft and the muscu-
locutaneous nerve anastomosis site, and the musculocuta-
neous nerve self-anastomosis site. An electric stimulus with 
a single square wave shock (2.0 mA super pulse current, 0.2 
ms pulse width, 1 Hz stimulus frequency) was applied to 
the distal end of the nerve graft and the musculocutaneous 
nerve anastomosis site. 

Muscle tetanic contraction force test
The tetanic force of both the ipsilateral and contralateral 
biceps muscles was detected by a force displacement trans-
ducer (Yang et al., 2014) (JZJ101, Chengdu Instrument, 
Chengdu, China) connected to a RM6240BD multichannel 
physiology signal collection system. The negative side (left 
side) was tested first. The distal portion of the biceps brachii 
muscle was severed at the attachment point and dissected 
proximally to its origin. Next, the distal stump that had been 
tied with a silk suture was attached to the tension trans-
ducer. After the biceps were adjusted to an optimal initial 
length, a train of electric stimulation was used to detect the 
peak amplitudes of tetanic muscle contractions. The stimu-
lation was performed at 5 V amplitude, 100 Hz frequency, 
and 0.1 ms wave width with two hooked AgCl stimulating 
electrodes placed on the surface of the muscle. Data were 
recorded with an oscillograph. The muscle tetanic tension 
recovery rate was expressed as percentages of those obtained 
on the left side using the same procedure. 

Muscle weights
Both sides of biceps muscles were detached from the bone 
at their origin and terminal point, and then weighed imme-
diately to prevent tissue desiccation with an electronic scale 
(R200D, 0.0001 precision, Sartorius, Houston, TX, USA). 
The wet muscle weight was expressed as a percentage rela-
tive to that of the control group. The moist muscle weight 
recovery rate was expressed as a percentage of that on the 
contralateral side measured using the same procedure.

Muscle histological examination
The harvested biceps were fixed with 10% formalin, and 
then dehydrated in serial concentrations of alcohol and em-
bedded by olefin. Tissue sections (5 μm thickness) from the 
middle of the muscles were cut and then stained with hema-
toxylin and eosin staining. Digital image analysis software 
i-solution (IMT i-Solution Inc., Vancouver, BC, Canada) 
was used to measure and calculate the entire cross-sectional 
area at a 50× magnification. The entire cross-sectional area 
recovery rate was expressed as a percentage of that from the 
contralateral side measured using the same procedure.

Nerve histological study and nerve fiber counting
The musculocutaneous nerve segment from the origin to 
1 cm distal to the coaptation site was used to measure the 
number of nerve fibers. The specimens were fixed with 0.1 
M glutaraldehyde for 4 hours (pH 7.4, 4°C) and postfixed 
with 2% osmium tetroxide for 2 hours, then dehydrated in 
serial concentrations of alcohol, and embedded in Epon. 
Tissue sections (0.5 μm thickness) were cut at 3 mm prox-
imal to the musculocutaneous nerve self-anastomosis site 
(referred to as proximal to coaptation site) and 3 mm distal 
to the nerve graft and the musculocutaneous nerve anas-
tomosis site (referred to as distal to coaptation site) of the 
nerve segment. Slices were stained with 5% toluidine blue, 
and observed by a light microscope at 200× magnification 
(LeicaDWLB2, Leica, Wetzlar, Germany). Five images were 
randomly taken from each sample by DC300F color digital 
camera (Leica) and analyzed by i-solution software (IMT 
i-Solution Inc.) (Yang et al., 2014). The total myelinated 
axon number was obtained by measuring the area of view 
and myelinated axon counts and calculating the mean den-
sity of myelinated axons. 

Nerve observation with electron microscopy
Three samples from the musculocutaneous nerve segment, 
obtained the same way as described abovely, from each 
group were observed at 1 month postoperatively for ultra-
structural changes by electron microscopy. The specimens 
were fixed with 2.5% glutaraldehyde and postfixed with 
1% osmium tetroxide. The nerve samples were then dehy-
drated in serial concentrations of alcohol and embedded in 
Epon 812. Cross-sections were cut by a microtome (LKB-I, 
Microtome, Bromma, Sweden), and then stained with 3% 
uranyl acetate and lead citrate. The slices were observed and 
recorded using a transmission electron microscope (Philips, 
CM-120, Amsterdam, the Netherlands).

Evaluation of nerve graft
The myelinated axon number in the middle portion of 
the nerve graft (1 cm from the coaptation site) was count-
ed under a light microscope using the same procedure as 
described previously. The myelinated axon in the middle 
portion of the nerve graft was observed under the electron 
microscope (Philips, CM-120). Three images were randomly 
taken from each sample. The degeneration rate of myelin 
was expressed as the percentage of the degenerating myelin 
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axon number to the total myelinated axon number.

Statistical analysis
All statistical analyses were performed using Prism 5.0 soft-
ware (GraphPad, La Jolla, CA, USA). The data were present-
ed as the median (25% to 75%). The Kruskal-Wallis rank test 
was used to compare the groups. P < 0.05 was considered 
statistically significant. 

Results
Quantitative analysis of experimental animals 
In total, 72 rats were involved in the trial and all were in-
cluded in the final analysis without any loss. The animal 
model was successfully established in all rats and the surgical 
procedure was well tolerated. The rats in all groups survived 
for the duration of the experiments and no surgery-related 
complications or deaths occurred within the 3-month post-
operatively period. All rats were measured as scheduled. No 
functional defects, except elbow flexion, were found after 
surgery.

Nerve conduction study
CMAP was recorded from biceps in all four groups while 
stimulating the musculocutaneous nerve at 1, 2 and 3 
months postoperatively. The amplitudes in the PN and ICN 
groups were significantly higher than those in the control 
group at 1 month postoperatively (P = 0.0115), whereas 
there was no difference with the TDN group (Figure 2A). 
There was no significant difference between the four groups 
at 2 and 3 months postoperatively (P = 0.6494 and P = 0.5171, 
respectively). This result showed that at 1 month postopera-
tively, nerve regeneration in the PN and ICN groups had an 
obvious advantage compared with that in the control group, 
but the advantage disappeared later at 2 and 3 months post-
operatively.  

Muscle tension test, muscle weight and muscle 
histological examination
The recovery rate of tetanic tension, moist weight and entire 
cross-sectional area of the right biceps of the four groups in-
creased gradually with time (Figures 2B–D). No significant 
difference was detected at 1, 2 or 3 months postoperatively 
between the four groups (tetanic tension: P = 0.8857, P = 
0.1721, P = 0.8222, respectively; moist weight: P = 0.2894, P 
= 0.0718, P = 0.4540, respectively; cross-sectional area: P = 
0.3725, P = 0.8701, P = 0.5801, respectively). 

Nerve histology and nerve fiber counting
The total myelinated axon number was measured proximal 
to the coaptation site of the musculocutaneous nerve of the 
four groups at different postoperatively intervals (Figure 
2E). No significant difference was detected between the four 
groups at 1, 2 and 3 months postoperatively (P = 0.5998, P = 
0.3984, P = 0.2666, respectively). 

The total myelinated axon number was also measured dis-
tal to the coaptation site of the nerve graft and musculocu-
taneous nerve of the four groups at different postoperatively 

intervals (Figure 2F). The axon numbers in the PN and ICN 
groups were significantly higher than those in the control 
and TDN groups at 1 month postoperatively (P = 0.0023). 
However, this difference disappeared at 2 months postop-
eratively due to the rapid increase of the myelinated axon 
number in the PN and ICN groups (P = 0.3387), and there 
was still no significant difference between the groups at 3 
months postoperatively (P = 0.9829). 

The total myelinated axon numbers were measured in the 
middle portion of the nerve graft of the PN, ICN, and TDN 
groups at different postoperative intervals (Figure 2G). No 
tendency for an increase was observed with time and no sig-
nificant difference was detected between the four groups at 1, 
2 and 3 months postoperatively (P = 0.2948, P = 0.5655, P = 
0.8984, respectively). 

Nerve observation with electron microscopy
At 1 month postoperatively, all regions examined (proximal 
to the coaptation site of the musculocutaneous nerve, distal 
to the coaptation site of the nerve graft and musculocuta-
neous nerve, and in the middle portion of the nerve graft) 
had similar ultrastructure to our previous study (Rui et 
al., 2018). Regenerated axons with a large diameter of my-
elination were observed proximal to the coaptation site of 
the musculocutaneous nerve in all four groups at 1 month 
post-operation, as well as newly formed and mature axons at 
a high magnification. However, distal to the coaptation site 
of the musculocutaneous nerve, a higher density of myelin-
ated axons were observed in the PN and ICN groups com-
pared with the TDN and negative control groups.  

The degeneration rate of myelin in the middle portion of 
the nerve graft in the TDN group was significantly higher 
than that in the PN and ICN groups (P = 0.0003; Figure 2H).

Discussion
In this study, we showed that the phrenic nerve and inter-
costal nerve had a positive effect on nerve regeneration at 1 
month postoperatively, which is consistent with the findings 
of our previous study (Rui et al., 2018). Further, at 2 months 
postoperatively, we did not observe inhibition of nerve re-
generation. At 3 months postoperatively, no significant dif-
ference was detected among groups for all the parameters, as 
was found in our previous study.

In the previous study, we concluded that the inhibition of 
nerve regeneration in the middle stage may be caused by scar 
hyperplasia and compression due to suturing three nerve 
ends together. Therefore, we transferred the coaptation site 
from musculocutaneous nerve self-anastomosis to 5 mm 
distal to it. This alteration prevented the inhibition of nerve 
regeneration caused by scar hyperplasia and compression due 
to suturing multiple nerve ends together (Mafi et al., 2012; 
Zadegan et al., 2015), and made the nerve anastomosis closer 
to the target muscle (Xu et al., 2008; Yang et al., 2011; Rui et 
al., 2013), shortening the distance of nerve regeneration and 
electrical stimulation to promote nerve recovery. 

CMAP and myelinated axon counts are two early stage 
indicators (Nichols et al., 2005; Manoli et al., 2014; Rui et 
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al., 2014); thus, the increased CMAP and myelinated axon 
numbers in this study suggest that the phrenic nerve and 
intercostal nerve promoted receptor nerve regeneration by 
side-to-side nerve anastomosis in the early stage of recovery. 
The rate of myelin degeneration in the middle portion of the 
nerve graft indicates that nerve degeneration was mild in the 
phrenic and intercostal groups, which suggests that collateral 
sprouting (Beris and Lykissas, 2009; Bontioti and Dahlin, 
2009; Tos et al., 2009) and axon regeneration might be the 
mechanism by which endogenous automatic nerve discharge 
promotes nerve repair in the early stage of recovery. 

The recovery rate of tetanic tension and moist muscle 
weight of biceps were no longer lower in the experimental 
groups at the middle stage as was seen in our previous study 
(Rui et al., 2018), which suggests the disappearance of in-
hibition might be associated with the alteration of surgical 
procedures via transferring the anastomosis to the distal 
end to relieve the scar compression. In the late stage, no 
significant difference was detected between groups, similar 
to our previous study, which is consistent with Mackinnon’s 
“blow-through” theory (Brenner et al., 2008; Banks et al., 
2015; Lin et al., 2015). This result leads us to think that the 
endogenous nerve discharge probably works as a pacemaker 
to help the injured nerve recover within a short time. This 
advantage would be more obvious if the anastomosis site 
was farther from the target muscle. Thus, moving the anas-
tomosis site could buy some time for the nerve recovery and 
reduce muscle atrophy in the clinic. The endogenous nerve 
discharge has great potential value in clinical application.

The mechanism of endogenous automatic nerve discharge 
promoting nerve regeneration may be associated with lo-
cal neurotrophic factors, such as nerve growth factor and 
brain-derived neurotrophic factor (Hellweg and Raivich, 
1994; Yin et al., 1998; Terenghi, 1999; Lykissas et al., 2007; 
Gordon, 2009). The biological pathway of exogenous elec-
trical stimulation is thought to involve agitation of cAMP to 
promote axonal regeneration, which is the same as the latter 
half of the pathway in which some nerve factors promote 
nerve regeneration. (Gordon, 2009; Benga et al., 2017; Kolar 
et al., 2017; Mehrshad et al., 2017; Zuo et al., 2017). However, 
the mechanism of endogenous automatic nervous discharge 
remains unclear. In addition, further questions remain wor-
thy of future research, including whether there is a linkage 
(Sherren, 1906; Babcock, 1927; Carlstedt et al., 2004) between 
the donor nerve and receptor nerve after side-to-side nerve 
anastomosis, and whether the cerebral cortex functional area 
would change (Jiang et al., 2010; Wang et al., 2010; Hua et al., 
2012a,b, 2013) or if the functional area of donor and receptor 
nerves overlap. 

In conclusion, we showed that the phrenic nerve and 
intercostal nerve showed a positive effect on the receptor 
nerve by side-to-side with distal nerve graft on the anasto-
mosis side at the early stage. This optimized animal model 
prevented the negative effect in the middle stage due to scar 
compression, whereas no obvious difference was present at 
the late stage.
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