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Introduction: Autosomal dominant polycystic kidney disease is the most common hereditary kidney dis-

ease. TKV is a promising imaging biomarker for tracking and predicting the natural history of autosomal

dominant polycystic kidney disease. The prognostic value of TKV was evaluated, in combination with age

and eGFR, for the outcomes of 30% decline in eGFR and progression to ESRD. Observational data

including 2355 patients with TKV measurements were available.

Methods: Multivariable Cox models were developed to assess the prognostic value of age, TKV, height-

adjusted TKV, eGFR, sex, race, and genotype for the probability of a 30% decline in eGFR or ESRD.

Results: TKV was the most important prognostic term for 30% decline in eGFR in autosomal dominant

polycystic kidney disease patients with and without preserved baseline eGFR. For a 40-year-old subject

with preserved eGFR (70 ml/min per 1.73 m2), the adjusted hazard ratios for a 30% decline in eGFR were

1.86 (95% CI, 1.65–2.10) for a 2-fold larger TKV (600 vs. 1200 ml) and 2.68 (95% CI, 2.22–3.24) for a 3-fold

larger TKV (600 vs. 1800 ml), respectively. Hazard ratios for progression to ESRD for 2- and 3-fold larger

TKV were 1.72 (95% CI, 1.49–1.99) and 2.36 (95% CI, 1.88–2.97), respectively.

Discussion: The capability to predict 30% decline in eGFR is a novel aspect of this study. TKV was formally

qualified, both by FDA and EMA, as a prognostic enrichment biomarker for selecting patients at high risk

for a progressive decline in renal function for inclusion in interventional clinical trials.
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A
utosomal dominant polycystic kidney disease
(ADPKD) is the most common hereditary kidney

disease. There is a strong body of evidence demon-
strating that the kidneys of patients with ADPKD
progressively increase in size from birth throughout
life, and the clinical symptoms and signs of ADPKD
including hypertension, gross hematuria, flank and
abdominal pain, and declining glomerular filtration rate
(GFR) are associated with increased kidney volume.1–3

Irazabal et al.4 reported that future estimated glomer-
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ular filtration rate (eGFR) decline in ADPKD could be
predicted based on total kidney volume (TKV) growth
rate, estimated by height-corrected TKV, and age.

Currently there are no therapies approved in the
United States to prevent or delay disease progression in
patients with ADPKD, although the vasopressin V2
receptor antagonist tolvaptan has been approved for
use in Japan, Canada, and Europe. Scientific progress
has been made in understanding the mechanisms of
disease and pathophysiological processes underlying
ADPKD. This has resulted in several potential thera-
peutic targets, some of which have shown great
promise in animal studies.5,6 However, development of
early therapeutic interventions has proceeded slowly in
the absence of a universally acceptable and practical
Kidney International Reports (2017) 2, 442–450
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Figure 1. Summary of subjects included in the analysis, missing
baseline characteristics, and disease endpoints. eGFR, estimated
glomerular filtration rate; ESRD, end-stage renal disease; TKV, total
kidney volume.
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regulatory path with respect to an endpoint that could
be used to establish the efficacy of a therapy intended
to treat ADPKD early in its disease course. The clinical
course of ADPKD is marked by a decades-long period
of apparently stable kidney function, as measured by
eGFR, despite progressive loss of nephron reserve and
the relentless expansion of TKV due to growth of
cysts.1–3 Accepted registration endpoints for trials in
chronic kidney disease progression, including
doubling of serum creatinine or development of end-
stage renal disease (ESRD), occur late in the disease
course, after irreversible fibrosis and distortion of
kidneys has taken place.7

The only biomarker proposed to date as a surrogate
endpoint for ADPKD clinical trials is TKV; the US Food
and Drug Administration (FDA) did not accept TKV as
a registration endpoint for the Phase 3, Multi-center,
Double-Blind, Placebo-Controlled, Parallel-Arm Trial to
Determine Long-term Safety and Efficacy of Oral Tol-
vaptan Tablets Regimens in Adult Subjects With
Autosomal Dominant Polycystic Kidney Disease
(TEMPO 3:4) trial.8 The European Medicines Agency
(EMA), Health Canada, and the Pharmaceuticals and
Medical Devices Agency of Japan have approved tol-
vaptan, based on the endpoint of TKV, but there is no
formal regulatory recognition of TKV as a biomarker.

To address the lack of an approved biomarker for
ADPKD clinical trials, the Polycystic Kidney Disease
Outcomes Consortium engaged in a process with FDA
and EMA to formally qualify TKV as a prognostic
biomarker.9 The Polycystic Kidney Disease Outcomes
Consortium has developed the first-ever Clinical Data
Interchange Standards Consortium therapeutic area–
specific data standard for ADPKD to allow for the
mapping and integrating of observational data from
both patient registries and Consortium for Radiologic
Imaging Studies of Polycystic Kidney Disease (CRISP)
cohort studies into a common dataset.10 The current
research used this large dataset to determine whether
baseline TKV and other covariates such as age, sex,
genotype, or eGFR predicts future decline in renal
function. The outcome of these studies is that TKV was
formally qualified, both by FDA and EMA, as a prog-
nostic enrichment biomarker for selecting patients at
high risk for a progressive decline in renal function for
inclusion in interventional clinical trials. The present
and accompanying manuscripts form the basis of this
accomplishment.

METHODS

Populations and Endpoints

Observational data from 5 sources were integrated into
a standardized Clinical Data Interchange Standards
Kidney International Reports (2017) 2, 442–450
Consortium structure: (i) University of Colorado–
Denver, (ii) Mayo Clinic, (iii) Emory University, (iv)
CRISP1, and (v) CRISP2. The content of these databases
is described elsewhere.10 A brief description of the
timeframe of enrollment, number of subjects enrolled,
and process of each study/registry as outlined in the
STROBE statement is presented in Supplementary
Table S1.11

Because the goal of this project was to determine
whether TKV, along with other prognostic factors such
as baseline age and eGFR, can accurately predict the
risk of eGFR decline and progression to ESRD, only
endpoint measurements that occurred after the first
baseline TKV measurement were considered.

� 30% decline of eGFR: This endpoint represents a
30% decline in eGFR relative to the baseline.12,13 A
subsequent measurement within any timeframe was
required to confirm that the original 30% decline was
not transient.

� 57% decline of eGFR: This endpoint represents a
57% decline in eGFR relative to the baseline.12,13 A
subsequent measurement within any timeframe was
required to confirm that the original 57% decline was
not transient.

� ESRD: This endpoint was defined as a patient with
either dialysis or transplant.
A summary of subjects included in the analysis is

presented in Figure 1. A total of 2355 patients with
ADPKD with TKV data collected up to 30 years of
follow-up were available in the database. Baseline TKV
was defined as the first TKV measurement for a subject,
whereas baseline age was the age associated with the
first TKV measurement. TKV measurements were used,
irrespective of modality, including computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and
443
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ultrasound. Baseline eGFR was calculated from the first
valid serum creatinine measurement on the 365th day
or within 365 days of the baseline TKV. The original
MDRD equation was used to derive eGFR for creatinine
methods that were not calibrated to an isotope dilution
mass spectrometry (IDMS) reference method.14 For
creatinine methods calibrated to an IDMS reference
method, the IDMS-traceable Modification of Diet in
Renal Disease (MDRD) study equation was used to
derive eGFR.15 The majority of creatinine measure-
ments were not calibrated to an IDMS reference method
as they were obtained prior to the development of this
methodology.

A total of 664 patients did not have a baseline eGFR
(i.e., time-matched eGFR with baseline TKV). For the
assessment of 30% decline of eGFR, a total of 551
patients did not have $2 eGFR measurements. As a
result, the population for the assessment of a 30%
decline of eGFR included 1140 patients with a complete
set of baseline characteristics and $2 eGFR measure-
ments after baseline. For the assessment of ESRD, 664
patients did not have a baseline eGFR and 72 patients
did not have a time record at the time of ESRD. As a
result, the population for the assessment of ESRD
included 1619 patients with a complete set of baseline
characteristics.

Statistical Methodology

The following baseline characteristics were summarized
with descriptive statistics: age, TKV, eGFR, sex, race,
and ADPKD mutations (PKD1, PKD2, or unknown).
Baseline characteristics (TKV, age, and eGFR) in
patients who progressed to a 30% decline in eGFR and
ESRD were compared with those who did not reach the
endpoint using a t-test at an alpha level of 0.05. Median
values with quartile 1 and 3 (Q1 to Q3) for time to
events of each endpoint were derived.

Time-to-event (30% decline of eGFR or ESRD) times
were derived endpoints as a function of follow-up
times. Censoring was defined as the last date where
information from patients was available in the database
before an event could be observed. Kaplan-Meier fig-
ures were presented for each endpoint as a function of
follow-up times and as a function of baseline TKV
(<1000 or $1000 ml) and eGFR (<50 or $50 ml/min
per 1.73 m2). Survival curves were compared using the
G-rho family of tests.16 Briefly, the G-rho family of tests
includes weights on each death of S(t)r, where S is the
Kaplan-Meier estimate of survival. With r¼ 0 this is
the log-rank or Mantel-Haenszel test, and with r¼ 1 it
is equivalent to the Peto and Peto modification of the
Gehan-Wilcoxon test.

Univariate Cox models (1-by-1) were developed in a
first step to assess the effect of various candidate
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predictors for the probability of disease outcome. The
following predictors were considered: baseline age
(age at first TKV measurement), baseline TKV (first
TKV measurement), height-adjusted baseline TKV,
sex, race (white and nonwhite), and genotype (PKD1
and PKD2 or no mutation detected). The predictive
performance of individual terms was assessed by
deriving receiver-operating characteristics (ROC) at 1
and 3 years.17 It is well known that TKV, age, and
eGFR are not completely independent.18 Therefore, the
following interaction terms were tested in the
multivariable Cox model: (i) interaction between
ln-transformed baseline TKV and baseline age, (ii)
interaction between baseline eGFR and baseline age,
and (iii) interaction between baseline eGFR and
ln-transformed baseline TKV. Models with different
interaction terms were compared by deriving Akaike
information criterion and ROC at 1 and 3 years. The
final interaction model was selected based on the
Akaike information criterion and ROC values. Hazard
ratios for individual predictors were derived with the
final multivariable Cox model with interactions.
Covariates were tested through forward stepwise
model building and backward elimination testing.
Missing data were not imputed.

Several imaging modalities have been used to
determine TKV in patients with ADPKD.19 These
included ultrasound as determined using the ellipsoid
method, MRI and CT scan.20 The primary analysis was
performed based on TKV measured using any of these
imaging modalities. Furthermore, to understand
potential differences in using TKV data collected by
different imaging modalities, separate multivariable
Cox models were constructed for TKV measured by
ultrasound and compared with analyses based on TKV
measured by magnetic MRI or CT scan.

Kaplan-Meier figures, Cox modeling, and area under
the curve for ROC were performed using R 3.0.2
(64-bit; R Foundation, Vienna, Austria).

RESULTS

Baseline Characteristics

Baseline characteristics of the patient population
included in the analysis of a 30% decline of eGFR or
ESRD are presented in Table 1. Median (Q1– Q3)
follow-up times for a 30% decline of eGFR and ESRD
were 4.10 (1.77–8.03) and 5.89 (2.61–10.1) years. The
populations used in modeling the probability of a 30%
decline of eGFR consisted of 1140 subjects with mean
baseline TKV, age, and eGFR of 1494.6 ml, 38.8 years,
and 70.1 ml/min per 1.73 m2, respectively. A total of
361 (31.7%) subjects experienced a 30% decline of
eGFR over a median (interquartile range) of 3.11 years
(1.59–6.60) of follow-up. Baseline characteristics of the
Kidney International Reports (2017) 2, 442–450



Table 1. Baseline characteristics of ADPKD population

Baseline characteristics

Population for the
analysis of 30%
decline of eGFR
(n [ 1140)a

Population for the
analysis of progression

to ESRD
(n [ 1619)

TKV (ml)b 1494.6 � 1426.7 1460.7 � 1456.2

Age (yr) 38.8 � 15.8 38.8 � 16.0

Age (yr)

0–<20 156 (13.7) 230 (14.2)

20–<40 404 (35.4) 569 (35.1)

40–<60 489 (42.9) 682 (42.1)

60–<80 83 (7.3) 128 (7.9)

80–100 8 (0.7) 10 (0.6)

eGFR (ml/min per 1.73 m2) 70.1 � 37.8 69.9 � 37.6

CKD stagesc

1 281 (24.6) 398 (24.6)

2 406 (35.6) 579 (35.8)

3 274 (24.0) 385 (23.8)

4 117 (10.3) 169 (10.4)

5 62 (5.4) 88 (5.4)

Sex

Male 464 (40.7) 641 (39.6)

Female 676 (59.3) 978 (60.4)

Race

White 1042 (91.4) 1452 (89.7)

Black 40 (3.5) 50 (3.1)

Other 58 (5.1) 117 (7.2)

Genotype

PKD1 585 (51.3) 740 (45.7)

PKD2 70 (6.1) 76 (4.7)

Missing 466 (40.9) 780 (48.2)

No mutation detected 20 (1.8) 23 (1.4)

Data sourceb

CRISP studies 233 236

University of Colorado 359 568

Emory University 177 253

Mayo Clinic 498 690

Imaging modalityb

Ultrasound 90 801

CT 528 558

MRI 392 663

ADPKD, autosomal dominant polycystic kidney disease; CKD, chronic kidney disease;
CRISP, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease; CT,
computed tomography; eGFR, estimated glomerular filtration; ESRD, end-stage renal
disease; MRI, magnetic resonance imaging; TKV, total kidney volume.
Values are mean � SD or n (%).
aThe population for the analysis of a 57% decline of eGFR presented the same baseline
characteristics.
bTKV measured using all imaging modalities (i.e., ultrasound and MRI/CT).
cCKD stages 1, 2, 3, 4, and 5: eGFR >90, 89 to 60, 59 to 30, 29 to 15, and <15 ml/min per
1.73 m2, respectively.

Figure 2. Probability of avoiding a 30% decline in estimated
glomerular filtration rate (eGFR) as a function of baseline total kidney
volume (TKV) and baseline eGFR. Solid red line represents preserved
eGFR ($50 ml/min per 1.73 m2) and small TKV (<1000 ml). Dashed
red line represents preserved eGFR ($50 ml/min per 1.73 m2) and
large TKV ($1000 ml). Solid blue line represents reduced eGFR (<50
ml/min per 1.73 m2) and small TKV (<1000 ml). Dashed blue line
represents reduced eGFR (<50 ml/min per 1.73 m2) and large TKV
($1000 ml).
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patient population for the analysis of a 57% decline of
eGFR were the same as those for the analysis of a 30%
decline of eGFR. Because the number of subjects pre-
senting a 57% decline of eGFR was very low
(approximately 10%), only exploratory analyses were
performed for this endpoint.

Baseline characteristics of subjects for the analysis of
ESRD were consistent with those observed for the 30%
eGFR decline analysis. A total of 354 (21.9%) subjects
progressed to ESRD over a median (Q1–Q3) 4.0 years
Kidney International Reports (2017) 2, 442–450
(1.10–8.16) of follow-up. Baseline characteristics were
consistent with those reported in randomized
controlled clinical trials of ADPKD.21,22

Similar baseline age and baseline eGFR were
observed in patients with or without a 30% decline of
eGFR, whereas a 32% higher baseline TKV (P < 0.001)
was observed in patients experiencing a 30% decline of
eGFR (Supplementary Tables S2 and S3). Higher base-
line TKV was also observed in patients who progressed
to ESRD compared with those who did not (P < 0.001),
although these patients were also older and had a lower
baseline eGFR.

Exploratory Data Analysis

Kaplan-Meier figures for the probability of avoiding a
30% decline of eGFR as a function of baseline eGFR
(<50 or $50 ml/min per 1.73 m2) and baseline TKV
(<1000 or $1000 ml) are presented in Figure 2. For
patients with “preserved” kidney function (GFR $50
ml/min per 1.73 m2) and “reduced” kidney function
(GFR <50 ml/min per 1.73 m2), the risk of a 30%
decline of eGFR in ADPKD patients with larger TKV
($1000 ml) was markedly greater than that observed
in patients with smaller TKV (<1000 ml) (red dashed
vs. red solid lines). Kaplan-Meier figures for the
probability of avoiding ESRD as a function of baseline
eGFR (<50 or $50 ml/min per 1.73 m2) and baseline
TKV (<1000 or $1000 ml) are presented in Figure 3.
445



Figure 3. Probability of avoiding end-stage renal disease (ESRD) as
a function of baseline total kidney volume (TKV) and baseline esti-
mated glomerular filtration rate (eGFR). Solid red line represents
preserved eGFR ($50 ml/min per 1.73 m2) and small TKV (<1000 ml).
Dashed red line represents preserved eGFR ($50 ml/min per 1.73 m2)
and large TKV ($1000 ml). Solid blue line represents reduced eGFR
(<50 ml/min per 1.73 m2) and small TKV (<1000 ml). Dashed blue line
represents reduced eGFR (<50 ml/min per 1.73m2) and large TKV
($ 1000 ml).
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Risks of progression to ESRD in patients with larger
TKV ($1000 ml) were markedly greater than those
observed in patients with smaller TKV (<1000 ml),
regardless of kidney function. Median (Q1–Q3) time to
events for each endpoint and each subpopulation of
patients with preserved or reduced eGFR, with either
small or large TKV are presented in Table 2. Based on a
log-rank or Mantel-Haenszel test, the 4 survival curves
for the probability of a 30% decline of eGFR and ESRD
(Figures 2 and 3, respectively) were all statistically
different (P < 0.001). Kaplan-Meier figures for the
probability of avoiding a 57% decline of eGFR as
a function of baseline eGFR (<50 or $50 ml/min per
1.73 m2) and baseline TKV (< 1000 or $1000 mL) are
presented in Supplementary Figure S1.
Table 2. Median time (yr) to reach endpoint

Populations

Median (Q1--Q3)
time to 30% decline

of eGFR

Median (Q1--Q3)
time to progression

to ESRD

Overall 10.4 (4.76–NC) 19.0 (10.0–29.0)

eGFR <50 ml/min per 1.73 m2

With TKV <1000 ml 9.72 (3.92–15.4) 12.2 (5.75–19.0)

With TKV ‡1000 ml 3.11 (1.90–7.54) 4.00 (1.41–7.94)

eGFR $50 ml/min per 1.73 m2

With TKV <1000 ml NA (7.73—NC) 29.0 (19.01—NC)

With TKV ‡1000 ml 8.68 (5.43—NC) 16.0 (16.0—23.0)

eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; NA, not
available; NC, not calculated; Q, quartile; TKV, total kidney volume.
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Statistical Analyses

Univariate Cox models (1-by-1) were used in a first step
to assess the effect of individual candidate predictors
for the probability of a 30% decline of eGFR and ESRD
(Supplementary Tables S4 and S5). Because TKV was
shown to increase in an exponential manner, the use of
ln-transformed TKV values was a natural choice
because it was shown to be more prognostic than a raw
untransformed TKV.2,19 In general, the effect of ln-
transformed baseline height-adjusted TKV and
ln-transformed baseline TKV resulted in the highest
ROC values for all endpoints. The effect of baseline
eGFR and age were also statistically significant. In
univariate analyses, genotype and race were not sig-
nificant for the probability of a 30% decline of eGFR
and ESRD.

In order to tease out confounding effects between
baseline TKV and other covariates such as baseline age
and baseline eGFR, multivariable Cox analyses were
performed for the probability of a 30% decline of eGFR
and ESRD. Although ln-transformed baseline height-
adjusted TKV and ln-transformed baseline TKV resul-
ted in a similar predictive power (ROC at 1 and 3 years),
ln-transformed baseline TKV was used in multivariable
Cox models because it was deemed more convenient to
use in a clinical setting. Of all covariates, ln-
transformed baseline TKV was associated with the
lowest P value for all endpoints (P < 0.001). For the
30% decline of eGFR endpoint, baseline age (P < 0.001)
and baseline eGFR (P < 0.001) were included in the
model during the second and third iterations. Statisti-
cally significant interaction terms between TKV and
age, as well as eGFR and age were included in all
models due to the well-known correlations between
these covariates.4 None of the covariates or interaction
terms were removed during the backward elimination
testing. At 1 year, ROC area under the curve values for
the probability of a 30% decline of eGFR and pro-
gression to ESRD were 0.748 and 0.952, respectively.
At 3 years, ROC area under the curve values for the
probability of a 30% decline of eGFR and progression
to ESRD were 0.707 and 0.944, respectively.

The final multivariable Cox models for the proba-
bility of a 30% decline of eGFR or progression to ESRD
with 95% confidence intervals (CIs) are presented in
Table 3. The effect of baseline age, baseline eGFR, and
baseline TKV on the hazard ratio of a 30% decline of
eGFR in the setting of preserved eGFR (GFR, 50 ml/min
per 1.73 m2) and a TKV 1000 ml shows that age and
baseline eGFR have minimal impact whereas TKV has a
substantial effect (Figure 4a). Independent of baseline
age and baseline eGFR, baseline TKV was also a strong
prognostic factor for progression to ESRD (Figure 4b).
A dramatic increase in hazard ratio for ESRD with
Kidney International Reports (2017) 2, 442–450



Table 3. Multivariable Cox models for probabilities of a 30% decline
of eGFR or progression to ESRD
Parameters Coefficient (SE) Z score P value

30% decline of eGFR

Prognostic factors

Ln baseline TKV (l) 2.755 (0.367) 7.50 <0.001

Baseline age (yr) 0.260 (0.0434) 5.99 <0.001

Baseline eGFR (ml/min per 1.73 m2) 0.0966 (0.0166) 5.77 <0.001

Interaction terms

TKV-age �0.0291 (0.00586) �4.96 <0.001

eGFR-age �0.00079 (0.00014) �5.65 <0.001

ESRD

Prognostic factors

Ln baseline TKV (l) 1.502 (0.296) 5.07 <0.001

Baseline age (yr) 0.173 (0.0458) 3.77 <0.001

Baseline eGFR (ml/min per 1.73 m2) �0.0275 (0.0106) �2.58 0.01

Interaction terms

TKV-age �0.0180 (0.00553) �3.25 0.001

eGFR-age �0.00168 (0.000242) �6.98 <0.001

eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; ln, natural
log; TKV, total kidney volume.
For a 30% decline of eGFR, exponent of ln baseline TKV, baseline age, and baseline eGFR
for a difference of 1 log (i.e., 2.7-fold increase in TKV), 1 year, and 1 ml/min per 1.73 m2

correspond to 15.7, 1.30, and 1.10, respectively. For ESRD, exponent of ln baseline TKV,
baseline age, and baseline eGFR for a difference of 1 log (i.e., 2.7-fold increase in TKV),
1 year, and 1 ml/min per 1.73 m2 correspond to 4.49, 1.19, and 0.97, respectively.
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decreasing age (with TKV and eGFR held constant) is
likely to be associated to the fact that patients with the
same TKV at younger age have faster growing kidneys.
Based on the multivariable Cox models, an interactive
research tool was developed (https://pharmacometrics.
shinyapps.io/KIreports) to assess the risk of disease
progression according to different reference values of
baseline age, baseline eGFR, and baseline TKV in
ADPKD subjects.23 For example, adjusted hazard ratios
for 30% decline of eGFR in a 40-year-old subject with
preserved eGFR (50 ml/min per 1.73 m2) for a doubling
of TKV (600 vs. 1200 ml) was 1.86 (95% CI, 1.65–2.10)
and for a tripling of TKV (600 vs. 1800 ml) was 2.68
(95% CI, 2.22–3.24) Adjusted hazard ratios for ESRD
Figure 4. Effect of age, estimated glomerular filtration rate (eGFR), and to
eGFR and (b) progression to ESRD for a reference autosomal dominant poly
per 1.73 m2 and TKV of 1000 ml, respectively). CI, confidence interval.

Kidney International Reports (2017) 2, 442–450
for a doubling and tripling of TKV were 1.72 (95% CI,
1.49–1.99) and 2.36 (95% CI, 1.88–2.97), respectively.

In a sensitivity analysis to assess whether the rela-
tionship of TKV with outcomes was dependent on the
imaging modality, we find TKV as measured by
ultrasound is strongly associated with 30% eGFR
decline and ESRD and has nearly the same point
estimate as in models using TKV measured by CT/MRI
(Supplementary Tables S6 and S7). In addition, an
exploratory analysis was performed by including in
the analysis a population of patients likely to be
enrolled in a clinical study (i.e., baseline eGFR $ 20
ml/min per 1.73 m2, age range, >15 to <51 years).
Median time to 30% decline of eGFR and ESRD (10.4
years and 19.2 years, respectively) and parameters
derived with the multivariable Cox model in the above
subpopulation were consistent with those derived with
the main analysis (refer to Supplementary Table S8).

DISCUSSION

This study provides clear evidence that TKV is
prognostic for a 30% decline in eGFR, a threshold
recommended for its utility in predicting ESRD and its
sensitivity to early renal function decline, and for
actual events of ESRD independent of baseline age,
mutation type, and eGFR.11 Moreover, our results
suggest that TKV is a strong prognostic biomarker
where large kidneys in young patients with preserved
eGFR, which corresponds to the population most likely
to be enrolled in clinical trials, are associated to a worse
outcome, as also reported by Irazabal et al.4 The pre-
sent study also demonstrates the capability to predict
likelihood of ESRD. The clinical and research
implication of this finding is that TKV can be used in
combination with age and eGFR as an enrichment
biomarker to identify patients most likely to have a
tal kidney volume (TKV) on hazard ratio (HR) of (a) 30% of decline of
cystic kidney disease subject (reference: 40 years, eGFR of 70 ml/min
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decline in kidney function and these would be the
participants to target in an interventional trial.

Individuals with the PKD1 genotype typically
exhibit earlier progression to ESRD compared with
those with PKD2.24 The CRISP Investigators have
documented that the PKD1 genotype manifests with
larger TKV and greater cyst burden at any age;25

similarly, the HALT Polycystic Kidney Disease study
demonstrated an association between PKD1 and larger
TKV at all ages.26 Based on the current analysis, median
time to progression to a 30% decline of eGFR in pa-
tients with PKD1 was shorter than that observed in
PKD2 (35.2 and 42.5 years, respectively). On the other
hand, baseline TKV in patients with PKD1 was higher
than those with PKD2 (1052.5 and 759.0 ml, respec-
tively). Likewise, median time to progression to ESRD
in patients with PKD1 was shorter than that observed
in PKD2 (35.1 and 42.6 years, respectively) whereas
baseline TKV in patients with PKD1 was higher than
those in patients with PKD2 (1014.6 and 769.7 ml,
respectively). These results support the hypothesis that
the higher risk of eGFR decline in PKD1 is associated
with larger TKV, confirming the findings of Irazabal
et al.4 Overall, our findings confirm an earlier report
from the CRISP Investigators that in multivariable an-
alyses of renal progression that include TKV, genotype
loses statistical significance.18 Thus, TKV remains a
readily available prognostic marker, obviating the need
for expensive and complex genetic analysis.

Indeed, based on these analyses and those in the
accompanying manuscript,27 TKV was qualified as a
prognostic biomarker for the selection of patients in
clinical trials for new therapies for the treatment of
ADPKD by the FDA in the form of a draft guidance
and by the EMA in the form of a qualification
opinion.28,29

The strengths of the present study include the large
dataset representing a diverse group of patients with
measurements of TKV receiving medical care or
participating in observational cohorts at major centers
in the USA, the long duration of follow-up, in some
cases individuals’ entire lifespan, and with follow-up
measures of kidney function or ESRD. Additionally,
our findings demonstrate that the predictive power of
TKV is not limited to measurements performed with
MRI, but also with CT or ultrasound. One limitation of
the current work is that the prognostic value of base-
line TKV was not evaluated in an external dataset.
Another limitation common to registry data is irregular
follow-up and missing data, as compared to data from
robust observational studies or clinical trials. Despite
these limitations, abundant data with long-term follow-
up has allowed the creation of predictive models that
can prognosticate long-term outcomes in ADPKD.
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The imaging classification system for ADPKD devel-
oped by Irazabal et al.4 is based on MRI assessment of
TKV and provides an assessment of risk of GFR decline
by attempting to discriminate between rapid and slow
progressors. The novelty of the Polycystic Kidney Dis-
ease Outcomes Consortium model is that it can more
specifically identify individuals at risk for a 30%decline
in GFR and therefore be used for purposes of study
design and power calculations. The present model was
built using ultrasound, CT, or MRI measurements of
TKV and is not dependent on MRI measurements.
Furthermore, the Irazabal classification has not been
examined or validated by regulatory authorities.

The qualification of TKV as an imaging biomarker for
tracking and predicting the natural history of ADPKD
represents a significant confirmation of the commitment
of health authorities to provide tools to researchers and
patient volunteers to more efficiently address the unmet
research needs for this debilitating condition. Access to
such tools aids clinical trial designers and mitigates risks
to patient volunteers, thereby encouraging development
of promising new therapies in ADPKD.
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