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Patients with inflammatory bowel disease (IBD) wait months and undergo numerous invasive
procedures between the initial appearance of symptoms and receiving a diagnosis. In order to
reduce time until diagnosis and improve patient wellbeing, machine learning algorithms capable
of diagnosing IBD from the gutmicrobiome’s composition are currently being explored. To date,
these models have had limited clinical application due to decreased performance when applied
to a new cohort of patient samples. Various methods have been developed to analyze
microbiome data which may improve the generalizability of machine learning IBD diagnostic
tests. With an abundance of methods, there is a need to benchmark the performance and
generalizability of various machine learning pipelines (from data processing to training a machine
learning model) for microbiome-based IBD diagnostic tools. We collected fifteen 16S rRNA
microbiome datasets (7,707 samples) from North America to benchmark combinations of gut
microbiome features, data normalization and transformation methods, batch effect correction
methods, and machine learning models. Pipeline generalizability to new cohorts of patients was
evaluated with two binary classification metrics following leave-one-dataset-out cross (LODO)
validation, where all samples fromone studywere left out of the training set and tested upon.We
demonstrate that taxonomic features processed with a compositional transformation method
and batch effect correction with the naive zero-centering method attain the best classification
performance. In addition, machine learning models that identify non-linear decision boundaries
between labels are more generalizable than those that are linearly constrained. Lastly, we
illustrate the importance of generating a curated training dataset to ensure similar performance
across patient demographics. These findings will help improve the generalizability of machine
learning models as we move towards non-invasive diagnostic and disease management tools
for patients with IBD.
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INTRODUCTION

The human gut microbiome is a collection of microbes, viruses
and fungi residing throughout the digestive tract. The gut
microbiota plays an important role in human health,
influencing food digestion, the immune system, mental health,
and numerous other functions (reviewed inMohajeri et al., 2018).
Alterations in the gut microbiome have been linked to illnesses
such as multiple sclerosis, type II diabetes, and inflammatory
bowel disease (IBD) (Gevers et al., 2014; Opazo et al., 2018). IBD
comprises two main subtypes: Crohn’s disease (CD) and
ulcerative colitis (UC), characterized by periodic inflammation
throughout the gastrointestinal tract or localized to the colon,
respectively (Caruso et al., 2020). The prevalence of IBD is
increasing globally over the last several decades, from 79.5 to
84.3 per 100,000 people between 1990 and 2017, with Canada
having among the highest IBD rates at 700 per 100,000 people in
2018 (Benchimol et al., 2019; GBD 2017 Inflammatory Bowel
Disease Collaborators, 2020). Although the disease etiology is
currently undetermined, the increasing rates of IBD have been
linked to lifestyle factors, such as a Western diet (Rizzello et al.,
2019).

Currently, IBD diagnosis and monitoring is primarily
performed via blood tests, fecal calprotectin, and endoscopies
which can be costly, invasive, and display variable accuracy, all of
which leads to delayed diagnosis and infrequent disease
monitoring (Ricciuto et al., 2021) (Ricciuto et al., 2021).
Therefore, there is an unmet need for the development of
further non-invasive, low-cost, and rapid methods for
screening, diagnosis, and disease management for the growing
number of IBD patients (Armstrong et al., 2008; Noiseux et al.,
2019). One potential diagnostic test within these constraints
involves using the gut microbiome composition to identify
patients with IBD.

Over the past decade, several studies have compared the gut
microbiome profiles of healthy individuals and those with CD or
UC (McHardy et al., 2013; Gevers et al., 2014; Walters et al.,
2014; Liu et al., 2016; Tedjo et al., 2016; Duvallet et al., 2017;
Halfvarson et al., 2017; Pascal et al., 2017; de Meij et al., 2018;
Vázquez-Baeza et al., 2018; Pittayanon et al., 2020; Clooney
et al., 2021). Common characteristics of the gut microbiome
identified in patients with IBD are the reduction in bacterial
diversity and development of a dysbiotic state, referring to
alterations in the structure and function of the gut
microbiome compared to healthy individuals (McHardy
et al., 2013; Duvallet et al., 2017; Pascal et al., 2017).
Principal coordinate analysis with UniFrac (Halfvarson et al.,
2017) or Bray-Curtis (Clooney et al., 2021) distance of the gut
microbiome’s composition has identified differential clustering
of healthy and IBD samples. Although the dysbiotic state is
commonly identified in IBD patients, it remains unknown
whether the microbiome initiates IBD or is only a reflection
of the patient’s current health status. Larger meta-analyses have
aimed to identify differentially abundant taxa between IBD
patients and healthy controls in order to generate potential
diagnostic biomarkers, although with limited success to date
(Walters et al., 2014).

Due to difficulties identifying biomarkers with standard
statistical methods for disease diagnosis, the field has moved
to applying predictive machine learning (ML) models for
classification of patient phenotypes. Several studies have
demonstrated accurate classification of patients with IBD from
their gut microbiome profile with MLmodels (Gevers et al., 2014;
Walters et al., 2014; Tedjo et al., 2016; Ananthakrishnan et al.,
2017; Duvallet et al., 2017; de Meij et al., 2018; Douglas et al.,
2018; Topçuoğlu et al., 2020). CommonMLmodels employed for
IBD classification include random forest (collection of decision
trees for classification) (Gevers et al., 2014; Tedjo et al., 2016),
logistic regression (binary linear classifier) (de Meij et al., 2018),
and neural networks (layers of differently weighted nodes
contributing to a classification) (Ananthakrishnan et al., 2017;
Topçuoğlu et al., 2020).

Features commonly used for IBD classification with ML
models can be categorized into three groups: clinical, bacterial,
and functional. Clinical features encapsulate those regarding the
patient (i.e., age, sex, body mass index (BMI)) and results from
other clinical tests (i.e., calprotectin, colonoscopy) (Waljee et al.,
2017). Taxonomy and functional features are usually determined
via sequencing-based microbiome profiling, such as amplicon
sequencing of the 16S rRNA gene or whole genome shotgun
(WGS) sequencing of all DNA in a sample (Berg et al., 2020).
Bioinformatic tools, such as QIIME2 (Bolyen et al., 2019) or
LotuS2 (Hildebrand et al., 2014), provide pipelines for clustering
16S rRNA-amplicon sequences into operational taxonomic units
(OTUs) which can then be compared to public databases to find
taxonomy assignments (Quast et al., 2013). WGS reads are
frequently used to infer potential functions represented in the
genomes of microbial community members (reviewed in Frioux
et al., 2020). Similarly, we can use known genomes in public
databases to derive functional predictions in a community based
solely on amplicon sequencing based taxonomy profiles,
implemented in tools such as PICRUSt2 (Douglas et al., 2020).
Although WGS provides greater taxonomic resolution and
estimates of microbiome functions, 16S rRNA amplicon
sequencing is currently more applicable to a diagnostic test
due to its speed, affordability, and standardization of
analysis tools.

A critical, and often under-explored, consideration for
generating ML models for disease classification is their
generalizability to previously unseen cohorts of patients. A ML
model that underperforms when presented with data from a new
patient cohort is not reliable enough to be applied in a clinical
setting (Ho et al., 2019). Despite this, models currently used in the
context of microbiome data are often only trained and cross-
validated with different splits of data from the same cohort. In
studies where cross-validation with an unseen sample cohort is
performed, the performance of models is often lower, indicative
of the model overfitting to the training set (Ananthakrishnan
et al., 2017; Douglas et al., 2018). A proposed explanation for the
reduced performance is the potential for non-biological
variability, commonly referred to as batch effects, introduced
to the data by wet-lab protocols and sequencing instruments
during the processing of these samples, typically observed in
meta-analysis of microbiome data (Duvallet et al., 2017).
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In order to improve model performance on unseen data, it is
necessary to apply data normalization or transformation and
batch effect correction techniques prior to model training.
Normalization is a critical step to remove biases to feature
abundance estimates, such as the data’s compositional nature,
heteroskedasticity, or skewness. For example, microbiome data’s
compositional nature prevents the direct application of standard
statistical methods as they may lead to erroneous results, and
requires prior application of compositional transformation
methods (Gloor et al., 2017; Weiss et al., 2017). In addition,
methods have been developed to remove technical batch effects
commonly observed in collections of samples from different
studies, such as naive zero-centering methods, Meta-analysis
Methods with a Uniform Pipeline for Heterogeneity
(MMUPHin), and ComBat-seq (Nygaard et al., 2016; Gibbons
et al., 2018; Ma et al., 2020; Wang and LêCao, 2020; Zhang et al.,
2020). To date, the effect of various combinations of
normalization and batch effect correction techniques on ML
model generalizability remains to be benchmarked.

In this article, we propose a standardized approach for
evaluating the performance and generalizability of data
processing pipelines and ML models with microbiome data to
classify patients with IBD. Previous microbiome ML
benchmarking studies focused on performance of various
combinations of model type, normalization or transformation,
and microbiome compositional features using variations of five-
fold cross validation (Song et al., 2020; Topçuoğlu et al., 2020).
Five-fold cross validation fails to assess the generalizability to
new, unseen sample batches as each split potentially contains
samples from all batches present in the dataset. Therefore, we
implemented a leave-one-dataset-out (LODO) (Thomas
et al., 2019) cross-validation method to directly assess
cross-batch generalizability. In this approach, the model is
iteratively trained on samples of all but one dataset and then
tested on the left-out dataset. Different combinations of data
types, normalization or transformation methods, batch effect
correction methods, and ML models were assessed in order to
establish a comprehensive performance benchmark of
microbiome-based disease classification in the context
of IBD.

METHODS

Acquisition of Sample Data
Sample FASTQ files were acquired from the European Nucleotide
Archive (ENA) browser. The sample metadata including
covariates such as BMI, life stage, sex, IBD subtype, disease
status and sample type was acquired from the corresponding
publication’s supplementary materials or the QIITA microbiome
platform (Gonzalez et al., 2018). Samples collected from
individuals in North America and with more than 3,000
counts following processing of the raw reads (as described in
methods) were retained from each dataset. The dataset ENA
accessions and technical information regarding the samples in
each dataset are available in Table 1.

The following fifteen studies were included in our dataset:

1. The American Gut cohort is from a large, open platform
which collected samples from individuals in the US to
identify associations between microbiomes, the
environment, and individual’s phenotype (McDonald
et al., 2018). We included available samples that did not
contain any self-reported diseases in the metadata.

2. The CVDF study determined the effect of cardiorespiratory
fitness on microbiome composition and comprises a range of
fitness levels (Estaki et al., 2016; McDonald et al., 2018).

3. The GEVERSM study assessed the microbiome composition
of treatment naive, newly diagnosed, paediatric patients with
IBD and adult patients diagnosed with IBD for 0–57 years
(Gevers et al., 2014).

4. The GEVERSC cohort consists of additional samples from
paediatric and adult patients added to the GEVERSM study
(Gevers et al., 2014).

5. The GLS study longitudinally sampled 19 patients with CD
(Crohn’s disease activity index (CDAI) between 44 and 273)
and 12 healthy control individuals (Vázquez-Baeza et al.,
2018).

6. The Human Microbiome Project (HMP) study longitudinal
tracked pediatric and adult patients ranging from newly
diagnosed to diagnosed for 39 years. Diagnosis was
confirmed by colonoscopy prior to enrollment in the
study along with several other inclusion criteria listed in
the corresponding publication (Vázquez-Baeza et al., 2018;
Lloyd-Price et al., 2019).

7. The MUC study collected mucosal biopsies from 44 pediatric
patients with CD and 62 non-IBD pediatric control patients
(Liu et al., 2016).

8. PRJNA418765 was a longitudinal study of patients with CD
that were refractory to anti-TNF initiating ustekinumab
assessed at week 0, 4, 6 and 22. To be included, patients
required at least 3 months of Crohn’s disease history and a
CDAI between 220 and 450 (Doherty et al., 2018).

9. PRJNA436359 was a longitudinal study of new onset and
treatment naive pediatric patients with UC receiving a variety
of medications at week 0, 4, 12, and 52. Inclusion criteria
consisted of presence of disease beyond the rectum, Pediatric
Ulcerative Colitis Activity Index (PUCAI) of 10 or more, and
no previous therapy (Schirmer et al., 2018).

10. QIITA10184 was a study comparing five different faecal
collection methods and their effect on the healthy
participant’s microbiome composition identified with 16S
rRNA gene sequencing (Vogtmann et al., 2017).

11. QIITA10342 study assessed the microbiome composition
and function of healthy individuals in two American
Indian communities in the United States
(Sankaranarayanan et al., 2015).

12. QIITA10567 samples consist of the control individuals in a
study linking alterations in microbiome composition to
Parkinson’s disease (Hill-Burns et al., 2017).

13. The QIITA1448 study comparedmicrobiome composition of
individuals in traditional agricultural societies in Peru to
those in industrialized cities in the United States (Obregon-
Tito et al., 2015).
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14. The QIITA2202 study collected longitudinal stool samples
from two healthy individuals alongside detailed lifestyle
characteristics to correlate with microbiome composition
(David et al., 2014).

15. The QIITA550 study collected longitudinal stool samples
from two individuals to assess temporal changes in
microbiome composition (Caporaso et al., 2011).

Taxonomy Classification With QIIME2
Taxonomy abundance tables were generated from the FASTQ files
using QIIME2 (v2020.2) (Bolyen et al., 2019). Only samples from the
same study were processed together. Reads were trimmed to remove
low quality base pairs (trimming parameters listed in Table 1),
chimeras removed, and sequences denoised using Dada2 (Callahan
et al., 2016) or Deblur (for GLS and AG due to technical issues of
processing these samples with Dada2) (Amir et al., 2017). Closed
reference OTU clustering with the Silva 132 99% reference database
(Quast et al., 2013; Yilmaz et al., 2014; Glöckner et al., 2017) was
performed with the cluster_features_closed_reference function from
QIIME2 plugin VSEARCH (v2.7.0) (Rognes et al., 2016) at 99%
similarity. The resulting centroid sequences were classified with a
Naive Bayes classifier (Wang et al., 2007) at a 99% confidence cut-
off. In order to train the Naive Bayes classifier, the sequences of the 16S
rRNA hypervariable region sequenced in the respective study (either
V3-V4 or V4) were extracted from the Silva 132 99% full length 16S
OTU reference with the extract-reads function from the
QIIME2 feature-classifier plugin. The extracted reads and the
corresponding taxonomy labels were used to train the Naive Bayes
classifier with the QIIME2 plugin feature-classifier’s fit-classifier-naive-
bayes function. Resulting taxonomic feature tables were collapsed to
species (level 7) and genus (level 6) classification for further analysis.

Inferring Functional Abundance With
PICRUSt2
Functional abundance tables were generated using PICRUSt2
(v2.3.0) from the OTU abundance table and representative OTU

sequences generated using QIIME2. We generated abundance
tables from the six different databases incorporated into
PICRUSt2: Clusters of Orthologous Groups of proteins
(COG), Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthologs (KO), Enzyme Commission (EC), Pfam protein
domain (PFAM), TIGR protein family (TIGRFAM) and
MetaCyc pathways. Each database is independently curated
and provides information on different aspects of the functional
properties present in the microbiome.

Feature Selection
Following taxonomy classification and inference of functional
abundance, features present in less than 10% of the samples
within each study in the training set were pruned from the
dataset. Following pruning of the training set, the test set was
subset to those features as well.

Data Normalization and Transformation
Methods
When possible, normalization and transformation methods were
implemented using python (v3.6.12) and R (v3.6.3) packages with
the methods already incorporated. For CLR and ILR
transformation, zero values were first replaced with a
multiplicative replacement function that replaces zeros with a
small positive value (equal to 1/N2, where N equals the number of
columns) and ensures the sum of the row remains 1 (Martín-
Fernández, 2003) prior to transformation with the clr and ilr
functions, respectively, from the python package SciKit-Bio
(v0.5.2). CLR performs a log transformation of abundance
values, which are normalized by the geometric mean of all
features. ILR uses a change of coordinate space projection
calculation to transform proportional data (or relative
abundances) to a new space with an orthonormal basis, in this
case the J.J.Egozcue orthonormal basis (Egozcue, 2003).

For TSS normalization, the counts for each feature were
divided by the sum of all feature counts in the sample with a

TABLE 1 | Overview of QIIME2 processing for 15 microbiome datasets. Samples were collected from the listed ENA accession, with only samples corresponding to
individuals in North America retained. SR refers to single read and PE to paired-end sequencing runs for the corresponding length in bp. Trim length was used as input for
the trunc_len parameter, forward trim as the trim_left input for single end read and trim_left_f for paired-end reads, and reverse trim as the trim_left_r input for paired-end
reads in the python API for QIIME2’s Dada2 plugin.

Study ID ENA Accession Hypervariable Region Trim Length Forward Trim Reverse Trim Mean Reads SD

American Gut ERP012803 V4 124 0 0 30864.7 30259.6
CVDF PRJNA308319 V3-V4 290 40 40 402901.1 77178.6
GEVERSC PRJEB13680 V4 174 0 0 76323.2 62701
GEVERSM PRJEB13679 V4 174 0 — 40903.8 41606.2
GLS PRJEB23009 V4 99 0 — 75901.4 59442.8
HMP ibdmdb.org V4 249 0 0 44154.7 15479
MUC PRJNA317429 V4 174 19 21 84848 36257.9
PRJNA418765 PRJNA418765 V4 245 0 3 24329.9 14107.2
PRJNA436359 PRJNA436359 V4 170 0 3 80925.9 90657.2
QIITA10184 PRJEB13895 V4 120 0 — 93773.8 31830.3
QIITA10342 PRJEB13619 V4 100 0 — 78873.1 68866.2
QIITA10567 PRJEB14674 V4 99 0 — 17547.5 7,522.5
QIITA1448 PRJEB13051 V4 99 0 — 159739 57806.5
QIITA2202 PRJEB6518 V4 99 0 — 243402.8 190268.4
QIITA550 PRJEB19825 V4 149 0 — 37658.8 7,065.2
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custom python function. The method constrains the sample row
sum to one, aiming to similarly scale all samples while
maintaining biological information of microbial abundances.
For ARS normalization, the TSS normalized values were
transformed with the sqrt function followed by the arcsin
function from the python package Numpy (v1.19.2). The LOG
normalization was also applied to the TSS normalized values
using the log function from numpy following replacement of all
zero values with the multiplicative replacement function.

For VST normalization, we used the
varianceStabilizingTransformation function in the R package
DESeq2 (v1.26.0). VST aims to factor out the dependence of
the variance in the mean abundance of a feature. The method
numerically integrates the dispersion relation of the feature mean
fitted with a spline, evaluating the transformation for each
abundance in the feature. VST normalization was performed
by normalizing the training set separately from the test set as the
normalization is dependent on all samples present in the dataset.

Batch Effect Correction Methods
We explored three methods for batch effect correction: naive
zero-centering, an empirical Bayes method, and a negative
binomial regression method. The naive zero-centering batch
effect correction entails centering the mean of each feature
within a batch to zero (Nygaard et al., 2016). We also assessed
MMUPHin, an empirical Bayes method designed specifically for
zero-inflated microbial abundance data. MMUPHin estimates
parameters for the additive and multiplicative batch effects, using
normal and inverse gamma distributions, respectively. The
estimated parameters are then used to remove the batch
effects from the dataset (Ma et al., 2020). MMUPHin was
implemented with a custom python script. Lastly, ComBat-seq
fits the feature counts to a negative binomial regression model to
estimate the batch specific parameters. The batch specific
parameters are used to calculate a ‘batch-free’ distribution
which the raw counts are mapped to in order to obtain the
final corrected data (Zhang et al., 2020). ComBat-seq was
implemented with the ComBat_seq function from the R
package SVA (v3.38.0) (Parker et al., 2014). We considered a
batch as the whole dataset or split a dataset into multiple batches
when the metadata indicated different sample preprocessing
methods or samples were processed in different locations.

Two variations of MMUPHin and ComBat-seq were
implemented to ensure the batch effects were corrected from
the training and test sets separately. For variation #1, the test
study’s samples were removed to generate the training set.
Training set batch effect correction was completed, with the
sample type (stool/biopsy) provided as a biological covariate,
and the corrected values used for training the ML model. For the
test set in variation #1, batch effect correction was performed with
the full dataset and then the test study’s samples were collected to
form the test set. The corrected test was then used to assess the
model’s classification performance (Supplemental Figure S1,
variation #1). For variation #2, batch effect correction was
completed on the training set prior to model training with
both the sample type and disease label (UC/CD/Control)
provided as biological covariates. The model’s classification

performance was then assessed on samples from the test
dataset which were not corrected (Supplemental Figure S1,
variation #2). Lastly, feature abundance for some samples
following batch effect correction of the OTU dataset with
MMUPHin were all zero. To ensure these samples were
compatible with the compositional transformation methods,
we set all features of these samples to equal 1/N (where n is
the number of features) prior to transformation. For all other
normalization methods, the feature abundance was not adjusted.

Assessing the Mixing of Batches Following
Batch Effect Correction
We assessed the ability of the three batch effect correction
methods to improve mixing of samples from different batches
with the beta-diversity metric Aitchison distance, equivalent to
the Euclidean distance between CLR transformed microbiome
data (Quinn et al., 2018), and the Local Inverse Simpson Index
(LISI) (Polański et al., 2020). The genus abundance dataset was
filtered to include features present in 10% of the samples from at
least one batch, followed by CLR transformation and batch effect
correction applied in the same manner as in our classification
pipeline. Dimensionality reduction with principal component
analysis (PCA) using the PCA function from the python
package SciKit-Learn (v0.22.1) was performed with the
resulting clr transformed and batch effect corrected values.
The first two principal components were used to generate the
scatter plots visualizing the separation of labels corresponding to
diagnosis and sample batch. In order to visualize the different
labels, a 95% confidence ellipse was added for each disease or
batch label in the respective graph.

In order to quantify the mixing or separation of disease and
batch labels, the LISI metric was calculated using the first 50
principal components with the compute_lisi function from the
python package harmonypy (v0.0.5) (Korsunsky et al., 2019). LISI
selects the nearest neighbors of a sample to calculate the inverse
Simpson’s index for the diversity of labels surrounding the
sample. For the batch integration LISI (iLISI) score, the batch
label was provided and for disease LISI (dLISI) score the disease
label was provided. The iLISI and the dLISI were calculated for
every sample following each batch effect correction method with
the first 50 principal components following dimensionality
reduction with PCA. The median score for each method was
determined and scaled with the overall minimum and
maximum scores to a range between 0 and 1 (Tran et al.,
2020). A Wilcoxon signed-rank test with Benjamini and
Hochberg p-value correction was applied to determine if the
values were significantly different. In order to assess the overall
effect of the batch effect correction methods, the harmonic
mean (also referred to as the F1 score) incorporating both
the iLISI and dLISI was calculated as previously described
(Lin et al., 2019; Tran et al., 2020).

Standard Machine Learning Models
We assessed the classification performance of six standard
machine learning models and two deep learning models. The
six standard models were implemented using the python package
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SciKit-Learn (v0.22.1). Hyperparameters were not optimized and
decided prior to experimentation.

Bernoulli Naive Bayes Classifier
The Bernoulli Naive Bayes Classifier (BNB) model converts the
feature space to binary values and then estimates parameters of a
Bernoulli distribution for classification purposes. We
implemented the BNB model using the default settings in
SciKit-Learn.

Random Forest
Random Forest (RF) models use an ensemble of decision trees
that discriminate the feature space by a sequence of threshold
conditional statements. The power of the model comes from its
non-linear classification capabilities and the number of trees used
to label classification. We implemented the Random Forest
classifier with the following modifications to the default
SciKit-learn settings: n_estimaters = 500 and class_weight =
balanced.

K-Nearest Neighbour Classifier
The K-Nearest Neighbour Classifier (KNN) classifies each sample
by majority vote of the K nearest neighbours in its surrounding.
We implemented the K-Nearest Neighbors classifier with the
following modifications to the default SciKit-learn settings:
n_neighbors = 6, weights = distance, and metric = manhattan.

Support Vector Machine Classifier
The Support Vector Machine Classifier (SVC) identifies
multivariate decision boundaries that separate class labels. We
implemented two SVC variations, the first with a linear kernel,
constraining the decision boundary to a linear hyperplane, using
the SGDClassifier class from SciKit-learn with the following
modifications to default settings: loss = modified_huber, tol =
10e-5, and max_iter = 10,000. The second variation used the
radial basis function kernel with the SVC class from SciKit-Learn,
which removes the linear constraint of the decision boundary,
with the following modifications to the default settings: tol = 10e-
6, class_weight = balanced, and max_iter = 100000.

Logistic Regression
Logistic Regression classification estimates the probability of a
certain class in a binary classification problem using a
statistical fit to the logistic function. We implemented the
LogisticRegression class from SciKit-Learn with the following
modifications to the default settings: solver = sag, class_weight
= balanced, and max_iter = 10,000. For the non-linear
variation, the feature space was first transformed with the
radial basis function kernel implemented with the rbf_kernel
function from SciKit-Learn prior to fitting a logistic
regression model.

Gradient Boosted Trees
Gradient boosted trees consist of a collection of sequential
decision trees, where each tree learns and reduces the error of
the previous tree (Chen and Guestrin, 2016). The gradient
boosted trees model was implemented with the XGBoost

package’s (v1.2.0) XGBoostClassifier class with the following
modifications to default settings: n_estimators = 500.

Deep Learning Models
The deep learning models were built with the python package
Tensorflow (v2.2.0). The models were trained for up to 100
epochs with a batch size of 16 and samples shuffled. The best
weights were selected using early stopping (EarlyStopping
callback) by monitoring the validation loss (5% split of the
training set) with a min_delta = 1 × 10−3 and patience = 10.

Multilayer Perceptron
AMLP is a neural network architecture composed of one or more
layers of fully connected neurons that take as input the weights of
the previous layer and output the result of an activation function
to the subsequent layer. For binary classification, the final layer
contains a single node that predicts the class probability. We
implemented anMLP architecture with three hidden layers of 256
neurons using a rectified linear unit (ReLU) activation function
followed by a Dropout layer with a dropout rate of 50%. The final
layer predicted the class label with a sigmoid activation function.
The model was trained using a binary cross entropy loss function
and the Adam optimizer with a learning rate of 0.001.

Convolutional Neural Network
We implemented MDeep, a CNN architecture recently designed
for microbiome data (Wang et al., 2021). CNNs require an
inherent structure to be present in the data, which is added to
the OTU dataset by hierarchical agglomerative clustering of the
phylogeny-induced correlation between OTUs. We built a
phylogenetic tree with the align_to_tree_mafft_fasttree
function in the QIIME2 phylogeny python plugin using the
OTU representative sequences obtained from clustering 16S
rRNA sequences with QIIME2. The phylogenetic tree was
imported into R using the phyloseq package and the
cophenetic distance between OTUs determined with the R
package ape. The cophenetic distance was then used to
calculate the phylogeny-induced correlation as described in the
original study and OTUs clustered using the HAC function from
the MDeep GitHub repository (https://github.com/lichen-lab/
MDeep).

Leave One Dataset out Cross Validation
The generalizability of each model, normalization or
transformation, and batch effect correction method, were
determined through a cross validation strategy which assessed
predictive performance on previously unseen batches of samples.
As there were 15 studies, we iterated through the full dataset 15
times, generating the training set by removing all samples from a
single study to create a separate test set. Feature selection was
performed with the training set, followed by normalization and
batch effect correction with the respective methods to both the
training and test sets. Lastly, the number of non-IBD control and
IBD samples in the training set were balanced by randomly
subsampling the label with the greater number of samples,
while maintaining the proportion of samples from each batch,
disease label (UC/CD/Control), and sample type (stool/biopsy).
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To measure the performance of the various normalization,
transformation, batch effect correction, and model combinations,
we calculated two metrics for binary classification: F1 score and
Matthews correlation coefficient (MCC) (Wardhani et al., 2019).
In the LODO cross-validation, some test sets contained only a
single label thereby preventing the calculation of the MCC and F1
Score. In order to be able to include these predictions in the
overall performance, the F1 Score and MCC were calculated by
combining the test set predictions of all 15 folds. As the number of
samples in a study ranged from 23 to 1,279, there was potential
for the overall performance metrics to be skewed by the
predictions of a single study with a large number of samples.
Whereas in a typical 5-fold cross-validation each fold is weighted
equally, with the classification performance determined
separately for each fold and then an overall average calculated.
Therefore, in order to calculate the pipeline’s classification
performance with equal weighting to each study, the confusion
matrix for each study was generated and normalized by the
number of samples in the study. The average proportion of
true positives, true negatives, false positives, and false negatives
across the 15 studies was used to generate an overall confusion
matrix. The overall F1 score and MCC were calculated from the
averaged confusion matrix with the following equations.

For the pipeline combinations with the best overall
classification performance, the classification accuracy was also
determined for each individual dataset. The accuracy was
calculated from the normalized confusion matrix with the
following equation:

Sample Subgroup Performance Analysis
We assessed the difference in classification performance of
patients within five different metadata variables (age, BMI,
sample type, sex, IBD type), each with two categorical labels
coded as 0 or 1. The samples were grouped by the five variables
and the classification performance metric within each group
calculated. For the logistic regression analysis, the performance
metric was input as the dependent variable and the five metadata
groups as the independent variables. The MCC score was scaled
with the MinMaxScaler from SciKit-Learn to a range from 0 to 1
as required for the logistic function. The logistic function was fit
with the Logit function from the statsmodels (v0.11.1) python
package.

Feature Importance From XGBoost
Classifier
In order to determine the importance of each taxonomy, we
collected the features’ gain value from our second-best pipeline
composed of CLR normalized, zero-centered, genus abundance
features with an XGBoost Classifier. The gain values were
collected from the trained XGBoost classifier in each LODO
iteration separately.

Taxonomy Differential Abundance
Differential taxonomy abundance was performed with Analysis
of Compositions of Microbiomes with Bias Correction
(ANCOM-BC) (v1.0.5) (Lin and Peddada, 2020). The fold

change between control samples and IBD samples (UC and
CD) was determined and a Bonferroni multiple comparison
correction was applied to the p-values.

RESULTS

Overview of Studies Included in Dataset
In order to assess the cross-batch performance of each pipeline,
we implemented a LODO cross validation approach. We
collected 16S rRNA gene next generation sequencing data
from 15 studies in North America for a total of 7,707 samples,
comprising 55% healthy and 45% IBD samples, of which 56% are
CD and 44% are UC (Table 2). The mean sequencing depth for
each study ranged from 17547.5±7,522.5 to 402901.1±77178.6
reads per sample (Table 1). We included studies that contained
IBD and control samples, only IBD samples, or only control
samples in order to better recapitulate a diagnostic scenario,
where any distribution of IBD and non-IBD samples may be
received and processed together for disease classification. As
some of the data processing methods share information across
samples, it was important to test the pipeline’s performance on
datasets with a range of label distributions that may be
encountered.

Overview of Leave-One-Dataset-Out Cross
Validation
In order to evaluate the different pipelines, we completed
15 cross-validation iterations with the classification model
trained on n-1 datasets (all samples from a single dataset were
removed) and the model performance assessed on the removed
dataset (Figure 1). We evaluated the ability to classify samples
from patients with IBD or non-IBD controls using different
combinations of three taxonomic feature sets or six functional
feature sets, six normalization methods, two transformation
methods, six batch effect correction methods, and nine
machine learning models (Figure 1). The binary classification
performance of each combination of feature set, normalization or
transformation, batch effect correction, and machine learning
model was assessed with two classification metrics: F1 score and
Matthews Correlation Coefficient (MCC) (Wardhani et al., 2019).
In order to include datasets with a single label in the overall
performance assessment, we calculated the overall classification
performance from a confusion matrix comprising the average
true positive, true negative, false positive, and false negative
proportions across the 15 studies. Performance metrics are
reported as median (25% percentile-75% percentile) of all
pipelines containing the respective component. We performed
a Mann-Whitney U test to determine if the performance was
significantly different between different pipeline components.

Non-Linear Models Achieve Greatest
Classification Performance
Machine learning classification models identify decision
boundaries within the feature space to separate one datapoint
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TABLE 2 |Overview of 15 datasets used to compare the effect of different features, data preprocessing methods, and machine learning models on IBD classification performance. Available metadata (age, sex, BMI, disease
activity, and medication use) is provided for each dataset. Blank spaces indicate that the respective metadata was not available for the dataset’s samples.

Study Accession Disease
Type

Number
of Samples

Sample Type Age Sex BMI Disease Activity Medications

Stool Biopsy Mean SD F M O Mean SD Active Rem-
ission

Biologics Immuno-
suppresants

5-ASA

American Gut PRJEB11419 Control 1,279 1,279 0 46.5 12.2 600 595 1 23.3 2.7 — — — — —

CVDF PRJNA308319 Control 39 39 0 25.4 4.2 15 24 — 24.0 2.9 — — — — —

GEVERSC — CD 219 219 0 12.0 2.9 87 132 — — — — — — — —

PRJEB13680 Control 28 28 0 12.3 3.5 10 18 — — — — — — — —

— UC 37 37 0 11.8 3.6 22 15 — — — — — — — —

GEVERSM — CD 689 166 523 19.6 14.2 312 377 — — — — — 15 31 51
PRJEB13679 Control 320 7 313 14.0 9.8 157 163 — — — — — — — —

— UC 268 106 162 24.9 17.5 121 147 — — — — — 2 5 52
GLS PRJEB23009 CD 340 340 0 30.2 9.0 215 102 25.7 7.2 43 297 145 74 15

Control 335 335 0 48.6 14.4 152 166 32.8 8.4 — — — — —

HMP — CD 66 0 66 23.5 13.0 32 34 — — — — — — — —

ibdmdb.org Control 43 0 43 28.7 22.0 20 23 — — — — — — — —

— UC 36 0 36 27.7 17.4 20 16 — — — — — — — —

MUC PRJNA317429 CD 35 0 35 14.5 3.5 13 22 — — — — — — — —

Control 47 0 47 11.9 3.4 21 25 — — — — — — — —

PRJNA418765 PRJNA418765 CD 589 589 0 40.4 13.2 332 257 26.4 6.6 589 416 — —

PRJNA436359 PRJNA436359 UC 1,178 917 261 12.6 3.3 582 596 — — — 875 303 — — —

QIITA10184 PRJEB13895 Control 962 962 0 — — — — — — — — — — — —

QIITA10342 PRJEB13619 Control 58 58 0 43.2 15.3 — — — 31.0 7.5 — — — — —

QIITA10567 PRJEB14674 Control 133 133 0 70.3 8.6 — — — 28.3 5.7 — — — — —

QIITA1448 PRJEB13051 Control 23 23 0 — — — — — — — — — — — —

QIITA2202 PRJEB6518 Control 516 516 0 29.6 4.8 516 — — — — — — — — —

QIITA550 PRJEB19825 Control 467 467 0 32.8 0.5 131 336 — — — — — — — —

Total — — 7,707 6,221 1,486 — — 3,358 3,048 1 — — 918 1,189 578 110 118

Bold values indicate the sum of the corresponding column.
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from another. For someMLmodels (BNB, Linear SVC, LR), these
boundaries are linearly constrained, whereas others (RF, KNN,
MLP, Radial SVC, XGBoost) can identify more complex, non-
linear relationships between features and class. We assessed the
generalizability of three linear and five non-linear ML models
across the taxonomy and functional feature sets.

The various ML models were sorted by the performance
metrics’ median value across all pipelines containing the
respective model. Across both performance metrics, the five
models with the greatest classification performance were
consistently the non-linear models, with the three linear models
exhibiting the lowest classification performance (Figure 2A). The
two models with the greatest median performance across were
XGBoost, with a median F1 Score of 72.5 (64.1–76.4) and MCC of
55.6 (40.6–62.4) and Random Forest, with a median F1 Score of
71.2 (64.1–74.8) and MCC of 53.4 (40.2–59.6).

In addition, some combinations of linear models and
functional features performed worse than randomly classifying
the samples. For example, COG functional features with a logistic
regression model had a median MCC of 8.8. Overall, non-linear
models had significantly better classification performance than
linear models, with a median F1 score [68.1 (61.4–73.5) vs 60.0
(47.1–69.2), p-value < 0.0001] and MCC [49.1 (35.5–57.7) vs 34.0
(9.6–50.1), p-value < 0.0001] (Figure 2B). Of the non-linear
models, XGBoost and Random Forest had significantly higher F1
score and MCC than a MLP, KNN, or radial SVC (Figure 2C).

In order to further assess whether the non-linearity of a model
improves classification in the context of microbiome data, we
compared linear and non-linear variations of a support vector
machine and logistic regression. Comparison of the two
variations enables direct analysis of the impact of decision
boundary constraints on performance, independent of

FIGURE 1 | Leave-one-dataset-out cross-validation pipeline. The experiments comprised three different stages to go from raw sequence files to the performance
metrics. 1) Raw sequences were processed with Dada2 or Deblur and close-reference clustered into OTUs at 99% identity. The OTUs were classified to taxonomy at
99% confidence with a Naive Bayes classifier and used to infer functional profiles with PICRUSt2. 2) Generating predictions for the 15 iterations of our LODO cross
validation consisted of all possible combinations of the listed feature selection method, normalization or transformation methods, batch effect correction methods,
and models. 3) The average confusion matrix proportions across each iteration was used to generate the overall confusion matrix. The F1 Score and MCC were
calculated using the proportions from the average confusionmatrix. The descriptions of acronyms and abbreviations are the following: Clusters of Orthologous Groups of
proteins (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs (KO), Enzyme Commission (EC), Pfam protein domain (PFAM), TIGR protein family
(TIGRFAM) and MetaCyc pathways (pathway), centered log-ratio (CLR), isometric log-ratio (ILR), arcsine square root transformation (ARS), variance stabilizing
transformation (VST), log transformation (LOG), total sum scaling (TSS), no normalization (NOT), Bernoulli Naive Bayes (BNB), logistic regression (LR), linear support
vector machine (Linear SVC), random forest (RF), K nearest neighbours (KNN), radial support vector machine (Radial SVC), eXtreme Gradient Boosting (XGBoost),
convolutional neural network (CNN), multilayer perceptron (MLP).
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differences in model architecture (Figure 2D). The non-linear
(Radial) version of logistic regression had significantly greater F1
score (64.9 (60.3–71.4) vs 58.5 (39.2–67.9), p-value < 0.0001) and
MCC [42.3 (33.8–53.9) vs 31.3 (1.6-47.7), p-value < 0.0001] than
the linear (Linear) logistic regression. Additionally, the radial
support vector machine had significantly greater F1 score [67.3
(60.4–72.2) vs 60.7 (41.1–66.7), p-value < 0.0001) and MCC (46.6
(33.1–55.2) vs 34.4 (0.2–46.3), p-value < 0.0001] than the linear
version. In conclusion, non-linear models provided more
accurate IBD classification, likely due to the complex
relationships between features and disease labels.

Other ML model architectures, such as convolutional neural
networks (CNNs), are commonly used for classification problems

with defined structure in the input data, such as image
classification. In the context of microbiome data, the CNN
MDeep adds structure to OTU features through hierarchical
agglomerative clustering of the phylogeny-induced correlation
between OTUs (Wang et al., 2021). As MDeep is currently only
developed for OTU features, we assessed whether this CNN
architecture led to greater classification performance with
OTU abundance than our MLP architecture. Comparison of
each performance metric across all normalization,
transformation, and batch effect correction methods indicated
MDeep performance was not significantly different from our
MLP model (MDeep F1 Score of 71.6 (67.5–74.0) vs MLP F1
Score of 70.3 (67.9–73.8), p-value > 0.05, and MDeep MCC Score

FIGURE 2 | Non-linear models are better suited to identify decision boundaries between control and IBD samples than linear models. (A) Median model
performance for each feature set across normalization, transformation, and batch effect correction methods. Rows were sorted in descending order by median
performance across all feature sets. (B) Performance distribution of non-linear (RF, MLP, KNN, XGBoost, radial SVC) and linear (BNB, Linear SVC, LR) models. (C)
Distribution of classification performance with the non-linear and linear variations of logistic regression and support vector machines across all feature sets. (D)
Distribution of IBD classification performance between the non-linear models. The analysis comprised datasets preprocessed using all normalizations and
transformations (ILR, CLR, VST, ARS, LOG, TSS, NOT) and batch effect correction (no batch effect correction, zero centering, MMUPHin #1, MMUPHin #2) methods
performed on all feature types. (E) Comparison of two neural network architectures: the convolutional neural network MDeep or a MLP. A Mann-Whitney U test with
Bonferroni correction was performed to compare all pairwise combinations of models with the significant comparisons indicated. ** indicates p-value < 0.01, *** indicates
p-value < 0.001, **** indicates p-value < 0.0001.
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of 54.0 (46.7–58.8) vs MLP F1 Score of 51.9 (47.4–57.9), p-value >
0.05) (Figure 2E).

Top Inflammatory Bowel Disease
Classification Was Obtained Using
Taxonomic Features
Taxonomic features (species, genus or OTU) are predominantly
used as input for ML models, whereas it is less common to use

inferred functional features from PICRUSt2 as input. However,
previous studies have identified lower inter-individual variation
of the gut microbiome’s inferred functional profile than
taxonomy (Davenport et al., 2014; Moustafa et al., 2018),
suggesting that functional features may lead to better
classification performance and generalizability. We processed
the 16S sequencing samples with QIIME2 and PICRUSt2 to
obtain taxonomy and functional feature abundance estimates,
respectively.

FIGURE 3 | Optimal disease classification of microbiome samples obtained with taxonomic features. (A) Median performance of the three taxonomy and six
functional feature sets for each ML model architecture. Rows were sorted in descending order by the mean column followed by the standard deviation (SD) column. (B)
Distribution of performancemetrics for taxonomy and functional features across all normalization or transformation, batch effect correction, andmodel combinations. (C)
Distribution of classification performance with the three taxonomic feature sets. Independent Mann-Whitney U tests were performed to compare aggregate
performance of taxonomy and functional features. The analysis was limited to all normalizations and transformations (ILR, CLR, VST, ARS, LOG, TSS, NOT) and batch
effect correction (only no batch effect correction or zero centering) methods that were performed on all feature sets. ** indicates p-value < 0.01, *** indicates p-value <
0.001, **** indicates p-value < 0.0001.
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For each ML model, we assessed the performance with
taxonomy and functional abundance features in combination
with a normalization or transformation and batch effect
correction method. The batch effect correction methods were
limited to Zero-Centering and no batch effect correction, as they
were the only two performed on all datasets. Across all
classification performance metrics, the taxonomic features
classified IBD samples more effectively than functional
features (Figure 3A). Comparison of performance with
taxonomy and functional features confirmed the significantly
higher F1 score [70.1 (63.8–74.7) vs 59.1 (51.2–64.3), p-value <
0.0001] and MCC [52.3 (41.2–59.5) vs 31.5 (18.1–41.7), p-value <
0.0001] for classification of IBD samples with taxonomic features
(Figure 3B). Therefore, ML models using taxonomic features
from this dataset lead to better classification of IBD samples than
functional features.

We further investigated whether specific taxonomic ranks
allow for an improved disease classification. Taxonomic
classification consists of seven hierarchical ranks, with
kingdom and species at the top and bottom, respectively. Each
consecutively lower taxonomy rank provides greater resolution of
the gut microbiome’s composition while also increasing data
sparsity, which can negatively affect an ML model’s
performance (Karlsson and Bostrom, 2014). Previous literature
comparing different taxonomy ranks for disease classification
indicated that lower ranks, down to genus, improved
performance (Bang et al., 2019). We assessed whether the
trend for improved classification continued with the species
rank and OTUs, despite their increasing sparsity. While no
significant performance difference was observed between
species and genus ranks, both displayed significantly higher
classification performance than OTU features (Figure 3C).

Due to the significantly better performance of non-linear
classification models and taxonomic features, our subsequent
analysis of normalization, transformations, and batch effect
correction methods utilized only taxonomic feature sets and
non-linear models.

Evaluation of Normalization and
Transformation Methods on Classification
of Inflammatory Bowel Disease Samples
We assessed normalization and transformation methods which
account for different biases commonly observed in next-
generation sequencing data: compositionally,
heteroskedasticity, and skewness. We selected two
transformations designed for compositional data: the isometric
log ratio (ILR) and centered log ratio (CLR) (Pawlowsky-Glahn
and Egozcue, 2006). We selected two normalization methods
which aim to reduce the heteroskedasticity: the arcsine square
root (ARS) transformation (Campbell et al., 1970) of the total
sum scaling (TSS) values and the variance stabilized
transformation (VST) from the R package DESeq2 (Love,
2014). Next, we assessed a log transformation of the TSS
values (LOG), which reduces the positive skew commonly seen
in the distribution of microbiome data. Lastly, we assessed
normalization by TSS alone to remove differences in

sequencing depth between samples as well as the effects of not
using any normalization.

The compositional transformation methods were the most
generalizable across non-linear models (Figure 4A), with median
ILR F1 score of 74.3 (71.4–76.9) andMCC of 58.7 (53.6–63.1) and
median CLR F1 score 74.2 (71.5–76.9) andMCC 58.5 (53.8–63.1).
The compositional transformations were followed by the
variance/distribution modifiers ARS (F1 score of 72.5
(69.8–75.8) and MCC of 56.0 (50.8–61.8)) and VST (F1 score
72.0 (65.9–75.0) andMCC 54.8 (44.1–59.9)). Lastly, TSS [F1 score
69.8 (63.8–73.9) and MCC 51.9 (40.5–58.7)] and LOG[F1 score
68.9 (64.1–73.5) andMCC 51.3 (40.4–58.6)] were consistently the
lowest performing normalization. Furthermore, the
compositional methods led to significantly better F1 score and
MCC than the other normalization type (Figure 4B), whereas the
variance/distribution modifiers and scaling method were
significantly better than no normalization. These results
indicate the importance of transformation methods which
account for the compositional properties of microbiome data
prior to model training.

Evaluation of Batch Effect Correction
Methods on Classification of Inflammatory
Bowel Disease Samples
Various approaches have been proposed to remove technical
batch effects from next generation sequencing datasets, of which
we selected three relevant to microbiome data. First, the zero-
centering method aims to reduce batch effects by centering the
mean of each feature within a batch to zero (Nygaard et al., 2016).
Second, Meta-analysis Methods with a Uniform Pipeline for
Heterogeneity in microbiome studies (MMUPHin) (Ma et al.,
2020) implements an empirical Bayes’ approach to estimate and
remove batch-specific parameters for each feature. Whereas,
ComBat-seq implements a negative binomial regression model
to estimate and correct batch effect parameters (Zhang et al.,
2020).

We first compared the ability of these three methods to correct
batch effects in our dataset. MMUPHin and ComBat-seq were
provided the disease and sample type as biological covariates
alongside the batch label, whereas zero-centering was blind to
biological covariates and only provided the batch label. The
performance was evaluated with the beta-diversity Aitchison
distance between samples (Figure 5A,B) (Aitchison, 1982) and
the Local Inverse Simpson Index (LISI) (Figure 5C) (Polański
et al., 2020). LISI evaluates the local neighborhood of a sample
with respect to the batch (iLISI) or disease label (dLISI). A higher
value indicates the presence of samples with a greater variety of
labels in the surrounding neighborhood. A good batch effect
correction method will lead to an increased iLISI (improved
mixing of batches) and a decreased dLISI (improved
separation of disease labels).

Compared to no batch effect correction, MMUPHin improved
separation of disease labels (1-dLISI of 0.968 vs 0.951, p < 0.0001),
whereas it led to greater separation of batches in our dataset (iLISI
of 0.027 vs 0.029, p < 0.0001) (Figure 5A–C). Conversely,
ComBat-seq reduced separation of disease labels (1-dLISI of
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0.941 vs 0.952, p < 0.0001) and improved mixing of batches (iLISI
of 0.032 vs 0.029, p < 0.0001) compared to no batch effect
correction (Figure 5A–C). The naive zero-centering method
led to the greatest mixing of disease labels (1-dLISI of 0.927 vs
0.951, p < 0.0001) and greatest mixing of batches (iLISI of 0.082 vs
0.029, p < 0.0001) compared to no batch effect correction
(Figure 5A–C). For the combined assessment of the dLISI and
iLISI scores, we calculated the harmonic mean (F1 score) (Lin
et al., 2019; Tran et al., 2020), where a higher mean indicates a
better batch effect correction method. The F1 score indicated the
performance order of batch effect correction methods was naive
zero-centering (0.150), ComBat-seq (0.061), and MMUPHin
(0.052), which was lower than no batch effect correction (0.057).

Evaluation of Batch Effect Reduction
Methods on Classification of Inflammatory
Bowel Disease Samples
We assessed the effect of three batch effect correction methods on
the classification performance of non-linear models. Two aspects

of MMUPHin and ComBat-seq were accounted for to ensure
a similar scenario of an implemented diagnostic test. First,
the disease covariate is commonly provided alongside the
batch label, which is unknown for a diagnostic test. Second,
information is shared across batches in order to correct the
batch effect estimates. For a diagnostic test, new test datasets
would be continually received and have to undergo batch
effect correction independent of the training dataset.
Therefore, we implemented two variations to simulate the
diagnostic scenario of obtaining a new dataset with unknown
disease labels. The first (#1) method applied batch effect
correction to the training and test sets separately
providing the sample type (stool/biopsy) as the biological
covariate. Whereas the second (#2) method only applied
batch effect correction to the training set with the disease
and sample type covariates provided (see Methods for
detailed description). On the other hand, batches are
independent in the zero-centering method allowing it to
be implemented without the training and test sets affecting
each other.

FIGURE 4 | Compositional transformation methods lead to the highest model performance for IBD classification. (A) Median model performance with each
normalization or transformation method across all batch effect correction methods. (B) Distribution of classification performance of different classes of normalization
methods. The compositional category consists of CLR and ILR (green), variance/distribution modifiers consist of VST, ARS, and LOG(blue), scaling consists of TSS
(orange), and no normalization consists of NOT (brown). Classification performance following data processing with all pairwise combinations of the normalization or
transformation methods (ILR, CLR, LOG, ARS, VST, TSS and NOT) and batch effect correction methods (No batch effect correction, MMUPHin #1, MMUPHin #2,
ComBat-seq #1, ComBat-seq #2, and Zero-Centering) were included. Rows were sorted in descending order by the median of each performance metric across the
non-linear models. No analysis was performed for MDeep paired with ILR as the ILR normalized values no longer map directly to a feature, therefore removing the
phylogenetic structure required for MDeep. **** indicates p-value < 0.0001 and * indicates p-value < 0.05.
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Of the six different batch effect correction variations, zero-
centering and MMUPHin #1 were the most generalizable
approach across the non-linear models. Zero-centering led to a
significantly greater F1 score of [75.3 (70.3–79.2) vs 72.2
(69.8–75.0), p < 0.01] and MCC [61.6 (55.6–67.0) vs 55.1
(50.8–60.1), p < 0.001] than no batch correction
(Figure 6A,B). MMUPHin #1 also led to a significantly
greater F1 score of [74.7 (71.5–76.9) vs 72.2 (69.8–75.0), p <
0.05] and MCC [59.4 (53.9–63.1) vs 55.1 (50.8–60.1), p < 0.01]
than no batch correction (Figure 6A,B). Whereas, ComBat-seq
#1 displayed greater median F1 scores of 71.9 (64.5–73.5) and
MCC of 54.5 (41.0–57.4) than no batch reduction, although not
significant. Classification performance with MMUPHin #1 and
ComBat-seq #1 was more consistent across the different non-
linear models than zero-centering, likely due to the poor
performance of the radial SVC with Zero-Centering.
(Figure 6A). Whereas, MMUPHin #2 and ComBat-seq #2
were the least generalizable (Figure 6A) with significantly
lower F1 score of 67.5 (61.5–71.1) (p < 0.0001) and 71.9
(64.5–73.5) (p < 0.05) and MCC of 47.0 (35.2–53.3) (p <
0.0001) and 54.5 (41.0–57.4) (p < 0.05) than no batch effect
correction MCC of 54.6 (47.7–59.8), respectively. Therefore, the
naive zero-centering MMUPHin #1 method for batch effect

correction are the most generalizable approach for IBD
classification with non-linear machine learning models.

Evaluation of Model Performance on
Sample and Patient Subgroups
The samples used to assess the performance of different
combinations of normalizations or transformations, batch
effect correction, and ML models were drawn from across
sample collection methods (i.e., stool and biopsy) and patient
demographics (i.e., paediatric and adult samples). While we did
not set inclusion criteria for samples based on these differences,
previous research has demonstrated distinct differences in
microbiome composition between sample types and
demographic groups (Walters et al., 2014; Kim et al., 2020;
Radjabzadeh et al., 2020). For example, principal coordinate
analysis (PCoA) with weighted UniFrac distance of (Durbán
et al., 2011) and principal component analysis (PCA) of CLR-
transformed taxonomic features indicated paired biopsy and
stool samples from the same individual cluster separately
(Mas-Lloret et al., 2020).

We compared the model performance for the sample and
patient demographics for which we were able to acquire

FIGURE 5 |Batch effect correction by zero-centering, MMUPHin, and ComBat-seq. Principal component analysis of genus features followCLR transformation and
batch effect correction with the points coloured by disease label (A) or study label (B). The 95% confidence ellipse for each category within the label is shown to better
visualize the mixing and separation of different labels. (C) The normalized median LISI value for the batch label (y-axis) and the 1-normalized median LISI value for the
disease label (x-axis).
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sufficient metadata and have been associated with microbiome
alterations: sample type (biopsy vs stool), IBD type (CD vs
UC), sex (Female vs Male), BMI (BMI <30 vs BMI >30), and
age (Adult vs Pediatric). To assess the performance within each

demographic, we included the predictions from taxonomic
features (species, genus, OTU) with a compositional
transformation method, zero-centering batch effect
correction, and a non-linear ML model. Our analysis
focused on the MCC performance metric as it is more
robust to imbalanced label distribution (Chicco and Jurman,
2020), which occurred when the samples were grouped by the
five metadata categories. A logistic regression function was
used to assess changes in performance corresponding to each
demographic while controlling for the other metadata
(Table 3).

IBD classification performance was reduced for biopsy
samples compared to stool samples, increased for samples
from adult patients compared to pediatric patients, and
decreased for samples from patients with BMI less than 30
compared to patients with BMI greater than 30. On the other
hand, there was no difference in classification performance
for females compared to males or for samples from patients
with CD compared to patients with UC (Table 3). The
metadata groups with different performance between the

FIGURE 6 | Removing batch effects with zero-centering improved IBD classification. (A) Median performance of each batch effect correction method across all
combinations of normalization or transformation methods, taxonomic features, and non-linear ML models. Rows were sorted in descending order by the median
performance across all non-linear models. (B) Distribution of IBD classification performance following batch effect correction by the six different methods. All batch effect
corrections were compared with a Mann-Whitney U test to the No Batch Effect Correction performance and the significant comparisons were labelled. * indicates
p-value < 0.05, ** indicates p-value < 0.01, *** indicates p-value < 0.001, and **** indicates p-value < 0.0001.

TABLE 3 | Model performance for different sample types and patient
demographics. Samples with available metadata were categorized into
groups based on the collection method or the patient’s specific demographic
group based on sex, age, and BMI. Predictive performance for all combinations of
taxonomic features, compositional transformations, zero-centering batch
effect correction, and non-linear models were included in the analysis. Logistic
regression was performed to assess the performance differences within each
sample and demographic group while adjusting for the remaining covariates.
**** indicates p-value < 0.0001, and * indicates p-value < 0.05.

Group Variable Coefficient SE

Sample Type Biopsy (vs Stool) −0.44 * 0.2
Life Stage Adult (vs Pediatric) 1.39 **** 0.18
BMI Stratification BMI <30 (vs BMI >30) −0.85 **** 0.19
Sex Female (vs Male −0.02 0.18
IBD Type CD (vs UC) 0.05 0.18

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 78439715

Kubinski et al. Gut Microbiome-Based Disease Diagnosis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


two categories coincided with those that are not equally
represented in our dataset, highlighting the importance of
accounting for different demographic groups in a
microbiome based diagnostic test.

Evaluation of Top Performing Pipeline
Combinations for Inflammatory Bowel
Disease Classification
Our analysis identified the features, ML models, normalization or
transformation methods, and batch effect correction methods
which led to the most generalizable performance. In order to
determine the best overall combination of features, data
processing, and ML model we assessed the top three
performing models (Table 4). The top two models consisted
of the most generalizable individual components: taxonomic
features (genus), non-linear model (XGBoost), compositional
transformation (ILR or CLR), and zero-centering to remove
batch effects. In addition, the third best model consisted of the
lowest performing taxonomic features (OTU) and the lowest

performing normalization (LOG), with zero-centering for batch
effect correction. Overall, the combination of the most individual
most generalizable methods led to the top two pipelines with the
best classification performance.

For the three best pipeline combinations (Table 4), we
assessed the classification performance on each dataset from
the fifteen LODO iterations. Since some studies contained only
a single label, either non-IBD, control or IBD, we assessed the
performance using the classification accuracy metric (Figure 7).
The three pipeline combinations had the lowest performance on a
common subset of the fifteen datasets. The low performance
datasets were enriched in samples from sample types and patient
subgroups that we previously showed negatively affect
classification performance (Table 3), such as biopsy samples
(MUC, HMP, and GEVERSM), patients with BMI >30 (GLS
or QIITA10342), or pediatric patients (GEVERSC). These results
further highlight the importance of generating a diverse training
set that is representative of the patient demographics the
diagnostic model will encounter.

Identification of Important Features for
Classification With a XGBoost Model
In addition to predicting health diagnoses, machine learning
models can be used to identify biomarkers for disease by
identifying features important for disease classification. We
characterized the feature importance from the second-best
overall data processing and ML model pipeline (Table 4). We
did not analyze the feature importance of the best-performing
model because the ILR normalized values no longer correspond
to the input features thereby preventing interpretation of feature
importance. For an XGBoost model, the importance corresponds
to a feature’s contribution to the model’s decision during training,
referred to as the gain value (Chen and Guestrin, 2016). We
extracted the features’ gain values from each of the 15 LODO
iterations, sorted by the mean of all iterations, and plotted the top
fifteen features (Figure 8). In addition, we determined the change
in abundance for each taxonomy to assess whether our
dataset aligned with previous findings on changes of the
microbiome in IBD.

Many of most important taxa are in the short chain fatty acid
(SCFA) producing Clostridium XIVa/IV clusters, including
bacteria from the Eubacterium, Coprococcus, Lachnospira, and
Ruminiclostridium genera (Figure 8A). Aligning with previous
studies, these bacteria were decreased, with the exception of
Coprococcus 3, in IBD samples vs control samples in our dataset
(Figure 8B) (Gevers et al., 2014; Nagao-Kitamoto and Kamada,
2017). Fusobacterium and Veillonellaceae genera, commonly

TABLE 4 | Top three data processing and model pipelines for classifying IBD samples. Three combinations which appeared when all pipelines were sorted by F1 score
or MCC.

Features Normalizations Batch Effect Correction Model F1 Score MCC

Genus ILR Zero-Centering XGBoost 83.7 74.3
Genus CLR Zero-Centering XGBoost 83.0 73.2
OTU LOG Zero-Centering Random Forest 82.9 73.1

FIGURE 7 | Individual classification accuracy of the 15 datasets by the
top three performing pipeline combinations. Classification accuracy was
calculated individually for each of the datasets from the 15 LODO iterations.
The three pipelines consist of (1) genus features, ILR transformation,
Zero-Centering batch effect reduction, and a XGBoost classifier (Genus/ILR/
Zero-Centering/XGB), (2) genus features, CLR transformation, Zero-
Centering batch effect reduction, and a XGBoost classifier (Genus/CLR/Zero-
Centering/XGB), and (3) OTU features, LOG normalization, Zero-Centering
batch effect reduction, and a Random Forest classifier (OTU/LOG/Zero-
Centering/RF). Points corresponding to one of the five datasets with the
lowest classification accuracy are labelled.
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increased in the gut microbiome of IBD patients, were also top
contributors to the XGBoost classifier (Figure 8A,B) (Gevers
et al., 2014; Glassner et al., 2020). In addition, the Prevotellaceae
genus was the second most important feature, with the
decreased abundance in IBD samples agreeing with previous
studies showing decreased abundance in the gut microbiome of
patients with CD and UC (Figure 8A,B) (Chen et al., 2014).
Even though some taxa have a low fold change between IBD and
non-IBD controls, XGBoost is able to find a cutoff value that
contributes to the separation of labels and the final decision.
XGBoost classifiers have the best potential for use as a diagnostic
test due to their performance as well as their interpretability and
utility in identifying disease biomarkers.

DISCUSSION

We assessed how different feature sets, MLmodels, normalization
or transformation methods, and batch effect correction methods
affect predictive performance across patient cohorts in a LODO
cross validation approach. The limited applicability of a PCR-
based diagnostic test with a handful of bacteria for IBD diagnosis
(Wyatt and Kellermayer, 2018) has led the field to explore the use
of ML models for disease diagnosis. Our benchmark provides
practical suggestions for ways to improve the performance of an
IBD diagnostic test using the gut microbiome composition. First,
genus abundance estimates from 16S rRNA sequencing need to
be normalized by a compositional transformation method, with
CLR transformation being the most appropriate as it allows for
each feature’s importance to the ML models decision to be
assessed. Second, zero-centering batch effect correction should

be applied to each batch of samples collected, sequenced, and
processed together to reduce systematic batch differences.
Following normalization and batch effect correction, an
XGBoost or random forest classification model should be
trained and optimal hyperparameters determined through grid
search and LODO cross validation for implementation as a
diagnostic test. With respect to the training dataset, it is
important to account for patient demographics or technical
differences between samples that have been associated with
gut microbiome alterations. We suggest several options for
optimal performance: 1) ensure balanced representation in the
training dataset, 2) include the metadata labels as a feature for the
model, or 3) deploy diagnostic ML models built specifically for
one demographic group. In addition, the LODO cross-validation
methodology is an important tool for the selection of other, new
data preprocessing and model building methods.

Previous studies have demonstrated greater consistency of
functional feature abundances than taxonomic feature abundance
in both healthy individuals (Turnbaugh et al., 2009; Human
Microbiome Project Consortium, 2012; Zhernakova et al.,
2016) and those with IBD (Davenport et al., 2014; Zhou et al.,
2018). In fact, some studies were unable to identify a single
bacteria present in every IBD patient from their cohort (Moustafa
et al., 2018). The reduced variation and sparsity of functional
features led us to hypothesize that functional abundance profiles
would lead to better classification of IBD samples. However,
through our LODO cross validation, we found that classification
performance with functional features was significantly worse than
with taxonomic features (Figure 3B). We postulate the reason for
the reduced classification performance with functional profiles is due
to the limited recapitulation of functional profiles with PICRUSt2

FIGURE 8 | Features with greatest contribution to IBD classification with XGBoost classifier. (A) A XGBoost classifier was trained with CLR normalized genus
abundance features with zero-centered batch effect correction for fifteen LODO iterations. The features’ gain values for each iteration were extracted and sorted by the
mean gain across all iterations. Error bars represent mean ± standard error of the mean for the fifteen iterations. The lowest classification rank for each feature was used
as the label for the corresponding bar. (B) Changes in taxonomy abundance between control samples and those from patients with IBD. Bars represent the fold
change ± the standard error determined with Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). Red indicates a significant fold change
between IBD and control samples (p < 0.05) and black indicates non-significant fold change.
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(Douglas et al., 2020; Sun et al., 2020) and the inability of 16S rRNA
sequencing to identify strain-level functional differences of the
present bacteria (Filippis et al., 2020). To overcome these
limitations in future studies, measurement of the microbiome’s
gene content by WGS, transcriptomes by RNA-seq, or
metabolites by metabolomics need to be explored. In fact,
functional profiles from whole genome sequencing led to better
predictions of patients with IBD who achieved remission with
vedolizumab than taxonomy abundance (Ananthakrishnan et al.,
2017; Filippis et al., 2020). While whole genome sequencing may
improve disease classification, its much higher cost than 16S rRNA
sequencing substantially hinders the technology’s adoption as a
diagnostic test.

A major hurdle in the implementation of sequencing based
diagnostic tests in the clinic is the observed systematic differences
between sample preparations. In a previous study, removal of
these batch effects with an empirical Bayes’ or zero centering
approach led to improved classification (Luo et al., 2010). We
demonstrate similar results with significantly improved cross-
batch classification performance with zero-centering and the
empirical Bayes’ method MMUPHin (Figure 6). Of the two
methods, zero-centering had slightly higher F1 Score and
MCC and the top performing pipelines comprised zero-center
batch effect reduction exclusively. In addition, the updated
ComBat-seq did not significantly improve classification
performance either. Aligning with our classification results,
our assessment of the correction of batch effects with the LISI
metric indicated the best batch effect correctionmethod was zero-
centering, whereas MMUPHin and ComBat-seq were more
similar to no batch effect removal (Figure 5). Both
MMUPHin and ComBat-seq are designed and optimized for
disease mechanism and biomarker discovery where the disease
covariate is known and incorporated into the method. The
inclusion of a disease covariate is not applicable to a
diagnostic scenario though, where the diagnosis label is to be
determined, resulting in the need for a covariate agnostic method
such as zero-centering. The lower improvement in classification
performance with MMUPHin #1 or ComBat-seq #1 compared to
no batch effect correction is potentially due to its implementation
in a scenario the method was not optimized for.

Similar to batches of samples collected for a diagnostic test, the
batches in our dataset were not balanced, with some containing
only a single diagnosis class (e.g., all samples coming from IBD
patients). In cases where the batch and diagnosis label are
confounded, batch effect correction methods tend to reduce
the disease associated differences in the process of removing
the batch differences (Nygaard et al., 2016). Therefore, the more
advanced removal of batch effects by MMUPHin and ComBat-
seq likely led to an over-adjustment within the unbalanced
batches and removal of the disease differences. Whereas, the
simpler removal of batch effects with the covariate naive zero-
centering approach retained sufficient biological signal between
disease labels for non-linear ML models to correctly classify
samples across batches. Batch effect correction methods that
do not require input of a covariate have been developed, such
as frozen surrogate variable analysis or reference principal
component integration (RPCI) (Parker et al., 2014; Liu et al.,

2021), although their applicability to microbiome data has not
been assessed.

Although our study demonstrated reliable results, gaps in the
publicly available data prevented us from several critical analyses.
First, the identification of CD and UC patients relied on the
accuracy of the diagnosis coding in the public databases.
However, there were no studies explicitly validating the
registration of CD and UC diagnosis codes. In addition, we
lacked information on the timing of sample collection in
relation to patients’ diagnosis and disease progression, current
disease activity quantification, DNA extraction, and sample
storage information. Furthermore, there was limited
information on environmental factors such as medication
usage, alcohol usage, smoking, diet, and other factors known
to alter the gut microbiome which could affect our analysis (Zhou
et al., 2018; Bryrup et al., 2019). Of the sample information and
patient demographic data we did obtain, clear differences in
performance of our top pipelines were observed between
patient subpopulations. (Table 3). Therefore, future studies
with improved lifestyle and clinical metadata are needed to
systematically address how these factors affect performance of
a gut microbiome diagnostic test.

Other non-invasive diagnostic tests for IBD, such as fecal
calprotectin, continue to have significant differences between
the reports on the sensitivity and specificity for classifying IBD
patients from non-IBD (Lewis, 2011). While high performance
levels have been reported, one recent study identified a 78%
accuracy for identifying patients with IBD using fecal
calprotectin (Penna et al., 2020), which is approximately
10% lower than our best model. Furthermore, while we
focused solely on IBD classification here, ML models using
microbiome composition have wider applicability than
singular biomarkers such as calprotectin. Models using
high-dimensional microbiome data have already been
developed to predict if a patient with IBD will respond to a
medication (Ananthakrishnan et al., 2017), to predict a
patient’s postprandial glycemic response (Zeevi et al., 2015),
and classification of other diseases, such as Parkinson’s disease
(Zeevi et al., 2015; Hill-Burns et al., 2017), to name a few.

With sufficient data and validation, analysis of the fecal gut
microbiome can indeed be leveraged as a multi-purpose predictive
tool. Given the significant delay (Vavricka et al., 2012; Zaharie et al.,
2016; Nguyen et al., 2017) and associated costs of diagnosis (Park
et al., 2020; Vadstrup et al., 2020), it is critical to continue
exploration of approaches that increase accessibility of diagnosis
and decrease the cost of testing (Zhang et al., 2019) in a community
health or primary care setting. ML models with microbiome data
have the potential to achieve these goals and further work to gather
morewell-annotated data, improve performance and assessmodels
with validation studies is required.
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