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Abstract
Aims/hypothesis Adipose tissue dysfunction is a prime risk
factor for the development of metabolic disease. Bone mor-
phogenetic proteins (BMPs) have previously been implicated
in adipocyte formation. Here, we investigate the role of BMP
signalling in adipose tissue health and systemic glucose
homeostasis.
Methods We employed the Cre/loxP system to generate
mouse models with conditional ablation of BMP receptor
1A in differentiating and mature adipocytes, as well as
tissue-resident myeloid cells. Metabolic variables were

assessed by glucose and insulin tolerance testing, insulin-
stimulated glucose uptake and gene expression analysis.
Results Conditional deletion of Bmpr1a using the aP2 (also
known as Fabp4)-Cre strain resulted in a complex phenotype.
Knockout mice were clearly resistant to age-related impair-
ment of insulin sensitivity during normal and high-fat-diet
feeding and showed significantly improved insulin-stimulated
glucose uptake in brown adipose tissue and skeletal muscle.
Moreover, knockouts displayed significant reduction of vari-
ables of adipose tissue inflammation. Deletion of Bmpr1a in
myeloid cells had no impact on insulin sensitivity, while abla-
tion of Bmpr1a in mature adipocytes partially recapitulated the
initial phenotype from aP2-Cre driven deletion. Co-cultivation
of macrophages with pre-adipocytes lacking Bmpr1amarkedly
reduced expression of proinflammatory genes.
Conclusions/interpretation Our findings show that altered
BMP signalling in adipose tissue affects the tissue’s metabolic
properties and systemic insulin resistance by altering the pat-
tern of immune cell infiltration. The phenotype is due to ab-
lation of Bmpr1a specifically in pre-adipocytes and maturing
adipocytes rather than an immune cell-autonomous effect.
Mechanistically, we provide evidence for a BMP-mediated
direct crosstalk between pre-adipocytes and macrophages.
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ITT Insulin tolerance test
iWAT Inguinal WAT
LPS Lipopolysaccharide
MCP1 Monocyte chemotactic protein 1
WAT White adipose tissue

Introduction

Obesity is recognised as a significant risk factor for several of
our most common medical conditions, such as type 2 diabetes
mellitus and diseases associated with cardiovascular compli-
cations [1–3]. The majority of adipose tissue in the body is
white adipose tissue (WAT), which stores energy as triacyl-
glycerols and secretes adipokines [4]. The second type of fat,
brown adipose tissue (BAT), expends energy in a process
known as thermogenesis [5].

Normal adipose tissue displays a low-grade inflammation,
which is presumably due to removal of apoptotic adipocytes.
In obese individuals, WAT becomes a significant source of pro-
inflammatory cytokines, which are known to promote systemic
insulin resistance [6]. Specifically, increased infiltration of mac-
rophages that surround the dead adipocytes, forming the so-
called crown-like structures, is a source of these proinflammatory
signals [7–9]. Recently, other immune cell populations, such as
regulatory T cells and neutrophils, have also been implicated in
these processes [10]. Adipose tissue-resident macrophages
(ATMs) assume either proinflammatory or anti-inflammatory
phenotypes termed M1 and M2, respectively. A general shift
from a predominantly M2-like phenotype in healthy, lean WAT
towards an M1 phenotype in inflamed, obese WAT is well doc-
umented [10, 11]. Generally, it should be noted that obesity leads
to increased infiltration of all macrophage types, although accu-
mulation of proinflammatory M1 ATMs greatly exceeds that of
alternatively activated M2 ATMs [12, 13].

Bone morphogenetic proteins (BMPs) are members of the
TGFβ protein superfamily. The role of BMPs in the regulation
of adipose biology and energy metabolism has only recently
become a field of interest [14–20]. Several BMPs are known to
induce adipogenesis in a concentration-dependent manner; low
concentrations promote adipogenesis while high concentrations
are anti-adipogenic and, instead, promote osteochondrogenesis
[21–24]. We recently discovered that BMP signalling plays an
important role in the formation of brown adipocytes [15, 16,
25]. However, the role of BMPs in the physiological function of
mature, adult WAT has not been addressed in detail. In our
previous study, conditional deletion of the type 1A BMP recep-
tor (Bmpr1a) using theMyf5-Cre driver led to a specific atrophy
of interscapular BAT and compensatory browning of WATs,
altogether establishing the metabolic equivalence of brite/
beige adipose tissue and classical BAT [15]. To investigate
BMP signalling in a broader spectrum of adipocytes, we deleted
Bmpr1a in pre-adipocytes and adipocytes, targeting both BAT

and WAT. Unexpectedly, the development of insulin resistance
with increased age was prevented in knockout mice, suggesting
that the role of BMP signalling in adipocyte function is highly
context-dependent.

Methods

A detailed description of the methods is included in the elec-
tronic supplementary material (ESM).

Animals All animal procedures were performed according to
the Guide for the Care and Use of Laboratory Animals (http://
grants.nih.gov/grants/olaw/Guide-for-the-Care-and-Use-of-
Laboratory-Animals.pdf) and were approved by the
Institutional Animal Care and Use Committee at Joslin
Diabetes Center. Mice with aP2-Cre-driven deletion of the
floxed Bmpr1a allele were generated and maintained as
described previously [15, 26].

Insulin tolerance testing For the insulin tolerance test (ITT),
mice were fasted for 2 h on the morning of the experiment
before receiving an i.p. dose of 1.5 IU/(kg body weight) of
recombinant human insulin (Humalog; Lilly, Indianapolis, IN,
USA). Bloodwas collected from the tail vein for measurement
of blood glucose levels before and 15, 30 and 60 min after
injections.

Glucose tolerance testing Mice were fasted overnight (16 h)
prior to i.p. injection of 2 g/(kg body weight) of glucose using
a 20% (w/v) solution. Blood glucose was measured before and
15, 30, 60 and 120 min after injection.

Serum analysisAnalyses of serum insulin, leptin, triacylglyc-
erols, NEFA, TNFα and IL-6 were performed using standard
colorimetric assays and ELISA procedures.

Insulin-stimulated glucose uptake The procedure was per-
formed as described previously, with minor modifications (see
ESM Methods) [27].

Protein expression analysis Analysis of gene expression on
the protein level was performed as described previously [15].
Antibodies are specified in ESM Methods.

Gene expression analysis Total RNA isolation and gene ex-
pression analysis was conducted as described previously [15].
Primer sequences are listed in ESM Table 1.

Analysis of adipocyte size Adipocytes were analysed using
ImageJ software (U.S. National Institutes of Health, Bethesda,
MD) [28].
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Analysis of tissue-resident macrophages and blood mono-
cytes ATMs were analysed using FACS of freshly isolated
stromal-vascular fractions of WAT as described previously
[15].

Analysis of physiologyBody composition, activity levels and
energy expenditure were assessed as described previously
[15].

Cell culture Pre-adipocytes were cultured as described previ-
ously [15]. Macrophages were collected from the peritoneal
cavity of untreated, healthy mice.

Statistical analysis The data are presented as means±SEM.
Statistical significance was defined as p<0.05 and determined
by Student’s t test or two-way ANOVAwhen comparing multi-
ple groups. In cases of unequal variance and non-normal distri-
bution, non-parametric testing was conducted (Mann–Whitney
U test).

Results

Loss of BMP receptor 1A in adipose tissue prevents age-
related decline in insulin sensitivity BMP signalling regu-
lates early and late stages of adipocyte differentiation [20].
Therefore, we chose to use the aP2 promoter to drive
adipose-specific expression of Cre recombinase to generate a
tissue-specific deletion of Bmpr1a in mouse adipose tissues
(aP2-Bmpr1a-KO) [26]. As previously described, these mice
displayed significantly reduced expression of Bmpr1a in BAT
and WAT and a significant depletion of brown and brite/beige
adipocytes [15]. Knockout mice were born smaller, had re-
duced bone length and maintained a trend of reduced body
weight, lean mass and fat mass when body composition was
analysed at 6 months of age on normal diet and after high-fat
diet (HFD) feeding (ESM Fig. 1). Activity levels were not
altered and energy expenditure tended to be reduced in aP2-
Bmpr1a-KOs, but the latter was no longer apparent when
normalised to body weight or lean mass (ESM Fig. 1).
Histological evaluation of WAT revealed no changes in mor-
phology, white adipocyte size or accumulation of fibrosis
(ESM Fig. 2). Somewhat unexpectedly, we observed reduced
expression and lower circulating levels of leptin, while expres-
sion of adiponectin remained unchanged (ESM Fig. 3). These
findings suggest that lower leptin expression may be a direct
effect of reduced BMP signalling rather than be due to reduced
adipocyte size. In the absence of exogenous ligand treatment,
we observed reduced phosphorylation of one of the main
BMP target pathways, p38 mitogen-activated protein kinase
(p38MAPK), but no changes of mothers against DPP homo-
log (SMAD)-1/5 phosphorylation in epididymal WAT

(eWAT), whereas no changes in either pathway were observed
in inguinal WAT (iWAT) (ESM Fig. 4).

To analyse glucose homeostasis in more detail, we con-
ducted ITTs and GTTs in mice either maintained on a normal
diet or on an HFD containing 45% of energy from fat
(45%HFD). Interestingly, aP2-Bmpr1a-KO mice on both di-
ets displayed improved insulin sensitivity (Fig. 1a, b) and
similar results were obtained for aged, but not young, mice
maintained on 60%HFD (ESM Fig. 5). Glucose tolerance, on
the other hand, showed a trend towards (but not significant)
improvement on either diet when assessed at 52 weeks of age
(Fig. 1c, d). Blood glucose, serum insulin and lipid levels
remained unchanged at this age, although insulin levels tended
to be lower in knockout mice on both diets (ESM Fig. 6).

To further explore this phenotype, we assessed the activa-
tion of the insulin signalling cascade following insulin stimu-
lation. In this cohort, mice were maintained on 60%HFD until
approximately 32 weeks of age. Consistent with the improved
insulin sensitivity phenotype, phosphorylation of several
members of the insulin signalling cascade was significantly
enhanced in iWAT or eWAT of the knockout mice (Fig. 1e, f
and ESM Fig. 7). BAT has recently been recognised as a
significant glucose sink upon exposure to cold [29]. Despite
the previously reported atrophy of BAT [15], aP2-Bmpr1a-
KO mice displayed significant elevation of glucose uptake in
the residual brown fat and skeletal muscle in response to in-
sulin stimulation compared with their control littermates
(Fig. 1g, h).

Loss of Bmpr1a reduces proinflammatory gene expression
and attenuates macrophage infiltration into adipose tissue
The link between insulin resistance and obesity-related adi-
pose tissue immune cell infiltration is well established [30].
Therefore, we investigated whether expression of proinflam-
matory markers was reduced in aP2-Bmpr1a-KO mice.
Indeed, gene expression of typical macrophage markers, such
as Cd68, F4/80 (also known as Adgre1), Cd11c (Itgax) and
Mcp1 (Ccl2), were significantly reduced in both inguinal and
epididymal fat pads of aP2-Bmpr1a-KO mice maintained on
either standard chow or a 45%HFD (Fig. 2a–d). Similar trends
were also observed in mice maintained on a 60%HFD until
1 year of age, while no differences in inflammatory gene ex-
pression were observed in young mice on normal diet (ESM
Fig. 8). To address the role of macrophages in this phenotype,
we next quantified macrophage infiltration. Infiltration with
CD45+/CD11b+/F4/80+ macrophages in WAT of knockout
mice was significantly diminished whereas frequencies of pe-
ripheral blood monocytes were unchanged, suggesting that
reduced macrophage infiltration occurred within the adipose
tissue (Fig. 2e, f). This was consistent with the unchanged
levels of the circulating proinflammatory cytokines monocyte
chemotactic protein 1 (MCP1) and TNFα (Fig. 2g, h).
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To determine whether macrophage activation was altered in
aP2-Bmpr1a-KO mice, we next quantified expression of typical
macrophage activation markers [31, 32]. To this end, we isolated
macrophages from both WAT depots by flow cytometry. While
mRNA levels of a general macrophage marker (F4/80) and a
well-established M2 marker (Arg1) were unchanged (Fig. 3a,
b), expression of other M2 markers (Cd206 [Mrc1] and Cd301
[Clec10a]) was upregulated in eWAT, but not iWAT, of aP2-
Bmpr1a-KO mice (Fig. 3c, d). Accordingly, expression levels
of the M2-related Ccl17 and the M1-related Cxcl9 were upregu-
lated and downregulated, respectively (Fig. 3e, f) [32].
Expression of other established M1 markers, such as Il1b or
inducible nitric oxide synthase, were not altered (data not shown).

Loss of BMP signalling in myeloid cells does not affect
insulin sensitivity Previous studies have demonstrated that
aP2 is also expressed in cell types other than adipocytes.
Specifically, it is also expressed inmacrophages, where aP2 plays
a role in foam cell formation [33]. These findings raise the pos-
sibility that use of aP2-Cre may also result in gene deletion in
macrophages infiltrating the adipose tissue.While this possibility
is still valid, a recent study using the same aP2-Cre strain as us
showed no Cre-mediated recombination in adipose tissue mac-
rophages [34]. Consistent with this report,Bmpr1amRNA levels
were not changed in macrophages sorted from WAT of aP2-
Bmpr1a-KOmice when compared withWAT from control mice
(ESM Fig. 9). Nevertheless, to determine whether loss of BMP
signalling in macrophages could still be responsible for reduced
adipose tissue macrophage infiltration and improved insulin sen-
sitivity, we generated a mouse model with myeloid-specific ab-
lation of BMP receptor 1A (BMPR1A) using the LysM (also
known as Lyz2)-Cre mouse strain [35]. Efficient ablation of
BMPR1A expressionwas observed in tissueswith a high content
of myeloid cells, such as bone marrow, in LysM-Bmpr1a-KO
mice (Fig. 4a). In this strain, body and tissue weights were un-
changed (data not shown) and gene expression levels of Lep,
Cd68 and Mcp1, which were significantly decreased in the
aP2-Bmpr1a-KO mice, were unchanged in iWAT and eWAT of
5-month-old mice (Fig. 4b). Moreover, insulin sensitivity was
not altered in 12-month-old LysM-Bmpr1a-KO mice compared
with control mice under high-fat feeding (Fig. 4c). Hence, the
improved insulin sensitivity in aP2-Bmpr1a-KO mice cannot be
attributed to deletion of Bmpr1a in macrophages.

Loss ofBmpr1a in mature adipocytes improves the inflam-
matory gene expression profile To determine whether the
improved insulin sensitivity in aP2-Bmpr1a-KO mice can
be directly linked to adipocyte-specific changes, we generated
a third mouse model using the Adipoq-driven Cre mouse
strain (Adipoq-Cre). Unlike aP2-Cre, which also causes re-
combination in adipogenic progenitor cells [36], Adipoq-Cre
is expressed exclusively in mature adipocytes, thus targeting a
more restricted population of cells within WAT [34]. In
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Fig. 1 Loss of Bmpr1a in adipose tissue improves insulin sensitivity. (a,
b) ITT in 38-week-old mice maintained on a normal chow diet (a) (AUC:
p= 0.0286) or in 40-week-old mice maintained on 45%HFD from 4–5
weeks of age (b) (AUC: p = 0.0043). Diamonds, control mice; squares,
aP2-Bmpr1a-KO mice. Data are shown as means ± SEM (n= 4 for both
groups in a; n= 5 for control and n= 6 for knockout in b). *p< 0.05 and
**p< 0.01 compared with control mice (c, d) GTT in 50-week-old mice
fed either a normal chow diet (c) (AUC: p= 0.3429) or 45%HFD (d)
(AUC: p= 0.6095). Diamonds, control mice; squares, aP2-Bmpr1a-KO
mice. Data are shown as means ± SEM (n= 4 for both groups in c; n = 5
for control and n= 6 for knockout in d). (e, f) Western blot analysis of
insulin-stimulated activation of the insulin signalling pathway in iWAT
(e) and eWAT (f). Levels of the phosphorylated forms of insulin receptor-
β (p-InsRβ), insulin receptor substrate (p-IRS)1, protein kinase B (p-Akt)
and extracellular-signal regulated kinase (p-ERK) were detected and nor-
malised to basal expression ofβ-tubulin (β-Tub). Quantification is shown
in ESMFig. 7. (g, h) Unstimulated (Basal) and insulin-stimulated glucose
uptake (Insulin) in BAT (g) and tibialis anterior skeletal muscle (h).White
bars, control mice; grey bars, aP2-Bmpr1a-KO mice. Data are shown as
means ± SEM (n = 7 for basal control; n= 6 for basal knockout; n= 8 for
insulin control; n = 6 for insulin knockout). **p< 0.01 compared with
control mice
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Adipoq-Bmpr1a-KO mice, decreased Bmpr1a mRNA levels
were observed in WAT (Fig. 4d). Further analysis revealed a
trend towards decreased gene expression of Lep and macro-
phage markers Cd68, Mcp1 and Cd11c (Fig. 4e). However,
body weight, adipose tissue weight and insulin sensitivity
analysed by GTT or ITT remained unaltered in Adipoq-
Bmpr1a-KO mice on a normal diet or after 5 months of
high-fat feeding (ESM Fig. 10).

Loss of Bmpr1a in pre-adipocytes directly affects activa-
tion and cytokine expression patterns in macrophages To
determine whether interactions between macrophages and ad-
ipocyte progenitors could be responsible for the more pro-
nounced phenotype of the aP2-Bmpr1a-KO mice, we used a
co-culture approach (see ESM Fig. 11a for experimental
scheme). Macrophages were isolated from wild-type
C57BL/6J mice and pre-adipocytes were isolated from mice
carrying a homozygous floxed Bmpr1a allele. Isolated pre-

adipocytes were infected with adenoviruses either expressing
green fluorescent protein or Cre recombinase to generate pre-
adipocytes with intact or impaired BMP signalling, respec-
tively. Lipopolysaccharide (LPS) was added to the co-
culture to activate expression of inflammatory cytokines from
macrophages (ESM Fig. 11). Four days post infection, control
or Bmpr1a-deficient progenitor cells isolated from white and
brown adipose depots were co-cultured with macrophages for
24 h. Measurement of Bmpr1a mRNA levels showed a sig-
nificant reduction in co-cultures with Cre-infected pre-
adipocytes and pure cultures of Cre-infected pre-adipocytes
(Fig. 5a and ESM Fig. 11b). Importantly, expression of
macrophage-specific marker genes (such as F4/80 and
Cd68) and LPS-induced cytokines (Il1b, Il10 and Il12) was
significantly reduced in co-cultures of knockout pre-
adipocytes and macrophages (Fig. 5b–f). These data provide
a potential cellular mechanism for the phenotypes observed in
aP2-Bmpr1a-KO mice.
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Discussion

In the present study, we address the physiological effects of
adipose tissue BMP signalling on glucose homeostasis and
insulin sensitivity. We report that WAT displays a marked
reduction in macrophage infiltration and improved insulin
sensitivity, which develops with increased age in mice with
adipose-specific deletion of Bmpr1a. In those mice, the re-
sponse to insulin stimulation is enhanced locally within the
adipose tissue, as well as at the systemic level, as signified by
improved insulin sensitivity and elevated insulin-stimulated
glucose uptake in skeletal muscle. This phenotype can be
explained, at least in part, by reduced macrophage infiltration
into WATand reduced proinflammatory polarisation of ATMs
due to loss of BMP signalling in the adipocytic lineage.
Importantly, myeloid-specific deletion of Bmpr1a does not
affect WAT inflammation or insulin sensitivity, indicating that
reduced BMP signalling in macrophages does not contribute
to this phenotype.

We previously demonstrated that loss of BMPR1A specifi-
cally impairs brown adipogenesis [15]. This occurred in classi-
cal interscapular BATusing aMyf5-Cre driver and, similarly, in
aP2-Bmpr1a-KO mice where an impaired formation of brown
and brite/beige adipocytes was observed [15]. The novel find-
ings presented here are surprising since it is commonly as-
sumed that brown adipocytes confer beneficial metabolic

features and promote an insulin-sensitive state. For instance,
transplantation of BAT to the visceral cavity of mice resulted
in a marked improvement of glucose tolerance [37]. Consistent
with these data, the residual BAT in aP2-Bmpr1a-KO mice
appears to be more insulin sensitive and this could offset the
overall effects of BAT atrophy to some degree. On the other
hand, it is well known that immune cells and proinflammatory
processes play a major role in the development of insulin resis-
tance [38]. Interestingly, increased expression of Bmpr1a in
WAT correlates with insulin resistance in human obesity, as
reported by Boettcher et al [39]. This study also reports that
individuals with impaired glucose tolerance or overt diabetes
show increased expression levels of BMPR1A in WAT [39].
These findings support the notion that changed expression
levels of BMPR1A in WAT could regulate insulin sensitivity.

Since aP2-Cre potentially deletes Bmpr1a in macrophages
in addition to adipogenic cells, an important aspect of our study
is to determine whether loss of Bmpr1a in either the adipogenic
or myeloid lineages leads to improved insulin sensitivity.
However, consistent with a previous report [34], we found
expression of Bmpr1a in macrophages isolated from WAT of
aP2-Bmpr1a-KOmice to be unchanged. Additionally, deletion
of Bmpr1a in myeloid cells, which include macrophages, does
not recapitulate the phenotype of the aP2-driven knockouts.
The role of BMPs in inflammatory processes is rather complex.
Some studies have reported anti-inflammatory effects on
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Fig. 3 Anti-inflammatory polarisation of ATMs in Bmpr1a-deficient ad-
ipose tissue. Gene expression analysis of F4/80 (a), Arg1 (b), Cd206 (c),
Cd301 (d), Ccl17 (e) and Cxcl9 (f) in FACS-purified macrophages (sur-
face markers: CD45+;CD11b+;F4/80+;CD3e−;CD19−;CD49b−;Ter119−)
isolated from mouse iWAT and eWAT. White bars, control mouse mac-
rophages; grey bars, aP2-Bmpr1a-KO mouse macrophages. Data are
shown as means ± SEM. Macrophage isolation experiments were

repeated with two or three mice/genotype and two or three independent
experiments were carried out for mice maintained on an HFD. mRNA
yield from sorted macrophages was limited and gene expression data
from the individual experiments were pooled for statistical analysis
(n = 9 for control and n= 8 for knockout in a, e, and f; control: n= 6 for
control and n= 5 for knockout in b–d). *p< 0.05 compared with control
mice of the same tissue type
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macrophages and other immune cells [40, 41], while others
show that active BMP signalling may promote inflammation,
a process that seems to be highly ligand-specific [42].

In a previous study it was reported that aP2-Cre is active in
the heart and interstitial cells of the skeletal muscle [34].
Muscle-resident interstitial cells are known to possess high
adipogenic potential and are involved in myogenic regenera-
tion [25, 43]. This could therefore help explain the improved
insulin sensitivity observed in muscle of aP2-Bmpr1a-KO
mice. Alternatively, an endocrine effect of a healthier adipose
tissue releasing different adipokines that affect muscle insulin
sensitivity is possible. As the Adipoq-Bmpr1a-KO strain only
partially recapitulates the phenotype of the aP2-Cre driven
knockout mice, these findings, taken together, suggest that
reduced BMP signalling in adipogenic progenitor cells is a
key factor in this process. This supposition is strongly sup-
ported by our observation that co-cultivation with Bmpr1a-
deficient pre-adipocyte blunts expression of proinflammatory
markers. It is thus conceivable that the phenotype observed in
aP2-Bmpr1a-KOmice is due to loss of BMP signalling within
the adipogenic lineage, comprised of pre-adipocytes and ma-
ture adipocytes. It is also conceivable that the differences in
manifestation of the phenotype using the two adipose-specific
Cre-lines are related to differences in the timing ofCre expres-
sion in both models that occurs later (i.e. only in mature

adipocytes in the Adipoq-Cre strain). Thus, alterations of sig-
nalling through BMPR1A during the earlier stages of white
adipocyte differentiation, rather than in fully mature adipo-
cytes, could be critical to the reduction of proinflammatory
signals and improved insulin sensitivity.

‘Inflamm-ageing’ is a concept encompassing age-related
deterioration of the innate immune system response, low-grade
chronic inflammation and the onset of age-related pathologies
such as insulin resistance [44]. In a well-described vicious circle,
chemoattractants originating from senescent adipocytes and pre-
adipocytes promote increased infiltration by proinflammatory
immune cells, which in turn exacerbate the negative metabolic
properties of adipocytes [45]. Thus, altered BMP signalling in
adipogenic cells might affect the release of adipokines that reg-
ulate recruitment to and function of immune cells within adipose
tissue. In aged animals, predominantly proinflammatory immune
cells (i.e. M1 macrophages) are recruited and reducing infiltra-
tion with these immune cells would, therefore, attenuate the
development of insulin resistance [46]. In addition, ageing is
accompanied by a switch from M2 anti-inflammatory macro-
phages towards proinflammatory M1 macrophages [47].
Hence, a model such as the aP2-Bmpr1a-KO mouse, where
overall macrophage infiltration into adipose tissue is reduced,
could retain a healthier metabolic profile due to a general lack
of infiltrating immune cells.
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Fig. 4 Loss of Bmpr1a in adipocytes, but not myeloid cells, reduces mac-
rophage infiltration. (a) Gene expression analysis of Bmpr1amRNA in bone
marrow of mice with LysM-Cre-driven deletion of Bmpr1a (LysM-Bmpr1a-
KO). White bars, control mice; grey bars, LysM-Bmpr1a-knockout mice.
Data are shown as means±SEM (n=3/group). (b) mRNA levels of leptin
and macrophage infiltration markers Cd68 and Mcp1 in WAT depots of
LysM-Bmpr1a-KO mice. White bars, control mice; grey bars, LysM-
Bmpr1a-knockout mice. Data are shown as means ±SEM (n=3/group).
(c) ITT in HFD-fed LysM-Bmpr1a-KO mice at 52 weeks of age. Squares,
control mice; diamonds, LysM-Bmpr1a-KOmice. Data are shown as means

±SEM (n=7 mice/group). (d) Bmpr1a mRNA levels in WAT depots of
knockout mice with Adipoq-Cre-driven deletion of Bmpr1a (Adipoq-
Bmpr1a-KO). White bars, control mice; black bars, Adipoq-Bmpr1a-KO
mice. Data are shown as means ±SEM (n= 7 for control and n= 6 for
knockout). (e) mRNA levels of leptin and macrophage infiltration markers
Cd68, Mcp1 and Cd11c in WAT of Adipoq-Bmpr1a-KO mice. Data are
shown as means ± SEM (n = 7 for control and n = 6 for knockout).
***p<0.001, †p=0.078, ‡p=0.084, §p=0.096, ¶p=0.097 compared with
control mice of the same treatment group and/or tissue type. qPCR, quanti-
tative real-time PCR
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In summary, our study provides new insight into the role of
BMP signalling in maturing white adipocytes. In brown adi-
pocytes, BMPs are critical for formation and thermogenic
activity, whereas in white adipocytes, BMP signalling appears
to regulate the endocrine interaction between cells of the adi-
pose lineage and immune cells. A better understanding of
these processes could help decipher the intricate crosstalk
between adipocytes and other adipose tissue-resident cell
types and this could provide novel avenues to counter the
progression and pathology of insulin resistance.
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