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Abstract 

T he gro wing interest in studying the relationship between the human microbiome and our health has also e xtended to time-to-e v ent studies 
where researchers explore the connection between the microbiome and the occurrence of a specific event of interest. The analysis of microbiome 
obtained through high throughput sequencing techniques requires the use of specialized Compositional Data Analysis (CoDA) methods designed 
to accommodate its compositional nature. There is a limited availability of statistical tools for microbiome analysis that incorporate CoDA, and this 
is e v en more pronounced in the conte xt of surviv al analy sis. To fill this methodological gap, w e present coda4microbiome f or surviv al studies, 
a new methodology for the identification of microbial signatures in time-to-e v ent studies. T he algorithm implements an elastic-net penalized 
Cox regression model adapted to compositional covariates. We illustrate coda4microbiome algorithm for survival studies with a case study 
about the time to de v elop type 1 diabetes for non-obese diabetic mice. Our algorithm identified a bacterial signature composed of 21 genera 
associated with diabetes de v elopment. coda4microbiome f or surviv al studies is integrated in the R package coda4microbiome as an extension 
of the existing functions for cross-sectional and longitudinal studies. 
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Introduction 

The advent of high throughput sequencing techniques, includ-
ing sequencing of 16S ribosomal rRNA and shotgun metage-
nomics, has greatly facilitated the study of the role of the
human microbiome in health and disease. Although specific
mechanisms of interaction are still uncertain, the growing
body of evidence connecting the human microbiome and our
health underscores the relevance of microbiome research in
identifying novel biomarkers for disease diagnosis and prog-
nosis, as well as for improving treatments for specific diseases
( 1 ,2 ). 

While microbiome studies are promising, its analysis still
faces many experimental and computational challenges ( 3 ).
One of them is the compositional nature of microbiome data,
which adds complexity to its statistical analysis. Composi-
tions are commonly defined as vectors of positive real num-
bers constrained to a total sum ( 4 ) but they have a broader
definition as vectors of positive real numbers with parts or
components carrying relative information with respect to each
other. The quantification of microbial compositions from high
throughput sequencing techniques is limited by the sequenc-
ing depth which entails compelled dependencies between the
observed abundances of each taxon in the sample. This means
that a change in the relative abundance of one microbe drives
changes in the observed relative abundances of the others just
to fulfil the total sum constraint ( 5 ). In 1982, Aitchison laid
the foundations of Compositional Data Analysis (CoDA) and
suggested the log-ratio approach. It consists of analysing log-
arithms of ratios between components to extract their relative
information instead of analysing each component separately
( 4 ). 

In recent years, microbiome analyses are being included in
time-to-event studies, also called survival studies, where re-
searchers analyse the time until a given event occurs, e.g., the
actual death of an individual, onset or reemission of a dis-
ease or response to a treatment, to understand its relation-
ship with other features. Including microbiome analysis in rep-
resentative, well-phenotyped population cohort studies, with
sufficient follow-up time, allowed the identification of micro-
bial signatures associated to overall mortality, and particularly
highly related to gastrointestinal and respiratory causes ( 6 );
as well as the definition of a microbiome ‘uniqueness’ index
associated to healthy ageing and predictive for all-cause mor-
tality risk ( 7 ). Microbiome has also been used for assessing
chemoradiation performance in cervical cancer patients’ sur-
vival ( 8 ), and in colorectal cancer prognosis ( 9 ). 

Few statistical tools have been specifically developed for
analysing microbiome data in survival studies and even less
within the CoDA framework. Most of the microbial survival
studies either ignore the compositionality of microbiome data
or, at best, perform the centered log-ratio (clr) transformation
of microbiome data using the geometric mean of the com-
position followed by standard survival analysis. While this
is a handy option, we expose in the discussion section the
limitations of this approach. Other CoDA methods that have
been proposed for microbiome analysis, like ANCOM-II ( 10 ),
ANCOM-BC ( 11 ), ALDEx2 ( 12 ) or Selbal ( 13 ), are not suit-
able for survival studies. 

We recently developed coda4microbiome ( 14 ), a new al-
gorithm for microbiome analysis in the CoDA framework
implemented for cross-sectional and longitudinal studies. In
this work we present the extension of coda4microbiome
for survival studies. As described in Calle et al. ( 14 ),
coda4microbiome algorithm aims to identify a microbial sig- 
nature, i.e. a model based on microbial abundances, that best 
predicts a given response variable. In survival studies, the goal 
will be to identify a microbial signature that is associated to 

the risk of developing an event of interest. As in the exist- 
ing coda4microbiome algorithm, its extension to survival data 
follows three main steps that are briefly explained hereafter: 
modelling, variable selection and reparameterization. 

Cox’s proportional hazard regression model ( 15 ) is one 
of the most frequently used models for survival data and it 
is also the choice in our case. However, Cox’s model can- 
not be directly applied to compositional covariates without 
some previous log-ratio transformation that map these fea- 
tures from the simplex to the real space. Instead of using 
the clr-transformation mentioned above, we consider the ‘all- 
pairwise log-ratio’ Cox’s model, i.e., a Cox’s proportional haz- 
ard model with all possible pairwise log-ratios of microbial 
features as regressors. 

The stated Cox’s model will most likely be high- 
dimensional since in microbiome studies the number of micro- 
bial taxa ( K) is usually larger than the number of samples ( n ),
and even more in this case that we are considering all pairs 
of taxa which increases the number of features from K to 

K · ( K − 1 ) / 2 . In this setting, classical approaches for model 
fitting will be either infeasible or will likely induce overfit- 
ting ( 16 ). To address this high-dimensional problem we con- 
sider penalized regression ( 17 ) that simultaneously performs 
variable selection and model fitting. Penalized regression con- 
sists in adding a penalty term to the objective function, which 

shrinks the coefficient estimates toward zero and forces some 
of them to be exactly zero. This results in a parsimonious 
Cox’s model containing the most relevant features (in our case,
log-ratios of pairs of microbial taxa) for predicting the risk of 
developing the event of interest. We will call microbial risk 

scores to the linear predictions of the estimated Cox’s model. 
Since the interpretation of a model whose predictors are 

pairwise log-ratios is far from straightforward, we take ad- 
vantage of the properties of logarithms to expand log-ratios.
This reparameterization results in a Cox’s model expressed in 

terms of the initial microbial features (log-transformed abun- 
dances) which is much more meaningful. Moreover, by con- 
struction, the sum of the coefficients of the expanded model 
is zero. This defines two groups of taxa, those with a positive 
coefficient that contribute to larger microbial risk scores and 

those with a negative coefficient that contribute to smaller risk 

scores. Hence, the risk of developing the event of interest is ex- 
pressed in relation to the relative abundances between these 
two groups of taxa. 

In this article, we describe the methodology of the new al- 
gorithm for microbiome survival studies in detail, along with 

its main functions in sections ‘ coda4microbiome algorithm 

for survival data’ and ‘ coda4microbiome for survival main 

functions’, respectively (Materials and Methods). We illustrate 
coda4microbiome for survival data assessing the relationship 

between mice gut microbiome and type 1 diabetes develop- 
ment rate in section ‘Microbiome and type 1 diabetes on- 
set’ (Results). We further discuss the utility and main advan- 
tages of coda4microbiome algorithm in comparison to log- 
transformation approaches in the Discussion section. 

The new functions developed for survival analysis have 
been added to the existing coda4microbiome R package,
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vailable at CRAN ( https:// cran.r-project.org/ web/ packages/
oda4microbiome/index.html ). A detailed tutorial about
he new functions is available in coda4microbiome blog
 https:// malucalle.github.io/ coda4microbiome/ ). The data and
ode for reproducing the analysis are available at DOI
0.5281 / zenodo.10552383. 

aterials and methods 

oda4microbiome algorithm for survival data 

ssume a survival study with n individuals where time-to-
vent for subject i is denoted as t i . Let X i = (X i 1 , X i 2 , . . . , X iK )
e the microbial composition for K taxa in the i- th subject.
icrobial abundances (X) can be either raw counts or rela-

ive abundances. 
The goal of coda4microbiome algorithm for survival data

s to identify those microbial taxa whose relative abundances
re associated to survival time. 

We consider the Cox’s proportional hazards regression
odel ( 15 ) with all possible pairwise log-ratios of taxa as co-

ariates. This regression model states a possible relationship
etween pairs of microbial species (log-ratios) and the risk of
he given event to occur. 

Let h (t| X) be the hazard function at time t for an individ-
al with microbial composition X . The all pairwise log-ratios
ox’s proportional hazards model is given by: 

h (t| X ) = h 0 (t ) · exp 

⎛ 

⎝ 

∑ 

1 ≤j < k ≤K 

β jk · log (X j /X k ) 

⎞ 

⎠ 

here h 0 (t ) is the baseline hazard of the model and β jk is the
egression coefficient for the log-ratio between components X j 

nd X k . 
This model can also be expressed as a generalized linear
odel where the logarithm of the hazard ratio is a linear com-
ination of all pairwise log-ratios: 

log 
(

h ( t| X ) 
h 0 ( t ) 

)
= 

∑ 

1 ≤j < k ≤K 

β jk · log 
(
X j / X k 

)
. (1)

With the aim of identifying which taxa are associated with
he outcome, variable selection is carried out by the estimation
f the regression coefficients ( β jk ) subjected to an elastic-net
enalization (Equation (2) ) where L is the log partial likeli-
ood function for the Cox model ( 18 ). 

ˆ β = argmin 

β

{ L (β ) + λ1 ‖ β‖ 2 2 + λ2 ‖ β‖ 1 } (2)

Such penalization can also be written in terms of λ and α,
ith λ1 = λ( 1 − α) and λ2 = λα, where λ controls the amount
f penalization and α the mixing between norms. By default,
is set to 0.9 but this value is adjustable by the user. 
With the appropriate penalization some coefficients are

hrank to zero which leads to the elimination of those log-
atios less associated to the outcome. The optimal value for λ
s selected after a cross-validation process performed with the
unction cv.glmnet() from glmnet R package ( 19 ) and consid-
ring the maximization of the Harrell’s C -index statistic ( 20 ).
he C-index is defined as the probability that a given sam-
le with lower risk score outlives a sample with higher risk
core. This measure reports how well the survival model pre-
icts the observed sequence of events. The algorithm also al-
ows for adjustment of non-compositional variables (e.g., age,
sex, clinical variables, etc.) that are added as an offset into the
cv.glmnet() function. 

After modelling and variable selection, the result is a Cox
model composed by the logarithms of pairs of taxa with non-
zero coefficient. 

log 
(

h ( t| X ) 
h 0 ( t ) 

)
= 

∑ 

1 ≤ j<k ≤K 

ˆ β jk · log 
(
X j / X k 

)
. (3)

The linearity of logarithms permits the reparameterization
of (Equation (3) ) into single taxa, instead of pairs of taxa,
which makes interpretation of results more meaningful: 

log 
(

h ( t| X ) 
h 0 ( t ) 

)
= 

∑ 

1 ≤ j≤K 

ˆ θ j · log 
(
X j 

)
(4)

where ˆ θ j is the sum of the coefficients ˆ β that correspond to a
log-ratio involving component j. 

The linear predictor of the model, i.e., the right part of
Equation ( (4) ), provides a numerical value that is related to
the risk of developing the event. In our context, we call it mi-
crobial risk score , M , since it is obtained as the combination
of microbial abundances. For each individual i ∈ { 1 , . . . , n } ,
its microbial risk score is given by: 

M i = 

∑ 

1 ≤ j≤K 

ˆ θ j · log (X i j ) (5)

It can be proved that this final microbial signature is a log-
contrast function, i.e.,

∑ K 
j=1 

ˆ θ j = 0 ( 21 ). The zero-sum con-
straint ensures the scale invariance CoDA principle required
for compositional data analysis ( 22 ). It also provides a con-
venient interpretation of the signature as a weighted balance
between two groups of taxa, those with positive coefficient vs
those with negative coefficient, as illustrated in the example
below. See ( 23 ) for a formal definition of weighted balance. 

Interpretability of the model through a toy example 

We illustrate with a toy example the main features of the pro-
posed methodology, emphasizing the reparameterization step
that ensures the model is a log-contrast and the interpretation
of the resulting microbial signature as a balance between two
groups of taxa. 

Let’s consider a microbial community of 5 taxa whose
abundance composition is given by X = (X 1 , X 2 , X 3 , X 4 , X 5 ) .
The algorithm aims to find the optimal combination of these
five taxa abundances, or a subset of them, that can accurately
predict the survival time of interest. This is accomplished
through three main steps: 

(1) Modelling. The Cox proportional hazards model with
all pairwise log-ratios is considered. Given 5 initial vari-
ables, the number of pairwise log-ratios is equal to(

5 

2 

)
= 10 . Thus, the Cox model has 10 coefficients,

βi j , 1 ≤ i < j ≤ 5 : 

log 
(

h (t| X ) 
h 0 (t ) 

)
= β12 log ( X 1 / X 2 ) + β13 log ( X 1 / X 3 ) 

+ . . . + β15 log ( X 1 / X 5 ) + β23 log ( X 2 / X 3 ) 

+ . . . + β25 log ( X 2 / X 5 ) + β34 log ( X 3 / X 4 ) 

+ β35 log ( X 3 / X 5 ) + β45 log ( X 4 / X 5 ) 

https://cran.r-project.org/web/packages/coda4microbiome/index.html
https://malucalle.github.io/coda4microbiome/
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(2) Variable selection. Penalized regression (elastic-net) is
applied to estimate the coefficients of the above Cox
model. 
Let’s assume that after elastic-net penalization only four
coefficients are different from zero and their values are:
β13 = 1 , β15 = 5 , β23 = 2 and β25 = 4 . Thus, the esti-
mated Cox model is given by: 

log 
(

h ( t| X ) 
h 0 ( t ) 

)
= log ( X 1 / X 3 ) + 5 log ( X 1 / X 5 ) 

+ 2 log ( X 2 / X 3 ) + 4 log ( X 2 / X 5 ) (6)

(3) Reparameterization: 

By expanding the logarithm of a ratio as the difference of
logarithms, we can rewrite the above Cox model as: 

log 
(

h ( t| X ) 
h 0 ( t ) 

)
= log ( X 1 ) − log ( X 3 ) + 5 log ( X 1 ) 

−5 log ( X 5 ) + 2 log ( X 2 ) − 2 log ( X 2 ) 

+4 log ( X 2 ) − 4 log ( X 5 ) 

After aggregating the terms corresponding to the same vari-
ables, it reduces to a model with coefficients that sum to zero,
confirming that the model is log-contrast: 

log 
(

h ( t| X ) 
h 0 ( t ) 

)
= 6 log ( X 1 ) + 4 log ( X 2 ) − log ( X 3 ) − 9 log ( X 5 )

(7)

Model 1 (Equation 6 ) and model 2 (Equation 7 ) are equiva-
lent, but model 1 is expressed with log-ratios, making it more
challenging to interpret. Instead, model 2 is a linear combi-
nation of (log-transformed) variables that we are much more
familiar with. 

The right part of (Equation 7), referred as microbial risk
score , and denoted by M , provides the combination of micro-
bial abundances that best predicts survival time. Large values
of M are associated to large hazard ratios, i.e., larger risks than
the baseline. 

In this example, the microbial risk score is given by the com-
bination of four out of the five initial taxa: M = 6 log ( X 1 ) +
4 log ( X 2 ) − log ( X 3 ) − 9 log ( X 5 ) . As mentioned above, M can
be interpreted as a weighted balance between two groups of
taxa: those that contribute positively to the risk of devel-
oping the event of interest (taxa X 1 and X 2 with weights 6
and 4) and those that contribute negatively to the risk (taxa
X 3 and X 5 with weights 1 and 9). Taxa X 4 appears to be
not related to the survival time, since it is not part of the
model. Let’s consider two individuals with microbial compo-
sitions ( 1 , 2 , 10 , 5 , 30 ) and ( 12 , 25 , 15 , 10 , 17 ) , respec-
tively. For the first subject, the microbial risk score M is equal
to −1 . 3 , which means that the balance tilts towards the vari-
ables X 3 and X 5 , resulting in a lower risk of developing the
event of interest than the second subject that has a microbial
risk score of 9 . 7 , corresponding to a balance that leans to-
wards taxa X 1 and X 2 . To be noticed that these risk scores
can be calculated without concern that the total abundance
of the two individuals is different (48 and 79, respectively).
This is because the microbial risk score is a log-contrast func-
tion, ensuring scale invariance. Indeed, the same risk scores
would be obtained if the abundances are normalized to rela-

tive abundances beforehand. 
A graphical representation of the contribution of each 

taxon to the microbial risk score is provided by the signature 
plot (Figure 1 ). 

coda4microbiome for survival main functions 

The algorithm for time-to-event data is implemented 

in the coda_coxnet() function within the R package 
coda4microbiome . Other two functions, plot_survcurves() 
and plot_prediction_surv() , are added into the package for 
a graphical representation of the results. We briefly describe 
these functions below and their implementation is illustrated 

in a case study in section ‘Microbiome and type 1 diabetes 
onset in mice’. 

To perform a survival analysis with coda_coxnet() function,
three essential inputs are needed: the taxa abundance table (ei- 
ther relative or absolute abundances), the survival time, and 

the event occurrence for each sample. It is possible to adjust 
by any non-compositional variable introducing a dataset con- 
taining covariates. Other parameters editable by the user are 
the number of variables to use in the variable selection step,
level of mixing between L1 and L2 norms in elastic net penal- 
ization, number of folds in cross-validation process and the 
minimum absolute value of the coefficient for a variable to be 
included in the final model. 

coda_coxnet() function returns three different results: (i) 
the coda4microbiome model in terms of the selected variables 
and their respective coefficients, which are also graphically 
represented in a bar plot called the ‘signature plot’; (ii) the 
microbial risk score for each sample and its graphical rep- 
resentation in a heatmap, called the ‘risk score plot’, which 

displays samples sorted by their microbial risk score together 
with an adjacent scatterplot of survival times and (iii) a sum- 
mary of the model accuracy that includes the C -index value 
of the signature applied to the same data used to generate the 
model (apparent C -index) and the mean C -index value and its 
standard deviation from cv.glmnet() output. 

The risk score plot can also be independently generated 

with plot_riskscore() function using the obtained microbial 
risk score from coda_coxnet() output. 

We developed a third function for an ultimately visualiza- 
tion of results: plot_survcurves() . The function plots the sur- 
vival curves of samples stratified in two groups according to 

their microbial risk score. Stratification threshold is set by de- 
fault to the median value of the overall microbial risk, but it 
can be adjusted by the user. The plot also displays the P -value 
of the log-rank test ( 24 ) between the survival curves, and a 
table with the number of individuals at risk at every time. 

Results 

Microbiome and type 1 diabetes onset in mice 

We illustrate coda4microbiome algorithm for survival stud- 
ies evaluating the association between the time to develop type 
1 diabetes (T1D) and gut microbiome with data from a non- 
obese diabetic (NOD) mice study ( 25 ). T1D is an autoimmune 
disease that is gaining incidence worldwide, also among pae- 
diatric population. Early life exposure to antibiotics is critical 
for immune system development and it might lead to an ac- 
celeration of T1D onset ( 26 ). In that line, Zhang et al. ( 25 ) 
showed the effect of a single use of antibiotic on T1D devel- 
opment rate in NOD mice. We illustrate our methodology us- 
ing survival data from Zhang’s study, which was processed 
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Figure 1. Signature plot: bar plot representing the contribution of each variable to the survival risk, i.e., their coefficient in the model. Negative 
coefficients in red and positive coefficients in blue. 
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y Gu et al. ( 27 ). Our analysis was performed at the genus
evel, keeping taxa present in more than 5% of samples, i.e.,
e removed those taxa with 95% zeros or more, for not be-

ng statistically informative. Doing this, we are not assuming
hat these low abundant taxa are not biologically important,
e are just removing them because, with the resolution of the

equencing process, they cannot contribute to the statistical
odel. We used the genus level for illustrative purposes, but

he algorithm can be applied to any other taxonomic level.
he analysis at different taxonomic levels can reveal specific
spects and contribute to a more comprehensive understand-
ng of the problem. 

The processed data, available at coda4microbiome pack-
ge, includes metagenomic information of 30 taxa for 173
ice (55 T1D free and 118 that developed T1D). The dataset

lso includes whether mice developed T1D or not, the time
o T1D onset (survival time), as well as sex and antibiotic ad-
inistration. 
To identify the bacterial signature associated to

he time of T1D development we implemented
oda4microbiome::coda_coxnet() function. We adjusted
he model by sex and antibiotic administration to obtain
 bacterial signature that is not affected by these possible
onfounders. The new function performs variable selection
hrough a cross-validation of the penalized regression by
mplementing cv.glmnet() from glmnet package. The function
ets a sequence of lambda values and cross-validates every
enalized model. Red dots in Figure 2 correspond to the mean
ross-validation measures ( C -index) for every lambda value,
nd their standard deviations are represented with the upper
nd lower error bars. The two vertical dashed lines in Figure
 correspond to values of ‘lambda.min’ and ‘lambda.1se’.
n the left, ‘lambda.min’ is the degree of penalization that
rovides minimum mean cross-validated error or, in this case,
aximum C -index. On the right, ‘lambda.1se’ is the value
f lambda that provides the most parsimonious model with
 cross-validated C -index within one standard error of the
aximum. By default, coda4microbiome uses ‘lambda.1se’.
In our example, the fitted model with ‘lambda.1se’ results in
21 log-ratios with non-zero coefficient. Through reparam-
eterization, the log-ratios are expanded, and the model is
expressed as a log-contrast of 21 different taxa, each one with
a specific contribution to the balance: 10 taxa with positive
coefficient and 11 with negative coefficient (Figure 3 ). 

The model provides a combination of microbial abun-
dances that determines the risk of developing T1D in each
subject; we denote such risk as the microbial risk score . A
graphical representation of microbial risk scores and survival
times is given by the ‘risk score plot’ (Figure 4 ). The graphic
displays samples vertically ordered according to their micro-
bial risk score (left column: from low to high risk of develop-
ing the event of interest) and their observed times (horizontal
axis: from the beginning to the end of the experiment). Sam-
ples that developed the event of interest are plotted in orange,
and censored samples in grey. A vertical bar at the right plot
indicates whether the individual has experienced the event or
not. 

In our example, ‘Event occurrence’ refers to the develop-
ment (or not) of T1D; and ‘Time’ corresponds to time until
the development of T1D or the duration of the experiment.
The risk score plot (Figure 4 ) is useful to graphically explore
the association between microbial risk scores and the time to
development of T1D. By comparing the left bar of the plot (mi-
crobial risk score) with the right bar of the plot (occurrence
of the event), we can see a higher presence of T1D develop-
ment events for those individuals with higher microbial risk
scores. When focusing on the distribution of survival times,
we observe that the times to development T1D for individuals
with higher risk scores are slightly shorter than for individuals
with lower risk scores. Moreover, censored samples are more
abundant among those individuals with lower microbial risk
scores. 

For an additional assessment of the possible association be-
tween the microbial risk score and the time to development
of T1D (survival time), we analysed the survival curves of
NOD mice stratified according to their microbial risk score
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Figure 2. Cross-validation accuracy curve for different degrees of penalization. Horizontal axis reports log-transformed penalization parameter ( λ) while 
cross-v alidation C -inde x is reported along the v ertical axis. Vertical dashed-lines highlight lambda.min and lambda.1se v alues of penalization. On top, the 
number of selected log-ratios for each degree of penalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 5 ). The plot, that was generated with plot_survcurves()
function, shows that individuals with higher microbial risk
scores (above the median, red line) have shorter times of T1D
development compared to individuals presenting lower values
of the risk score (below the median, blue line), which develop
T1D later in time. Differences in T1D development times ap-
pear to be statistically significant according to the log-rank
test ( 24 ) ( P -value < 0.0001). 

Model assessment: proportional hazards 

assumption 

Our algorithm implements the Cox’s regression model ( 18 ),
which assumes proportionality of hazards, i.e., the hazard ra-
tio between one group of individuals and the baseline group
is constant over time. It also assumes linearity between the
log hazard ratio and each covariate. Both, the proportional
hazards assumption and the linearity assumption can be as-
sessed by statistical tests or graphical representations that
test each explanatory variable individually. However, it is not
clear how to test these hypotheses in high-dimensional set-
tings involving penalized regression. Instead, in this study we
tested the Cox model obtained after variable selection with
coda4microbiome algorithm. Specifically, we considered the
Cox’s proportional hazard model with the obtained T1D mi-
crobial risk score, M : 

h ( t| M ) = h 0 (t ) · exp (β · M ) (8)
This model was then tested for the proportional hazard as- 
sumption using survival::cox.zph() which implements Gramb- 
sch and Therneau test ( 28 ). The proportional hazards assump- 
tion was not rejected with a P -value = 0.3. Accordingly, the 
graphical inspection of the Schoenfeld residuals in Figure 6 A 

does not show any pattern along time since proportional haz- 
ards assumes that ˆ β do not vary over time. Regarding the 
linear relationship between predictors and the outcome, we 
graphically tested residuals deviance of the Cox model (Figure 
6 B). Though this does not prove the assumptions of the initial 
Cox model (Equation (1) ), it provides an additional interpre- 
tation of results: exp ( ̂  β ) is the estimated hazard ratio between 

two individuals whose microbial risk scores differ in 1 unit,
and this ratio remains constant over time. In our example,
taking as the reference group those individuals with balanced 

composition between the two bacterial groups ( i.e.,M i = 0), the 
risk of T1D for an individual with M i = 1 is increased by a fac- 
tor of exp ( ̂  β ) = 5 . 48 . 

Discussion 

The intricate interpretability of CoDA methods and the lim- 
ited availability of specialized software pose a significant ob- 
stacle in tackling compositionality in microbiome data anal- 
ysis. This is even more evident in the case of survival stud- 
ies where the existence of specific CoDA algorithms for this 
setting is really scarce. Among those who are aware of the 
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Figure 3. Microbial signature for T1D onset. The final model for T1D onset risk prediction is composed of a balance between two groups of taxa. Those 
that contribute to the microbial signature with a positive coefficient ( ̂ θ) are plotted in blue and those with negative coefficient in red. 

Figure 4. Microbial risk score plot. Samples are ordered by their microbial risk score (vertical left axis) and plotted along time (horizontal axis). In orange, 
samples that de v eloped T1D (e v ent occurrence = ‘Yes’); in grey censored samples (event occurrence = No). 
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eed to consider data compositionality in the analysis, the
ost common approach is to normalize microbiome data by

he geometric mean of the composition (clr transformation)
nd then apply the Cox regression model to look for asso-
iations between features and the risk of developing a given
vent. In this case, one should be cautious about interpret-
ng the transformed variables as if they were the original vari-
bles. In general, any method that rely on log-ratio transfor-
ations should be carefully interpreted since its results de-
end on the reference used. In particular, one should not inter-
ret clr-transformed variables as single features without tak-
ing into account their dependence on the geometric mean ( 29 ).
A problem of this approach when the goal is variable selec-
tion is that irrelevant features are never completely removed
from the analysis since the normalization term (the geomet-
ric mean) of the selected clr-transformed variables contains
all components. Simulation studies showed that the power of
selecting important variables is reduced by the clr transforma-
tion ( 23 ) for small compositions due to the high variability of
the geometric mean, whereas when the number of variables is
large, the effect on variable selection performance is negligible
( 23 ). Finally, the clr transformation is not sub-compositionally
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Figure 5. Survival curves stratified by microbial risk score. Sample stratification is based on the median risk score value (default): survival curve for 
samples presenting higher microbial risk scores than the median in red, and survival curve for samples with microbial risk scores below the median in 
blue. The P -value of the log-rank test is shown in the plot. On the bottom, a table with the number of samples at risk over time. 

A

B

Figure 6. T1D Cox model assumptions assessment. ( A ) Graphical diagnostic of scaled Schoenfeld residuals over time. Dashed lines correspond to 
2-standard-error around the fit (solid line). ( B ) Residuals deviance linearity c hec k 

 

 

 

 

 

 

 
coherent, which means that the results can differ substan-
tially when the transformation is considered with the total
composition or with a sub-composition. This complicates the
transfer of results to new studies since the set of taxa in
the original study may not align with the available taxa in
the new study, rendering it impractical to apply the same clr

transformation. 
As an alternative to the clr transformation, McGregor et al.
( 30 ) introduced a new method for CoDA survival regression 

with compositional covariates: a Cox regression model in- 
volving the isometric log-ratio (ilr) transformation. They il- 
lustrated the methodology by analysing the association be- 
tween mortality and a small composition involving only three 
components: sleeping time, physical activity, and sedentary 
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ehaviour. The main limitations of this approach are the
ifficulty of implementing the ilr transformation in high-
imensional contexts that involve compositions of hundreds
f features, such as microbiome data, and the interpretation
f results. 
We believe that a key factor determining the utility and fu-

ure adoption of a new algorithm for microbiome data analy-
is, in addition to its strong theoretical foundation, is the ease
f interpreting the results it provides. With this intention in
ind, we developed coda4microbiome . One of the most note-
orthy aspects of coda4microbiome is that, even though it
egins with an initial model using log-ratio transformed vari-
bles, the final model is expressed in terms of the original vari-
bles. By considering the model with all pairwise log-ratios,
he constant-sum constraint of compositional data is removed,
nd the log-ratios are handled directly in the regression model,
ithout any dependence restriction. After variable selection,

he algorithm returns a log-contrast signature written in terms
f the original single features. The final signature is composi-
ionality coherent, ensuring the scale invariance principle ( 22 ).

As described above, the microbial risk score can be infor-
ally interpreted as a balance between two groups of taxa,
easuring the contribution of one group with respect to the
ther. This should not be confused with amalgamation bal-
nces ( 31 ) that sum the abundances of each group of variables.
he log-contrast function can be expressed as the log-ratio of

wo geometric means ( 23 ), thus involving the product of the
bundances instead of their sum. The difference between the
wo types of balances is especially relevant regarding the ef-
ect of small abundance values. In a log-contrast function, the
ontribution of an abundance close to zero is very large since
t involves the logarithm of the abundances. For instance, if
 taxon is part of the log-contrast microbial signature with
 positive coefficient and an individual has a very low abun-
ance of this taxon, its microbial risk score will be highly neg-
tive (since the logarithm of small numbers are large negative
alues) meaning that the risk of developing the event is very
ow. Both models can provide different insights into the anal-
sis of microbiome data. 

The new functions of coda4microbiome for survival
xplore microbiome data with a principal focus on pre-
iction. Unlike other differential abundance methods,
oda4microbiome identifies the microbial signature with
he minimum number of features that best predicts the risk of
eveloping an event of interest (onset of a disease, response
o a treatment or risk of death, for example). The likelihood
f developing the event of interest, which we refer to as
icrobial risk score, is expressed in relation to the relative

bundances of taxa that compose the bacterial signature. As
entioned before, we are deeply committed to making the

esults easily understandable, and especially in the context of
urvival data. For this reason, the package provides several
unctions for graphical representations of the taxa comprising
he microbial signature, the predictive microbial risk score
ogether with other variables and survival curves for different
isk groups. 

Our algorithm, coda4microbiome for survival, relies on the
nitial Cox regression model. It assumes constant hazards ra-
ios over time for each of the pairwise log-ratios included
s covariates. The proportional hazards assumption could be
ested for each variable and globally using the Grambsch and
herneau test but in high dimensional microbiome studies

t is not clear the practical utility of this verification. What
should we do if one among hundreds of log-ratios does not
satisfy the proportionality assumption? This is very likely to
happen in a high-dimensional setting. Would this invalidate
the Cox model? We don’t think so. In fact, we are not in-
terested in demonstrating a specific relationship between sur-
vival time and the pairwise log-ratios; we simply propose the
Cox model as a tool or device for variable selection. Simula-
tion studies showed that the lack of proportional hazards in
penalized models may affect the selection of variables ( 32 ).
However, since the focus of coda4microbiome is on predic-
tion rather than inference, small departures from model as-
sumptions could reduce the prediction accuracy of the model
but should not have further implications in the analysis. On
the other hand, testing the proportional hazards assumption
of the identified signature in the final model can be useful for
interpreting the risk of the event in relation to the microbial
risk score. 

Log-ratios methodologies should be preceded by proper im-
putation methods because they do not allow the presence of
zero among variables. To deal with the high sparsity of micro-
biome data, coda4microbiome algorithm implements a sim-
ple imputation approach to avoid zeros but other imputa-
tion methods can be applied externally before running the
algorithm. 

With this work, we provide the scientific community with
a new CoDA algorithm that we hope will be useful for the
analysis of microbiome data in survival studies. 

Data availability 

The data and code for reproducing the analysis is available at
DOI 10.5281 / zenodo.10552383. 
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