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Research in environmental health is becoming increasingly reliant upon data science
and computational methods that can more efficiently extract information from complex
datasets. Data science and computational methods can be leveraged to better identify
relationships between exposures to stressors in the environment and human disease
outcomes, representing critical information needed to protect and improve global
public health. Still, there remains a critical gap surrounding the training of researchers
on these in silico methods. We aimed to address this gap by developing the
inTelligence And Machine lEarning (TAME) Toolkit, promoting trainee-driven data
generation, management, and analysis methods to “TAME” data in environmental
health studies. Training modules were developed to provide applications-driven
examples of data organization and analysis methods that can be used to address
environmental health questions. Target audiences for these modules include students,
post-baccalaureate and post-doctorate trainees, and professionals that are interested
in expanding their skillset to include recent advances in data analysis methods relevant
to environmental health, toxicology, exposure science, epidemiology, and
bioinformatics/cheminformatics. Modules were developed by study coauthors using
annotated script and were organized into three chapters within a GitHub Bookdown
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site. The first chapter of modules focuses on introductory data science, which includes
the following topics: setting up R/RStudio and coding in the R environment; data
organization basics; finding and visualizing data trends; high-dimensional data
visualizations; and Findability, Accessibility, Interoperability, and Reusability (FAIR)
data management practices. The second chapter of modules incorporates
chemical-biological analyses and predictive modeling, spanning the following
methods: dose-response modeling; machine learning and predictive modeling;
mixtures analyses; -omics analyses; toxicokinetic modeling; and read-across
toxicity predictions. The last chapter of modules was organized to provide
examples on environmental health database mining and integration, including
chemical exposure, health outcome, and environmental justice indicators. Training
modules and associated data are publicly available online (https://uncsrp.github.io/
Data-Analysis-Training-Modules/). Together, this resource provides unique
opportunities to obtain introductory-level training on current data analysis methods
applicable to 21st century science and environmental health.

Keywords: bioinformatics and computational biology, cheminformatics, data science, epidemiology, exposure
science, machine learning, public health, toxicology

Graphical Abstract |

HIGHLIGHTS

• Training that translates data science into environmental
health research is needed

• Modules were developed to teach coding basics and
introductory data science

• Also cover chemical-biological modeling, machine learning,
and database mining

• Modules exemplify methods to uniquely address
environmental health issues

• Modules allow for improved training towards current data
analysis methods

1 INTRODUCTION

The field of environmental health is rapidly expanding efforts
aimed at the improved data science methods and data integration.
Data produced in environmental health studies are becoming
larger, with increased resolution and expanded variable coverage
paralleling technological advancements and improved record
keeping. These data now serve as critical resources to increase
the understanding of relationships between chemicals in the
environment and disease outcomes. Multiple organizations
have recently advocated for increased reliance and proficiency
surrounding in silico approaches to advance the science of toxicity
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testing, improve chemical exposure assessments, and increase
data sharing and associated analysis tools (NAS, 2007; NAS, 2017;
EU, 2019; Florance, 2020; Sim et al., 2020; EPA, U.S, 2021b).
However, there remains high demand for personnel that are
adequately trained to analyze and manage large datasets to
address environmental health issues, representing a timely
concern that requires updated resources and training
opportunities. We therefore aimed to contribute towards this
critical gap through the development of an online toolkit, titled
the inTelligence And Machine lEarning (TAME) Toolkit, to
promote didactic data generation, management, and analysis
methods to “TAME” data in environmental health studies.

The TAME Toolkit was developed to provide a publicly
available, self-guided tour on topics spanning introduction to
computer programming, chemical-biological analyses, predictive
modeling, and environmental health database mining. The
majority of computer programming information and examples
provided within the TAME Toolkit were based in the R coding
language, since this coding environment is publicly available,
widely used, and well-documented (The R Project for Statistical
Computing, 2021). R is specifically available as Free Software under
the Free Software Foundation’s GNU General Public License and
can be run across all major platforms and operating systems,
including Unix, Windows, and MacOS. Because of this open
licensing format, R has emerged as an avenue for world-wide
collaboration, benefiting from the continual expansion through
thousands of user-developed packages that aid in improved data
analyses and methods sharing. Packages have varying utilities,
spanning basic organization and manipulation of data to cutting-
edge approaches to parse and analyze data through artificial
intelligence (AI) and/or machine learning (ML) (CRAN, 2021a;
Bioconductor, 2021).

Data analysis examples were included in the TAME Toolkit to
span topics relevant to environmental health, which is notably
multi-disciplinary and includes exposure science, epidemiology,
toxicology, bioinformatics/cheminformatics, and related
disciplines. Examples were developed by the team of authors,
pulling from their real-world datasets and expertise in
environmental health data analytics. Training modules were
organized to include examples of each authors’ area of expertise,
to provide a broad foundation in data science methods relevant to
environmental health.Modules contained within the TAMEToolkit
were organized into three chapters spanning 1) introductory data
science; 2) chemical-biological analyses and predictive modeling;
and 3) environmental health database mining. Modules were
designed to aid in the training of students, post-baccalaureate
and post-doctorate trainees, and professionals that are interested
in expanding their skillsets surrounding data analysis techniques
relevant to environmental health, toxicology, exposure science,
epidemiology, and bioinformatics/cheminformatics. These
modules will continue to be expanded and improved upon in
the coming years, to continue the expanded use of data
management and analysis tools to address timely environmental
health research topics and promote meaningful collaborations
across this multi-disciplinary field of study.

2 METHODS

2.1 Overall Approach to Organizing the
inTelligence And Machine lEarning Toolkit
The TAME Toolkit was developed with the goal of guiding
participants with various backgrounds through data
organization and analysis methods that are useful towards

FIGURE 1 |Overall organization of the TAME Toolkit, developed to promote trainee-driven data generation, management, and analysis methods to “TAME” data in
exposure science, toxicology, and environmental health research. Individual training modules were developed in R coding language to provide applications-based
training in the broad categories of data science, chemical-biological analyses and predictive modeling, and environmental health database mining.
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evaluating big data in exposure science, epidemiology, toxicology,
and environmental health studies. Modules were developed to
cover three primary focuses (organized into chapters): 1)
introductory data science; 2) chemical-biological analyses and
predictive modeling; and 3) environmental health database
mining (Figure 1). Applications-based environmental health
questions are posed to keep participants actively engaged.
These questions also aid in the translation of methods towards
real-world exposure science, toxicology, and public health issues.
These modules were developed based on examples from our
ongoing research efforts using environmental health datasets
and/or related data generated for these training purposes.

The TAME Toolkit was developed to provide an overview of
example approaches to analyzing data that are highly relevant to
exposure science, toxicology, and environmental health research
applications. Rather than including an exhaustive list of
techniques and tutorials that covers all potentially relevant
methods, we instead highlight example methods and datasets
that are tangible and cover important aspects of data
organization, visualization, and analysis within the
environmental health research field. Topics of training
modules were selected to include current approaches that are
of high interest in 21st century toxicology and exposure science
and new approach methodologies (NAS, 2007; NAS, 2017;
Wambaugh et al., 2019; Zavala et al., 2020) that also align
with the coauthors’ areas of expertise. These examples are
provided in the TAME Toolkit through organized training
modules that are purposely stand-alone and discrete, as
opposed to organizing modules that depend on participants
having successfully completed all preceding modules and
associated analyses. This format was selected to allow
participants to engage in specific analysis topics they are
interested in learning in achievable spans of time.

Modules were developed to include helpful resources
throughout the code, such that users aiming to further their
education/development have access to additional learning
opportunities and analysis methodologies to explore. Notably,
each module was not designed as a complete guide to conduct
research on a specific topic; rather, modules were designed as a
starting point for a data analysis technique. Additional guidance
and resources were incorporated throughout each of the training
modules, particularly within the introduction sections as well as the
final concluding remarks sections, to point participants to
additional examples and guidance when interested. These
additional resources spanned book chapters and guidance
documents dedicated to the specific data analysis topic, as well
as example peer-reviewed, published literature. All concepts within
the TAME Toolkit were selected to include important techniques
that can be incorporated into environmental health studies, and
thus, provide a cohesive set of skills that trainees can leverage
within their current research studies, real-world applications, and/
or future job marketability, depending on their career stage.

2.2 Target Audience of the TAME Toolkit
Data training modules were designed for the following target
audiences: 1) academic students obtaining degrees in
environmental health, toxicology, exposure science, epidemiology,

bioinformatics, and related disciplines; 2) post-baccalaureate and
post-doctorate trainees that are working in the environmental
health research arena; 3) professionals in academia, government,
or industry that are interested in expanding their skillset to include
recent advances in data analysis methods relevant to environmental
health, toxicology, exposure science, epidemiology, and
bioinformatics/cheminformatics. These participants would ideally
have some level of training in basic biology, chemistry,
environmental science, toxicology, and/or epidemiology, though
training modules were organized to provide background
information and helpful resources to provide background
reading/training materials for content that participants may
benefit from if lacking a certain background across the multi-
disciplinary field of environmental health.

2.3 Data Training Module Development and
Underlying Technologies
The TAME training modules were developed and made
publicly available through the UNC Superfund Research
Program (UNC-SRP) Github website, specifically through a
Bookdown website available at: https://uncsrp.github.io/Data-
Analysis-Training-Modules/. This interface was selected as the
primary landing site for these modules because of its smooth
communication between R/RStudio/Markdown. Furthermore,
all module example datasets and script files could be easily
organized and posted to the parent Github webpage, publicly
available at: https://github.com/UNCSRP. Github was selected
as the primary warehouse of these data and associated script, as
it currently represents the most commonly used platform for
storing, tracking, and collaborating on software/computing
projects spanning over 73 million developers, 4 million
organizations, and 200 million repositories (Github, 2022).
We organized the TAME Toolkit script and underlying data to
be available to participants through both Bookdown and
Github to meet the learning preferences of each participant.
This structure specifically allows participants to follow
through finalized training modules online that are published
through Bookdown, and it also allows participants to
download the raw data and script from the parent Github
webpage and run the modules on their own computers through
their local computing systems and preferred programming
structure.

Each training module was specifically developed in R
Markdown, which is a LaTeX-like documentation format that
allows developers to draft comprehensive documentation
throughout R-based scripts (Baumer and Udwin, 2015). R
Markdown is also advantageous in that programmers can run
their code in entirety on their computer and save a “knitted”
version of the code that also displays messages, results, and
graphics that are produced when running each line of code.
These R Markdown files (with .Rmd extensions) represent the
specific script documents that were uploaded to Github, alongside
README files and associated input/output data files used during
the scripted activities. The final knitted html files of each training
module’s R Markdown script represent the actual file that was
used in the online posting to Bookdown.
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2.4 Data Training Module Evaluation
Modules were beta tested through the delivery of teaching
materials within Dr. Julia Rager’s new course at UNC, titled
“Computational Toxicology and Exposure Science.” UNC
students, largely consisting of graduate-level students in
environmental science, toxicology, and public health, provided
feedback on each module’s content via anonymous course
surveys and classroom-led conversations. These suggestions
were incorporated into the final versions of the training
modules with the goal of achieving the TAME Toolkit
objectives and broadening target audiences and dissemination
into the greater scientific community. Select training modules
have also been disseminated via hands-on training workshops.
Feedback surrounding training module content was similarly
collected via anonymous course surveys and incorporated into
revised training materials.

2.5 TAME Toolkit Contributors
TAME Toolkit content and associated training modules were
developed by experts in environmental health research and data
science. These experts were selected to contribute to the TAME
Toolkit based on the following qualifications: Dr. Kyle Roell is the
lead Data Analyst for the Institute for Environmental Health
Solutions at the University of North Carolina at Chapel Hill
(UNC) and is an experienced software developer and
programmer with expertise in bioinformatics and statistical
genetics (Zhang et al., 2017; Roell et al., 2019; Roell et al.,
2021). Ms. Koval is a graduate student in the UNC
Department of Environmental Sciences and Engineering and is
contributing towards ongoing studies on human health and the
environment (Ring et al., 2021; Carberry et al., 2022). Rebecca
Boyles is a Director of the Center for Data Modernization
Solutions at RTI International. Ms. Boyles is an expert at data
driven research collaborations and the implementation of
computational approaches to ensure research data are
Findable, Accessible, Interoperable, and Reusable (FAIR)
(Boyles et al., 2019; Robasky et al., 2020; Holmgren et al.,
2021). Dr. Grace Patlewicz is a Chemist at the U.S.
Environmental Protection Agency (U.S. EPA) and leader of
chemical read-across applications towards chemical safety
assessments (Helman et al., 2019b; Nelms et al., 2020; Shah
et al., 2021). Dr. Caroline Ring is a Principal Investigator at
the U.S. EPA and leader in computational exposure science and
toxicology approaches for chemical regulatory safety assessments,
with particular expertise in toxicokinetics (Ring et al., 2017; Ring
et al., 2019; Ring et al., 2021). Dr. Cynthia Rider is a Toxicologist
at the National Institute of Environmental Health Sciences and a
leading expert in the chemical safety and risk assessment of
chemical mixtures (Catlin et al., 2018; Ryan et al., 2019; Rider
et al., 2021). Dr. Cavin Ward-Caviness is a Computational
Biologist and Principal Investigator at the U.S. EPA, and he
leads studies integrating geospatial exposure measures with
molecular biomarkers and health outcome data to understand
the impacts of chemical pollutants and social determinants of
health (Ward-Caviness et al., 2020; Martin et al., 2021; Ward-
Caviness et al., 2021). Dr. David Reif is a Professor in the
Department of Biological Sciences at North Carolina State

University (NCSU) and Director of the NCSU Bioinformatics
Consulting and Services Core. Dr. Reif leads studies
implementing computational modeling approaches to leverage
big data in predicting exposure and disease outcomes (Kosnik
and Reif, 2019; Green et al., 2021; Marvel et al., 2021). Dr. Jaspers
is a Professor in the Department of Pediatrics, Microbiology and
Immunology at UNC, and is the Director of the Curriculum in
Toxicology and Environmental Medicine and Director of the
Center for Center for Environmental Medicine, Asthma and
Lung Biology. Dr. Jaspers leads studies integrating medicine
with environmental health research, combining data from
clinical, toxicological, and molecular biology study designs
(Jaspers et al., 1997; Rager et al., 2013; Rebuli et al., 2021). Dr.
Fry is a Professor of Environmental Sciences and Engineering and
is the Director of the UNC-Chapel Hill Superfund Research
Program and the Director of the Institute for Environmental
Health Solutions. Dr. Fry leads studies integrating genomic and
epigenomic approaches within epidemiological, toxicological,
and clinical study designs to identify mechanisms of
environmental exposure-induced disease and organize
solution-oriented intervention (Fry et al., 2007; Smeester et al.,
2011; Fry et al., 2012; Manuck et al., 2021a). Dr. Julia Rager is an
Assistant Professor in the UNC Department of Environmental
Sciences and Engineering, and she leads studies evaluating the
health impacts of environmental exposures through
bioinformatic approaches aimed at integrating chemical-
biological signatures to elucidate primary disease drivers and
their underlying biological mechanisms (Rager et al., 2015; Rager
et al., 2017; Clark et al., 2021; Rager et al., 2021). Collectively, this
team of environmental health research experts were well-
equipped to develop training materials within the TAME Toolkit.

3 RESULTS

TAME Toolkit training modules are now publicly available,
promoting trainee-driven data generation, management, and
analysis methods to “TAME” data in environmental health
studies. These modules are publicly accessible (https://uncsrp.
github.io/Data-Analysis-Training-Modules/), with underlying
code and datasets available in the parent UNC-SRP GitHub
website (https://github.com/UNCSRP). Descriptions of each
training module are provided below alongside their associated
datasets and primary analysis findings. Collectively, training
modules serve as representative examples that address research
questions relevant to environmental health including topics of
toxicology, exposure science, epidemiology, bioinformatics, and
related fields of study.

3.1 Introductory Data Science
This series of TAME Toolkit training modules begins with
introductory-level training on setting up R/RStudio, coding,
data organization basics, basic methods to identify and
visualize trends in data, and visualize high-dimensional data
(modules 1.1–1.4). Introductory data science materials have
previously been covered by other groups/online resources
(Wickham and Grolemund, 2017; Adair et al., 2021; Coursera,
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2021), and we therefore provide a high-level overview of these
introductory modules below. A more focused description begins
with the next training module, which serves as a novel
introduction to FAIR data management practices (module
1.5). This module is also the first to incorporate questions
specific to environmental health, which are included
throughout the remaining training modules.

3.1.1 Introduction to Coding in R
The objective of this module is to provide an introduction to
coding through the R language and its associated environment,
RStudio. This objective is met by first detailing instructions
with corresponding screenshots describing how to download/
install both of these programs. An introduction on installing
and loading packages in R is then provided. Scripting basics are
detailed, including setting a working directory, importing and
exporting files, and viewing data within the R console/RStudio
environment. The importance of this module is that it provides
the foundation needed for participants to become acclimated
and set-up for running R programming on their computing
systems.

3.1.2 Data Organization Basics
The objective of this module is to provide an introduction on data
organization methods. This objective is met by presenting basic
data organization methods using an example environmentally
relevant human cohort dataset. This cohort was generated by
creating data distributions randomly pulled from our previous
publications (Rager et al., 2014a; Clark et al., 2019; Payton et al.,
2020; Clark et al., 2021), resulting in a bespoke dataset for these
training purposes. Data include subject information/
demographic data, as well as environmental exposure data,
focusing on metals concentrations in drinking water and
human urine samples. Data organization methods that are
demonstrated in this training module include merging,
filtering, subsetting, melting, and casting. These important
methods are demonstrated using base R functions, as well as
the commonly implemented package, Tidyverse, that allows users
to more efficiently organize and manipulate datasets in R (CRAN,
2021b). The importance of this module is that it provides basic
skills needed to organize data, in general, within the coding
environment, representing a foundational skill that must be
acquired prior to running any scripted analysis.

3.1.3 Finding and Visualizing Data Trends
The objective of this module is to provide an overview of basic
statistical tests and data visualizations. This objective is met
leveraging the same example cohort with environmentally
relevant data introduced in Section 3.1.2. Tests for
normality are first presented, alongside methods to plot
histograms and boxplots to view data distributions. Basic
statistical tests are then presented, including the t-test,
analysis of variance, regression modeling, chi-squared test,
and Fisher’s exact test. Additional example visualizations are
provided alongside these statistical tests, including boxplots,
scatterplots, and regression lines. These statistical tests are
introductory-level, with more extensive examples and

associated descriptions of statistical models in the
proceeding applications-based training modules (e.g.,
modules 2.4, 2.5, 2.6, 3.2, and 3.3). The importance of this
module is that it provides an overview of statistical methods
that are very routinely employed within environmental health
studies, and thus learning how to carry out these basic statistics
represents a foundational skillset for anyone in this field
of study.

3.1.4 High-Dimensional Data Visualizations
The objective of this module is to provide an introduction to
methods that can be used to visualize high dimensional data.
Approaches described in this training module include data
formatting, data scaling, and the visualization of prepared
datasets through density plots, GGally plots, boxplots,
correlation plots, hierarchical clustering, and heatmaps.
Visualization approaches are demonstrated using a large
environmental chemistry dataset, based off a chemical analysis
of smoke samples collected during lab-based simulations of
wildfire events. These data have been previously published
(Kim et al., 2018; Rager et al., 2021) and are used here as an
example of an environmental dataset relevant to environmental
health. These visualization methods are provided here at an
introductory-level, with many other examples detailed
throughout the majority of the next training modules. The
importance of this module is that it provides ideas and
techniques that can be used to visualize data relevant to
environmental health, which are becoming increasingly high
dimensional and thus, require these more sophisticated
methods to adequately illustrate important data trends.

FIGURE 2 | An overview of the individual components of FAIR data
management practices, resulting in the effective release of data products from
exposure science, epidemiology, toxicology, and environmental health
research.
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3.1.5 Findability, Accessibility, Interoperability, and
Reusability Data Management Practices
The objective of this module is to introduce trainees to best data
management practices in environmental health research. A
method to ensure proper data management is the
implementation of Findability, Accessibility, Interoperability,
and Reusability (FAIR) practices (Wilkinson et al., 2016). This
topic is receiving much attention in recent years through
workshops, government reports, and publications which are
published within the online training module. The following
questions are addressed throughout this training module:

1) What is FAIR?
2) When was FAIR first developed?
3) When making data “Findable,” who and what should be able

to find your data?
4) When saving/formatting your data, which of the following

formats is preferred to meet FAIR principles: .pdf, .csv, or a
proprietary output file from your instrument?

5) How can I find a suitable data repository for my data?

This module first provides an introduction to FAIR (Figure 2),
including a history of how this term was first developed and
implemented. Trainees are then guided through each component
of FAIR, organized by letter. To detail, the F in FAIR identifies
components needed to make the meta(data) findable. These
components include unique persistent identifiers and
descriptive information (i.e., metadata) that can be searched
by both humans and computer systems. The A components
are designed to enable that meta(data) be available long-term,
and accessed by humans and machines using standard
communication protocols with clearly described limitations on
reuse. The I components of the principles address needs for data
exchange and interpretation by humans and machines which

includes the use of controlled vocabularies or ontologies to
describe meta(data) and to describe provenance relationships
through appropriate data citation. The R components highlight
needs for meta(data) to be reused and support integration such as
sufficient description of the data and data use limitations. The
training module then reviews different types of data repositories
that can be used to publish datasets in exposure science,
toxicology, and environmental health research. Lastly, this
module provides participants with additional training
resources, workshops, government reports, and example
publications surrounding the use of FAIR data management
practices. The importance of this module is that effective data
management, organization, and longevity are becoming
increasingly critical in ensuring studies are scientifically sound
and reproducible, and thus, all scientists that are involved in the
analysis of data for a project should be aware of these issues and
implement them within their ongoing studies. Research funding
agencies are additionally requiring increased attention
surrounding data sharing and FAIR practices (NIH, 2022).

3.2 Chemical-Biological Analyses and
Predictive Modeling
This chapter of TAME Toolkit training modules covers
approaches that can be used to carry out chemical and/or
biological analyses and predictive modeling to better
understand exposure-induced disease and underlying
toxicological mechanisms. Modules span topics of dose-
response modeling (module 2.1), machine learning and
predictive modeling (2.2), mixtures analyses (2.3), -omics
analyses and systems biology (2.4), toxicokinetic modeling
(2.5), and read-across toxicity predictions (2.6). Environmental
health questions are posed throughout these modules to maintain
active engagement and provide tangibility on the use of the

FIGURE 3 | Example model curves that are fit to liver tumor incidence data in this trainingmodule. This training module guides trainees through the plotting of dose-
response data and the fitting of different types of models to describe dose-response trends in these data. The fit of each resulting curve is evaluated through visual
inspection and evaluation of AIC values, and then the training module focuses on the model with the lowest AIC to derive benchmark dose estimates.
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described methods towards environmental health applications.
These training modules are detailed below.

3.2.1 Dose-Response Modeling
The objective of this module is to provide an overview on
analyzing toxicological response data in relation to exposure
concentrations (or doses), resulting in the derivation of
benchmark doses (BMDs). This topic is of high relevance to
the field of environmental health, as BMDs represent values that
are commonly used as the basis for evaluating risk in chemical
safety evaluations, informing the levels at which chemicals may be
regulated. This module specifically analyzes animal tumor
incidence rates in response to exposure to a mock chemical
tested across 12 different concentrations in drinking water.
This dataset was generated for the specific purposes of this
exercise, to allow for some interesting curve fits and a
comparison between tissue site sensitivity to an example
chemical insult. Several environmental health questions are
posed throughout this module, including:

1) Which target tissue demonstrated the highest incidence of
tumor formation from any single exposure dose?

2) Which target tissue’s tumor incidence seems to not be related
to dose?

3) Upon visual inspection of example log-logistic vs. Weibull
model curve fits, can we confidently determine which of these
two models best fits these data?

4) For the liver tumor response data, which model curve fits the
resulting dose-response data the best? What are the final
resulting BMD and BMDL estimates from this model?

5) In comparing between the intestinal vs. liver datasets, which
tissue is estimated to show tumor responses at a lower
exposure dose?

This module first provides a high-level introduction to BMD
modeling, and then guides trainees through the process of
downloading/loading required packages and example data used

in this exercise. These data are then viewed, such that trainees can
see the four different tissue sites evaluated for carcinogenicity in
response to exposure (i.e., kidney, liver, intestinal, and stomach
tissues) and also obtain information on the overall distributions
of tissue-specific tumor incidence. Then, data are plotted in dose-
response using standard scatter plots with exposure
concentrations along the x-axis and tumor incidence along the
y-axis. With these foundation plots generated, trainees are then
guided throughmethods to fit various model curves to these dose-
response data, spanning log-logistic, Weibull, and asymptotic
regression models as core examples available through the drc
package (Ritz et al., 2015). The best fitting curves are then
identified through 1) visual inspection of curve fits, and 2)
calculation of Akaike Information Criterion (AIC) values.
These examples highlight the importance of evaluating model
fit to ultimately determine which model should be used to derive
final BMD estimates (Figure 3). Trainees are lastly pointed to
example dose-response publications that have addressed
environmental health questions (Rager et al., 2017; Auerbach
and Paules, 2018; Thompson et al., 2018; Johnson et al., 2020), as
well as additional modeling tools and guidance documents
surrounding dose-response assessments. The importance of
this module is that BMD modeling represents a foundational
topic in environmental health, where methods can be used to
better understand which exposure concentrations/doses are
required to elicit toxicity by evaluating trends in datasets.

3.2.2 Machine Learning and Predictive Modeling
The objective of this module is to provide an overview of machine
learning (ML) approaches to evaluate high dimensional data
relevant to environmental health applications. This module
begins by introducing the need for predictive modeling,
defining its use in the context of toxicology and environmental
health, then establishing a working distinction between ML and
traditional statistical methods. Recognizing the wide variety of
machine learning methods currently available to researchers, this
training module presents introductory-level information on two

FIGURE 4 | Example results and visualizations produced through this machine learning and predictive modeling activity, based on an example dataset of 144 PFAS
and statins. (A) Principal components were derived to capture the majority of variance amongst physicochemical properties across PFAS and statins, using PCA
methods. (B) Chemical classes were predicted using k-means clustering across PCA-reduced components, demonstrating that the predicted chemical classes were
almost identical to the actual chemical classes [as shown in (A)].
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commonly employed methods, principal component analysis
(PCA) and k-means clustering. Their use is illustrated on real
data obtained from the National Toxicology Program’s Integrated
Chemical Environment (ICE) resource (https://ice.ntp.niehs.nih.
gov/). This module analyzes an example dataset of
physicochemical property information for chemicals spanning
two classes: per- and polyfluoroalkyl substances (PFAS) and
statins. PFAS represent a ubiquitous and pervasive class of
man-made industrial chemicals of high environmental
relevance due to their persistence in the environment after
contamination events (Fenton et al., 2021). Statins represent a
class of lipid-lowering pharmaceuticals used for patients at risk of
cardiovascular disease, and statins have been identified as present
in water/wastewater effluent (Tete et al., 2020). The applied data
example in this training module was designed to illustrate the
concept of using ML methods to differentiate chemical class and
“predict” (in this case, the group membership is known) chemical
groupings that can inform a variety of environmental and
toxicological applications. The following environmental health
questions are addressed throughout this training module:

1) Can we differentiate between PFAS and statin chemical
classes, when considering just the raw physicochemical
property variables without applying machine learning
techniques?

2) What are some of the physicochemical properties that seem to
be driving chemical clustering patterns derived through
k-means?

3) Upon reducing the data dimensionality through PCA, which
physicochemical property contributes the most towards
informing data variance captured in the primary principal
component?

4) How do the data compare when physicochemical properties
are reduced using PCA?

5) If we did not have information telling us which chemical
belonged to which class, could we use PCA and k-means to
accurately predict whether a chemical is a PFAS vs. statin?

6) What kinds of applications/endpoints can be better
understood and/or predicted, because of these derived
chemical groupings?

This module first provides a high-level introduction to the
topics of machine learning and predictive modeling, and then
guides trainees through the process of downloading/loading
required packages and example data used in this exercise.
These data are then viewed by plotting chemicals along
their native physicochemical scales (e.g., boiling point
versus molecular weight) for all 144 different chemicals,
colored according to the two classes of PFAS and statins.
Visualizing these data through two bivariate plots
demonstrates that there is signal in the data, but substantial
overlap between classes for most properties, i.e., individual
physicochemical properties may not clearly differentiate
between chemical classes. This limitation substantiates the
need to employ machine learning methods to better
describe group-level trends in these data. K-means
clustering is then performed across all physicochemical

property data in their native scale and visualized using a
heat map. Next, PCA is carried out across all
physicochemical property data and visualized to illustrate
the concept of dimensionality reduction. The code is
provided to calculate results from this PCA, including
eigenvalues, percent variance captured by each principal
component, and loading scores for the input variables.
Finally, PCA is combined with k-means to generate
predictions of two chemical groupings that almost entirely
capture real-world classifications (Figure 4). Lastly, these
methods are discussed in relation to additional applications,
including the evaluation of other outcomes such as
environmental fate and transport and disease outcome
predictions. Trainees are provided additional resources
including recent example studies that incorporate machine
learning to address environmental health questions (To et al.,
2019; Clark et al., 2021; Green et al., 2021; Odenkirk et al.,
2021; Ring et al., 2021). The importance of this module is that
it provides a helpful introduction to foundational ML
concepts, and upon receiving this training, participants
should be positioned to apply these methods to make
predictions within their own high dimensional datasets.

3.2.3 Mixtures Analyses
The objective of this module is to provide an overview of chemical
composition signatures and toxicological responses that can be
evaluated to inform whether complex mixtures are “sufficiently
similar.” Results from these analyses, referred to as sufficient
similarity analyses, can be used to inform data extrapolation from
a data-rich mixture to a data-poor mixture during a chemical
safety/risk assessment, to adequately protect human health. In
this example, data are re-analyzed from a study evaluating the
chemical composition and toxicological effects of Ginkgo biloba
extract, a common dietary supplement ingredient that is
commercially available in the U.S. (Catlin et al., 2018). Here,
29 different sample lots of G. biloba extract were collected from
several suppliers and analyzed. The chemical components of
these sample extracts were evaluated using targeted methods,
and associated toxicity was evaluated using gene-specific in vitro
response assays. These data are leveraged in this training module
to inform which of the G. biloba samples are sufficiently similar
(and thus could use the same toxicological data for risk
evaluation), and which are different (and thus would require
additional testing). Several questions are posed throughout this
module, including:

1) When viewing the variability between chemical profiles, how
many groupings of potentially “sufficiently similar” G. biloba
samples do you see?

2) Which chemicals do you think are important in differentiating
between the different G. biloba samples?

3) When viewing the variability between toxicity profiles, how
many groupings of potentially “sufficiently similar” G. biloba
samples do you see?

4) Were similar chemical groups identified when looking at just
the chemistry vs. just the toxicity? How could this impact
regulatory decisions?
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This module specifically guides trainees through the loading of
required packages and data, and then carries out an example
sufficient similarity analysis first using the chemistry data.
Trainees are guided through data processing and scaling,
leading to two different grouping and visualization
approaches: 1) PCA and associated scatter plot, and 2)
hierarchical clustering and associated heat map visualization.
Results are used to inform which G. biloba extracts display
similar chemical composition profiles and which do not.
Participants are also guided through the evaluation of
potential outlier samples, gauging whether these impact overall
data distributions. Similar methods are then used to evaluate the
toxicological response data. This analysis concludes with a side-
by-side comparison of the sample groupings that result when
considering chemical composition vs. toxicity profile data
(Figure 5), highlighting the importance of considering both
data streams when determining sufficient similarity in the
evaluation of complex mixtures. Trainees are then provided
additional resources and references for further information on
sufficient similarity analyses in environmental health research
(Rice et al., 2009; Catlin et al., 2018; Ryan et al., 2019; Collins et al.,
2020). The importance of this module stems from real-world
exposures to complex mixtures that often have incomplete
toxicity data, which necessitate training to determine when
data from a reference mixture can be extrapolated to a
mixture-of-concern for risk evaluation.

3.2.4 -Omics Analyses and Systems Biology
The objective of this module is to provide an overview of the
-omics field and its relation to environmental health research,
highlighting transcriptomics as an important -omics endpoint to
analyze as a scripted example. The field of -omics initiated from
genome-wide information obtained through the Human Genome
Project, and has since then expanded to include -omic endpoints
spanning the genome, epigenome, transcriptome, proteome,
metabolome, microbiome, and the exposome (Cho and Blaser,
2012; Wild, 2012; Rager and Fry, 2013; Clark and Rager, 2020).
Stressors within the environment have the potential to alter -omic
signatures, impacting downstream biological processes, cellular
function, tissue phenotypes, and overall health (Rager and Fry,
2013; Clark and Rager, 2020; Rager et al., 2020). When
interpreting the potential consequences of -omic alterations, it
is often helpful to place findings into the context of systems
biology. In these systems-level analyses, molecules can be overlaid
onto molecular networks to uncover biological pathways and
cellular functions that are altered under the condition being tested
(Rager and Fry, 2013; Meisner and Reif, 2015). This training
module provides an overview of these strategies, using an
example transcriptomics dataset acquired from lung tissues of
mice exposed to biomass burn conditions indicative of the
potential wildfire exposure scenarios (Kim et al., 2018; Rager
et al., 2021). Several questions are posed through this module,
including:

FIGURE 5 | PCA plots used to inform Ginkgo Biloba extract (GbE) groupings in mixtures-based sufficient similarity analyses. (A) This training module first guides
participants through the derivation of chemical groups within GbE produced when reviewing only chemical composition data. (B) Then, chemical groups are derived by
reviewing in vitro toxicity response profiles associated with GbE exposures. These grouping results are then compared to highlight that important patterns may be
missed when evaluating just chemistry or just toxicity response profiles in a mixtures-based sufficient similarity analysis. Groups are derived across these examples
using PCA, representing a very common data reduction/visualization method used to explain the variance across high dimensional datasets.

Frontiers in Toxicology | www.frontiersin.org June 2022 | Volume 4 | Article 89392410

Roell et al. Environmental Health Data Science Training

https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles


1) What two input data files are commonly needed in the
analysis of -omics (e.g., transcriptomics) data?

2) When preparing transcriptomics data for statistical analyses,
what are common data filtering steps that are completed
during the data QA/QC process?

3) How many genes showed significant differential expression in
the mouse lung associated with flaming pine needles,
smoldering pine needles, and lipopolysaccharide (LPS)?

4) What biological pathways are disrupted in association with
flaming/smoldering pine needles exposure in the lung,
identified through systems level analyses?

This training module specifically guides users through the
loading, viewing, and formatting of the example transcriptomics
datasets and associated metadata. Methods to carry out QA/QC of
the transcriptomics data are then detailed, including background
filtering, sample filtering, and identification of potential sample
outliers. Data are adjusted for potential sources of heterogeneity,
including mixed cell population distributions that are commonly
present when analyzing bulk tissue samples. Statistical models are
then designed and implemented to identify genes that were
significantly differentially expressed by the evaluated biomass
burn scenarios, as enabled through the commonly implemented
DESeq2 statistical pipeline (Love et al., 2014). We find that
exposure to both flaming and smoldering of pine needles
caused substantial disruptions in gene expression profiles. LPS
serves as a positive control for inflammation and produced the
greatest transcriptomic response. Gene expression alterations are
then summarized via visualizations using MA and volcano plots
(Figure 6). Resulting lists of differentially expressed genes are lastly
evaluated in the context of systems biology, through pathway
enrichment analysis based off relationships to KEGG pathways
(KEGG, 2021) using gene set analysis enabled through the PIANO
package (Varemo et al., 2013). We find that pathways involved in
cardiopulmonary function, carcinogenesis, and hormone signaling

were altered in response to these wildfire-relevant exposure
scenarios. Trainees are lastly pointed to additional resources,
including further information on -omics and systems biology, as
well as additional research examples that have evaluated -omic
alterations occurring in relation to the environment and involved
in disease (Smeester et al., 2011; Lu et al., 2014; Rager et al., 2016;
Chappell and Rager, 2017; Balik-Meisner et al., 2018; Chappell
et al., 2019; Manuck et al., 2021b; Chang et al., 2021). The
importance of this module lies in the training of systems
biology concepts and analysis of -omics data, including RNA
sequencing data, which are becoming increasingly standard
molecular endpoints used in the evaluation of exposure-induced
biological responses and disease etiologies.

3.2.5 Toxicokinetic Modeling
The objective of this module is to provide an overview of the
basics of toxicokinetic (TK) modeling and how this type of
modeling can be used in the high-throughput setting for
environmental health research applications. TK modeling
refers to the evaluation of the uptake and disposition of a
chemical in the body. In this activity, the capabilities of the
high-throughput TK modeling package, “httk,” are demonstrated
on a suite of environmentally relevant chemicals. The httk R
package implements high-throughput TK modeling, including a
generic physiologically based toxicokinetic model, as well as
chemical-specific parameters needed to solve the model for
hundreds of chemicals (Pearce et al., 2017). Several questions
are posed through this module, including:

1) What is the maximum concentration of bisphenol-A
estimated to occur in human plasma, after one exposure
dose of 1 mg/kg/day?

2) What is the estimated range of benzo(a)pyrene concentrations
in plasma that can occur in a human population, assuming
single doses of 1 mg/kg/day and steady-state conditions?

FIGURE 6 | Example (A)MA plot and (B) volcano plot illustrating changes to the transcriptome occurring from exposure to the wildfire-relevant exposure condition
of flaming pine needles, identified through this training module. Here, each individual dot represents a gene that was queried for via transcriptome technologies, color-
coded according to level of significance (multiple test corrected p-values) in association with exposure vs. control conditions within the mouse lung. Grey dots indicate
genes that were not significant (p > 0.10), and colored dots indicate genes that were significant (p < 0.10). Dots of significant genes were further colored according
to fold change (ratios of average exposed/unexposed samples), with red indicating positive fold change values (i.e., exposure-associated increased expression) and blue
indicating negative fold change values (i.e., exposure-associated decreased expression) for the MA plot. For the volcano plot, colors indicate different filters that were
implemented to identify levels of gene expression changes. Expression levels, fold change, and p-values are used to visualize the distribution of these statistical results
produced from this example -omics analysis.
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3) How many chemicals have available AC50 values to evaluate
in the current ToxCast/Tox21 high-throughput screening
database?

4) Based on httk modeling estimates, are chemicals with higher
bioactivity exposure ratios always less toxic than chemicals
with lower bioactivity exposure ratios?

5) How are chemical risk prioritization results different when
using only toxicity information vs. only exposure information
vs. bioactivity exposure ratios?

This module specifically guides trainees through a general
introduction to TK, TK modeling, and the types of TK modeling
that can be employed to understand how chemicals travel
throughout the body. The model provides scripted examples of
TK modeling, starting with the estimation of plasma concentrations
over time for a human exposed to bisphenol-A. Then, population
variability is considered using information from CDC National
Health and Nutrition Examination Survey (NHANES) to inform
a distribution of possible plasma concentrations resulting from daily
exposure to benzo(a)pyrene. Then, an example high-throughput
analysis is carried out over ~1,000 chemicals, in which population
variability is captured to derive estimated quantile distributions of
chemical plasma concentrations during steady-state conditions of
1 mg/kg/day exposures. Trainees are then guided through the
process of deriving administered equivalent doses that associate
with concentrations eliciting toxicity derived through toxicity
testing. Equivalent doses are specifically derived across ~1,000
chemicals that are estimated to elicit toxicity in humans, based
on in vitro data, through “reverse TK” calculations. The in vitro
dataset used in these derivations is the ToxCast high-throughput
screening program. ToxCast activity concentrations that elicit 50%
maximal bioactivity (AC50) are uploaded and organized as inputs,
and the 10th percentile ToxCast AC50 is calculated for each chemical

and carried forward in the analysis as concentration estimates for
potency. Bioactivity exposure ratios (BERs) are then calculated to
place findings into the context of risk assessment. Here, previously
generated exposure estimates that have been inferred from CDC
NHANES urinary biomonitoring data are used as estimates of
chemical exposures. These hazard and exposure estimates are
then visualized (Figure 7). The final BERs are calculated as the
ratio of the lower-end hazard equivalent dose (for the most-sensitive
5% of the population) divided by the upper-end estimated exposure
(here, the upper bound on the inferred population median
exposure). The importance of these BERs in chemical
prioritization efforts are lastly discussed in relation to
environmental health research and corresponding government
regulatory decisions. Trainees are provided additional resources
and cases studies that have incorporated TK/httk to address
environmental health issues (Wambaugh et al., 2015; Ring et al.,
2017; Klaren et al., 2019; Breen et al., 2021; Ring et al., 2021). The
importance of this module is that how chemicals travel throughout
the body and elicit different toxicities based upon target organs
significantly depends upon toxicokinetics, and being able to model
these relationships is therefore critical towards understanding
chemical-induced impacts throughout the body.

3.2.6 Read-Across Toxicity Predictions
The objective of this module is to provide an overview of read-
across methods to computationally predict chemical toxicity based
on molecular structure information. This training module
represents a timely topic, paralleling increased impetus for
reducing reliance upon animal testing (NAS, 2007; EPA, U.S,
2021b). In this example, data are analyzed spanning
approximately 7,000 chemicals that have known structure and
acute toxicity data. The specific acute toxicity endpoint that is
analyzed is LD50, reflecting the dose required to cause lethality in

FIGURE 7 | Chemicals that were analyzed using high-throughput toxicokinetic (httk) modeling in this training module. Shown here is an example visualization
produced in this module illustrating how doses estimated to cause toxicity (“Equiv. dose”), that were produced through httk, compare against doses estimated as human
exposures (“Exposure”). Chemicals are ranked according to bioactivity exposure ratios (BERs), indicating high potential risk (left) to low potential risk (right) to human
health.
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50% of animals, collected through historical animal testing. These
data have been previously summarized and analyzed (Helman
et al., 2019a). In this activity, we aimed to estimate an LD50 value
for an example target chemical of interest that is commonly used in
the production of industrial compounds, 1-chloro-4-nitrobenzene.
To achieve this aim, we explore ways in which we can search for
structurally similar chemicals that have LD50 data already available.
Data on these structurally similar chemicals, termed “analogues,”
are then used to predict acute toxicity for the target chemical. The
following questions are addressed throughout this module:

1) How many chemicals with acute toxicity data are structurally
similar to 1-chloro-4-nitrobenzene?

2) What is the predicted LD50 for 1-chloro-4-nitrobenzene,
derived from read-across?

3) How different is the predicted vs. experimentally observed
LD50 for 1-chloro-4-nitrobenzene?

This module specifically guides trainees through the loading of
required packages and example data, and then carries out an
example read-across analysis specifically using the generalized
read-across method (GenRA) (Shah et al., 2016). Trainees are
guided through viewing the distribution of LD50 values across all
evaluated chemicals. Steps are then detailed to convert SMILES
nomenclature into computed molecular fingerprint data. Using
these molecular fingerprint data, the degree to which each
chemical is structurally similar to another chemical is

evaluated based on the Tanimoto similarity index. This
structural similarity analysis yields an overall similarity matrix,
containing all possible pairwise similarity values. Data are then
filtered to focus on chemicals with Tanimoto similarity values
>0.75 to the target chemical, 1-chloro-4-nitrobenzene, resulting
in a list of 11 chemical analogues that could then be used to
predict toxicity for the target chemical (Figure 8). Finally,
generalized read-across was carried out by calculating a
similarity-weighted activity score (Shah et al., 2016), using
information from the 11 analogues to predict a LD50 for 1-
chloro-4-nitrobenzene. This in silico prediction was then
compared to the experimentally observed LD50 value for this
chemical, which were very similar, highlighting the utility of read-
across models to inform and predict toxicity for chemicals lacking
data. The importance of this module is that predicting chemical-
induced toxicity using entirely in silico approaches represents a
highly efficient skillset that scientists can leverage to better
understand chemical-toxicity relationships and predict which
chemicals may induce harm to public health.

3.3 Environmental Health Database Mining
This series of TAME Toolkit training modules covers
introductory-level approaches to mining and analyzing data
that can be accessed through publicly available environmental
health databases. Modules span topics of mining the
Comparative Toxicogenomics Database (CTD) (module
3.1), Gene Expression Omnibus (GEO) (3.2), and database

FIGURE 8 | Overall schematic summarizing the steps employed in this example read-across analysis to predict chemical toxicity. This training module guides
trainees through the generation of chemical structure fingerprint data and use of these data to identify analogues that can be used to predict toxicity for chemicals lacking
data. This example uses chemicals with acute toxicity data (LD50 values) to predict an example target chemical’s acute toxicity that is structurally similar.
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integration across Air Quality, Mortality, and Environmental
Justice data (3.3). These training modules also include
applications-based environmental health questions and are
described below.

3.3.1 Comparative Toxicogenomics Database
The objective of this module is to provide an exercise on
organizing and analyzing chemical-gene lists aggregated
through the Comparative Toxicogenomics Database (CTD)
(CTD, 2021; Davis et al., 2021). Data were specifically pulled
for published chemical-gene relationships mapping to the
example environmental contaminant, arsenic. The following
environmental health questions were addressed through this
training module:

1) Which genes show altered expression in response to arsenic
exposure?

2) Of the genes showing altered expression, which may be under
epigenetic control?

This module specifically guides trainees through steps used to
query CTD, including the specific selections used in this training
dataset to organize chemical-gene interaction data for arsenic. These
data are then uploaded into the training module R environment and
used as an example for trainees to learn how to view file content and
overall dimensions. Then data are filtered to include chemical-gene
interactions that map specifically to changes in expression levels,
yielding a list of genes that show arsenic-associated expression
changes compiled from published literature. Data are additionally
filtered using a different approach to yield genes that also show
arsenic-associated gene methylation changes. These gene lists are
then compared to result in the final elucidation of arsenic-altered
genes that have published evidence for epigenetic modifications.
Resulting genes represent critical mediators of inflammation and
oxidative stress, among other important cellular processes. A
visualization of these gene list comparison results is also scripted
for using Venn diagram illustrations (Figure 9). Trainees are then
provided additional resources, including reference to additional case
examples that leveraged data from CTD to identify newmechanisms
of environmental exposure-induced disease (Ahir et al., 2013), fill
gaps on data poor chemicals to elucidate environmental influences on
disease pathways (Kosnik et al., 2019), and derive new chemical risk
values for prioritizing links between environmental factors, genetic
variants, and human diseases (Kosnik and Reif, 2019). Together, this
training module serves as an applications-based example to learn
basic data manipulation, filtering, and organization steps in R, while
highlighting the utility of CTD to identify novel genomic/epigenomic
relationships to environmental exposures. The importance of this
module is that analyzing data within CTD represents a powerful
skillset within the environmental health field, which can be leveraged
to improve the understanding of environmental influences on disease
outcomes.

FIGURE 9 | CTD findings from this training module highlight genes that
have shown differential CpGmethylation (left) and differential expression (right)
in association with arsenic exposure. Results are visualized here using an
example Venn diagram, highlighting a group of 315 genes with altered
expression that may be influenced via epigenetic regulators through CpG
methylation alterations.

FIGURE 10 |Heat map visualizations of gene expression data that are produced as examples within the GEO training module. This training module guides trainees
through visualizing normalized gene expression data and highlights the differences between plotting (A) unscaled versus (B) scaled values. This example shows the utility
of scaling data prior to visualizations, allowing for improved visualizations of patterns between samples.
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3.3.2 Gene Expression Omnibus
The objective of this module is to provide an overview of pulling,
organizing, visualizing, and analyzing -omics data from the GEO
database (NCBI, 2021). Data were specifically pulled from an
example GEO dataset (accession number GSE42394) representing
gene expression data originally used in a publication evaluating the
genomic effects of formaldehyde inhalation exposure in the rat
(Rager et al., 2014b). The following environmental health
questions were addressed through this training module:

1) What kind of molecular identifiers are commonly used in
microarray-based -omics technologies?

2) How can we convert platform-specific molecular identifiers
used in -omics study designs to gene-level information?

3) Why do we often scale gene expression signatures prior to heat
map visualizations?

4) What genes are altered in expression by formaldehyde
inhalation exposure?

5) What are the potential biological consequences of these gene-
level perturbations?

This module specifically guides trainees through the loading of
required packages and data, including the manual upload of GEO
data as well as the automated upload of data leveraging the GEO
query package. Data are then further organized for downstream
analyses. Trainees are then provided an overview of the types of
molecular identifiers used in this example dataset, originally
centered around microarray-based probeset identifiers. To
increase interpretability of analysis findings, methods to merge
platform-specific identifiers with gene-level annotation
information are carried out. Example visualizations are then
produced, including boxplots to evaluate the overall
distribution of expression data across samples, as well as heat
map visualizations that compare unscaled versus scaled gene
expression values to emphasize the utility of scaled values for
improved visualization of patterns between samples (Figure 10).
Statistical analyses are then included to identify which genes are
the most significantly altered in expression upon exposure to

formaldehyde. The gene identified with the most significantly
increased expression in the rat nose is olfactory receptor 633
(Olr633), demonstrating that formaldehyde inhalation exposure
induced olfactory-related signaling. Together, this training
module serves as an important example on how scientists can
efficiently leverage existing genome-wide datasets to address new
environmental health questions. Trainees are also pointed to
previous publications applying these methods to existing GEO
datasets that address additional environmental health questions
(Rager and Fry, 2012; Rager et al., 2019). The importance of this
module is that online -omics databases, such as GEO, represent
robust resources that can be mined to better understand
mechanisms of disease and biological responses to insults, and
becoming familiar with such resources will expand data
reusability and interpretation in future environmental health
studies.2

3.3.3 Database Integration: Air Quality, Mortality, and
Environmental Justice Data
The objective of this module is to provide an example analysis based
on the integration of data across multiple environmental health
databases. Specifically, air quality monitoring data from the U.S.
EPA’s Air Quality System (AQS) (EPA, U.S, 2021a) were
analyzed, focusing on the 2016 EPA Monitoring Data Annual
Average database. These data included average measures of
particles ≤2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2),
and sulfur dioxide (SO2). Health outcome data were also analyzed,
specifically from the Center for Disease Control (CDC)Wide-ranging
ONline Data for Epidemiologic Research (WONDER) database
(CDC, 2021). These data included the 2016 all-cause mortality
rates. Population-level variables were additionally analyzed,
including race, and included in the statistical modeling as well as
the evaluation of population-level information that can be used to
examine Environmental Justice issues. All data were pulled and
summarized at the county-level across the entire U.S. for the year
2016 (Remington et al., 2015; UWPHI, 2021). The following
environmental health questions were addressed through this
training module:

FIGURE 11 | Example visualizations of (A) air quality data, highlighting the 2016 annual PM2.5 concentrations across U.S. counties, and (B) potential relationships
against mortality rates. Code that supports the generation of these visualizations and example statistics evaluating trends between air pollution and mortality rates, and
analyses including potential confounders, is described within this training module.
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1) What areas of the U.S. are most heavily monitored for air
quality?

2) Is there an association between long-term, ambient PM2.5
concentrations and mortality at the county level?

3) What is the difference when running crude statistical models
vs. statistical models that adjust for potential confounding,
when evaluating the relationship between PM2.5 and
mortality?

4) Do observed associations differ when comparing between
counties with a higher vs. lower percentage of African-
Americans which can indicate Environmental Justice
concerns?

This module specifically guides trainees through an explanation
of how the data were downloaded and organized, and then details
the loading of required packages and datasets. Then, this module
provides code for visualizing county-level air pollution measures
obtained through U.S. EPA monitoring stations throughout the
U.S. Air pollution measures include PM2.5, NO2, and SO2, and are
visualized here as the yearly average (Figure 11A). Air pollution
concentrations are then evaluated for potential relationship to the
health outcome, mortality (Figure 11B). Specifically, age adjusted
mortality rates are organized and associated with PM2.5

concentrations through linear regression modeling. Crude
(univariate) statistical models are first provided that do not take
into account the influence of potential confounders. Then,
statistical models are used that adjust for potential county-level
confounders, including adult smoking, obesity, food environment
indicators, physical activity, employment status, rural vs. urban
living percentages, sex, ethnicity, and race. Results from these
models point to the preliminary finding that PM2.5 is associated
with elevated county-level mortality rates. Previous studies have
shown that minority populations reside closer to air pollution
sources and as a result are exposed to poorer air quality. This is also
seen in these data, with measured air quality differing by percent
African-American race in each county. Race is then evaluated
further in this analysis as a potential differentiating factor in the
models. Here, data distributions are pulled for counties with the
highest percentage of African-Americans (top 25%) as well as those
with the lowest percentage of African-Americans (bottom 25%).
Models associating PM2.5 with all-cause mortality rates are then re-
run in these groups and the PM2.5-mortality associations are
compared. Counties with the highest percentages of African-
American race had a significant association with mortality, with
magnitudes substantially greater than counties with the lowest
percentages of African-American race. This result corresponds
with known Environmental Justice concerns, and demonstrates
how even a cross-sectional, ecological analysis can highlight
differences in environmental health risks. The importance of
this module is that it demonstrates ways to integrate disparate
health and environmental exposure databases in order to study key
questions in environmental public health, including examinations
of important Environmental Justice issues.

3.3.4 Additional Resources
A final module is included that lists additional resources to aid in
the continued training of users on data management and analysis

strategies. We specifically include online websites and other
training resources that we have found to be useful towards
programming and data analysis approaches. These resources
are sorted into the following four categories: 1) R
programming resources; 2) R packages resources; 3)
community discussions on R and R packages; 4) R interfaces;
and 5) data science and statistical analysis resources.

4 DISCUSSION AND CONCLUSION

Together, this TAME Toolkit aims to serve as a helpful resource
to promote trainee-driven data generation, management, and
analysis methods to address the growing demands of 21st century
environmental health concerns. Training modules are provided
to serve as timely data analysis examples, all describing methods
used to extract meaningful results to inform environmental
health research applications. R was selected as the example
coding platform, leveraging R Markdown and Bookdown
formatting; though we recognize that additional training
across other computing platforms could expand trainee data
analysis skills and capabilities. The training modules are not
designed as an exhaustive list of all resources and techniques
available to analyze data relevant to environmental health.
Rather, these modules highlight examples of methods and
databases that can be leveraged in this research field, such that
trainees can effectively navigate their way through each training
lesson and translate methods learned to future questions.
Modules were designed as a starting point for a data analysis
technique, where additional resources are provided for further
learning opportunities and technical guidance. The content
within each module was selected to highlight important
methods that can enhance environmental health studies, and
thus, these modules collectively provide a cohesive set of skills
that participants can leverage within their current research
studies, real-world applications, and/or future job
marketability, depending on their career stage. In conclusion,
this resource serves as a unique training opportunity for future
data analysts to learn timely data science and analysis
methodologies in an applications-driven manner relevant to
environment health research.
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