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Long non-coding RNAs (LncRNAs) are essential epigenetic regulators with critical roles
in tumor initiation and malignant progression. However, the roles and mechanisms of
aberrantly expressed lncRNAs in the pathogenesis of gliomas are not fully understood.
With the development of deep sequencing analyses, an extensive amount of functional
non-coding RNAs has been discovered in glioma tissues and cell lines. Additionally,
the contributions of several lncRNAs, such as Hox transcript antisense intergenic
RNA, H19 and Colorectal neoplasia differentially expressed, previously reported to be
involved in other pathogenesis and processes to the oncogenesis of glioblastoma are
currently addressed. Thus, lncRNAs detected in tumor tissues could serve as candidate
diagnostic biomarkers and therapeutic targets for gliomas. To understand the potential
function of lncRNAs in gliomas, in this review, we briefly describe the profile of lncRNAs
in human glioma research and therapy. Then, we discuss the individual lncRNA that has
been under intensive investigation in glioma research, and the focus is its mechanism
and clinical implication.
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INTRODUCTION

Glioblastoma (GBM) is the most common primary intracranial tumor, with varying malignancy
grades and histological subtypes. Although relatively rare in occurrence, GBM frequently causes
mortality and morbidity (Ostrom et al., 2014; Bian et al., 2015), and its median survival time is
only 12–14 months after initial diagnosis (Stetson et al., 2016). The current standard therapy for
GBM is concomitant radiochemotherapy following maximal surgical tumor resection. However,
aggressive growth and recurrence frequently follows after the optimal treatment (Penaranda
Fajardo et al., 2016). It is conceivable that complicated signaling pathways and related molecular
events underlie the development of gliomas. Consequently, investigations exploring the accurate
molecular mechanisms and reliable therapeutic targets for GBM have drawn extensive attention
and provided a hopeful prospect for GBM treatment (Kitambi et al., 2014; Furnari et al., 2015).

Abbreviations: ADAMTS, a disintegrin and metalloproteinase with thrombospondin motif; BTB, blood-tumor barrier;
CASC2, cancer susceptibility candidate 2; CRNDE, colorectal neoplasia differentially expressed; CSCs, cancer stem cells;
GAS5, growth arrest-specific 5; GBM, glioblastoma; HOTAIR, Hox transcript antisense intergenic RNA; HULC, highly
up-regulated in liver cancer; lncRNAs, long non-coding RNAs; NEAT1/2, nuclear enriched abundant transcript 1/2; TMZ,
temozolomide; TUG1, taurine up-regulated gene 1; XIST, X-inactive specific transcript.
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Recently, epigenetic regulation has also drawn remarkable
attention, particularly in terms of lncRNAs, which are
indispensable for the regulation of cellular processes. LncRNAs
are transcripts of more than 200 nucleotides without functional
protein-coding ability in a conventional way (Quinn and Chang,
2016). Intriguingly, their coding and translation potential have
been reported; they may act as a repository for the synthesis of
small polypeptides with interesting biological activity (Cohen,
2014; Ruiz-Orera et al., 2014). LncRNAs can be grouped into five
non-exclusive categories according to their genomic location.
The subcellular localization is a good indication of the putative
function of a lncRNA (Schmitz et al., 2016) (Figure 1). For the
past three decades, lncRNAs have been found to regulate gene
expression during both biological and pathological processes
(Fatica and Bozzoni, 2014). For instance, lncRNAs can work as
cellular “address codes,” which allows protein complexes to be
transferred to the appropriate locations on chromosomes and
results in consequent activation or deactivation (Batista and
Chang, 2013). Mechanistically, in contrast to small interfering
RNAs (siRNAs) and microRNAs, lncRNAs can fold into higher
order structures to provide much greater potential for target
recognition, which facilitates chromatin remodeling as well as
transcriptional and post-transcriptional regulation (Mercer and
Mattick, 2013; Sahu et al., 2015).

In accordance with their significant roles in normal biological
processes, lncRNAs have been implicated in the oncogenesis
of gliomas and are increasingly being considered potential
therapeutic targets (Ma et al., 2016; Schmitt and Chang, 2016).
For example, the well-studied HOTAIR, a lncRNA highly
expressed in breast cancer that participates mainly in the
chromatin remodeling process, was found to be associated with
the biogenesis, development and differentiation of gliomas (Bian
et al., 2016). Furthermore, some newly discovered lncRNAs have
been found in glioma tissue and cell lines, such as lncRNA
ASLNC22381and KIAA0495 (Trojan et al., 2003; Zhang X.Q.
et al., 2013, 2015). Through investigating the lncRNAs in tissue
specimens for their expression stability in human gliomas and
normal brain, Kraus et al. (2015) identified four lncRNAs
(HOXA6as, H19 upstream conserved 1 and 2, Zfhx2as and
BC200) with stable expression levels in gliomas compared with
normal brain. Collectively, these lncRNAs have gained value
for clinical purposes as novel biomarkers, but despite this great
potential, many issues remain in this rapidly growing field.
Here, we summarize the most up-to-date findings regarding
how lncRNAs are regulated at the molecular level and their
implications in the areas of glioma research and therapy.

PROFILE OF LNCRNAS IN HUMAN
GLIOMA RESEARCH AND THERAPY

Recent studies in the large-scale analyses of full-length cDNA
sequences have discovered many lncRNAs as key players of
cell differentiation, immune responses, tumorigenesis, and other
biological processes (Wakamatsu et al., 2009; Fujimoto et al.,
2016; Wang J. et al., 2016). The Cancer Genome Atlas (TCGA),
an ambitious and successful cancer genomics project, generates

large-scale multi-dimensional genomic datasets covering over 20
malignancies, providing valuable insights into the underlying
genetic and genomic alteration of cancer (Wang Z. et al.,
2016). Deep sequencing studies, including large consortia, such
as TCGA, have identified numerous tumor-specific mutations
not only in protein-coding sequences, but also in non-
coding sequences, which have proven to be an important
component hidden in the “dark matter” of the genome. These
cancer-associated mutations within non-coding RNA, including
lncRNAs, can affect gene regulation in the pathogenesis and
development of gliomas (Ramos et al., 2016; Diederichs et al.,
2016). Differentially expressed lncRNAs in gliomas have been
widely analyzed using human glioma tissues and cell lines
(Table 1). These studies indicated that abnormal lncRNAs
plays critical roles in the development and progression of
gliomas.

The lncRNA profile in clinical specimens reveals their
potential roles in GBM pathogenesis. Using microarrays to
analyze the tissues of GBM patients and age-matched normal
donors, Han et al. (2012) found the lncRNA expression profile
in GBM tissue is significantly altered. In GBM tissue, 654
lncRNAs are up-regulated (fold change ≥4.0), and 654 are
down-regulated (fold change ≤0.25). Among the up-regulated
lncRNAs, ASLNC22381 and ASLNC2081 are likely to serve
as the key elements in the regulation of glioma signaling
pathways. Target gene-related pathway analysis indicated that
ASLNC22381 and ASLNC20819 may play important roles via
their target insulin-like growth factor 1 (IGF-1) genes, which
has been thought to be a positive risk factor for human glioma
development (Rohrmann et al., 2011). In addition, applying the
Affymetrix HG-U133 Plus 2.0 array, Zhang X. et al. (2012)
revealed that in tumors relative to normal brain tissues, lncRNA
C21orf131-B, MEG3, and RFPL1S are down-regulated, while
HOTAIRM1 (HOX antisense intergenic RNA myeloid 1) and
CRNDE are comparably up-regulated. Of note, these lncRNA
expression patterns show a close correlation with malignancy
grade and histological differentiation in human gliomas (Zhang
X. et al., 2012). The same group later identified a set of six
lncRNAs in 107 GBM patients, including KIAA0495, PART1,
MGC21881, MIAT, GAS5, and PAR5, that are significantly
associated with overall survival. The prognostic value of
this six-lncRNA signature is independent of the methylation
status of O-6-methylguanine-DNA methyltransferase (MGMT)
promoter, which can promote the treatment resistance of
glioma cells to alkylating agent chemotherapy (Zhang X.Q.
et al., 2013; Wick et al., 2014). Moreover, based on the
lncRNA expression profiles, Li R. et al. (2014) identified
three novel molecular subtypes (named LncR1, LncR2 and
LncR3) in gliomas. Survival analysis indicated that the LncR1
subtype has the poorest prognosis, while the LncR3 subtype
shows the best overall survival rate (Li R. et al., 2014).
Another study on lncRNA and mRNA interactions revealed
that lncRNAs, such as Hox cluster-associated lncRNAs, can
modulate a list of genes participating in the pathogenesis of
GBM (Yan et al., 2015). In addition, the expression profiles
analysis in recurrent gliomas compared with primary gliomas
identified abundant differentially expressed lncRNAs, such as
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FIGURE 1 | Classification of lncRNAs according to their genomic location. (1) Transcription start site-associated RNAs may be transcribed from enhancers or
promoters. (2) Long intronic ncRNAs may be transcribed from introns of other genes. (3) Natural antisense transcripts contain divergent antisense, nested antisense
or terminal antisense. (4) Stand-alone transcription units. (5) Some transcribed pseudogenes.

H19, CRNDE, and HOTAIRM1. These results imply that the
future studies of specific expressed lncRNAs would help elucidate
the mechanism of glioma recurrence at the genetic level and
identify effective therapeutic targets for glioma patients (Chen
et al., 2015).

Additionally, in vitro studies have strongly suggested that
the altered expression of lncRNAs during genome mutation
or genotoxic stress is involved in multiple neuro-oncological
disorder-associated cellular processes. Isocitrate dehydrogenase
1 (IDH1) mutations have been shown to be an important
prognostic marker for patients with gliomas (Cai et al., 2016;
Wang P.F. et al., 2016). LncRNA profiling between gliomas
with or without IDH1 mutations show significantly altered
gene expressions in astrocytic and oligodendroglial tumors.
Among the differential lncRNAs, KIAA0495, LOC254559
and LOC255130 have a close correlation with clinical
outcomes in IDH1-mutant patients. Moreover, these three
IDH1 mutation-associated lncRNAs participate in multiple
tumor-associated cellular biological behaviors, including cell
proliferation, apoptosis and metastasis (Zhang X.Q. et al., 2015).
In addition, after treatment with DNA damaging reagents, such
as doxorubicin and resveratrol, specific candidate lncRNAs
(MEG3, ST7OT1, TUG1, BC200 and MIR155HG) are detected
in human glioma cell lines (U251 and U87). During apoptosis
induced by both reagents, MEG3 and ST7OT1 are up-regulated
in both cell lines. Instead, when necrosis is induced with a
high dose of doxorubicin, TUG1, BC200 and MIR155HG
are significantly down-regulated (Liu Q. et al., 2015). As
NEAT2 (nuclear-enriched abundant transcript 2), also known
as MALAT1 (metastasis-associated lung adenocarcinoma
transcript 1), is a highly conserved lncRNA associated with
the metastatic potential of tumor cells, Han et al. (2016a)
found that the knockdown of NEAT2 by RNA interference
could promote the invasion and proliferation of glioma
cells. Concomitantly, the apoptosis rate of the glioma cell
lines is shown to dramatically increase (Han et al., 2016a;
Xiang et al., 2016). Over all, these results indicate that an
investigation into the abnormal expression profiles of lncRNAs
may help in the understanding of oncogenesis and identify

novel potential treatment targets in glioma research and
therapy.

Accumulating evidence indicates that a rare population of
self-renewing cells, called tumorigenic CSCs, is responsible for
tumor formation and therapeutic resistance in gliomas (Lathia
et al., 2015). Studies have indicated that lncRNAs are involved
in several biological processes in CSCs (Li Y. et al., 2015).
A large-scale expression study of functional ultra-conserved (uc)
ncRNAs showed that the uc.283 lncRNA, a 277 nucleotide-long
sequence located at ultra-conserved regions (UCRs) of human
genes, is highly specific for pluripotent stem cells, as well as
some solid cancers, particularly gliomas (Galasso et al., 2014).
Moreover, Han et al. (2016b) found that the down-regulation
of NEAT2 suppresses the expression of stemness markers Sox2
and Nestin, and further promotes cell proliferation by regulating
the ERK/MAPK (extracellular signal-regulated kinase/mitogen-
activated protein kinase) signaling axis in the glioma stem cell
line SHG139. Furthermore, the knockdown of the lncRNA XIST
could exert tumor-suppressive effects in human GBM stem cells
by up-regulating miR-152 (Yao et al., 2015). In addition, as the
gene enhancer of zeste homolog 2 (EZH2) serves as an oncogene
and is required for cancer stem cell maintenance, the inhibition
of EZH2 by lncRNAs can effectively promote the therapeutic
sensitivity in gliomas (van Vlerken et al., 2013; Yin et al., 2016).
Based on these observations, much more attention should be paid
on the regulation of lncRNAs in the maintenance of glioma stem
cells (GSCs), a decisive event occurring in the development of
gliomas.

ABERRANTLY EXPRESSED LNCRNAS
AND THEIR IMPLICATIONS IN HUMAN
GLIOMAS

The differential expression patterns of lncRNAs between tumor
and normal tissues, along with the expression discrepancies in
tumors with different clinical features, provide the possibility
that lncRNAs act as diagnostic, prognostic biomarkers and
pharmaceutical targets in gliomas. Although an increasing
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number of lncRNAs are being characterized, their detailed
mechanisms are still not completely elucidated. In this regard,
recent studies have demonstrated that lncRNAs in gliomas
can serve as molecular decoys, which move proteins or RNAs
away from a specific location, like a “sponge” to miRNAs
(e.g., HOTAIR/miR-326, CASC2/miR-21, XIST/miR-152, and
Gas5/miR-222). Additionally, other investigations demonstrate
lncRNAs can function as molecular signaling mediators, which
modulate the expression of a certain set of genes (e.g.,
H19/CD133 and NEAT2/MMP2) (Figure 2). To provide an
exhaustive description of the rapid development in this field,
the molecular mechanisms and potential functions of several
representative lncRNAs in gliomas will be discussed in the
following sections.

LncRNA HOTAIR
Long non-coding RNA HOTAIR, transcribed from the
antisense strand of the homeobox C (HOXC) gene locus in
chromosome 12, is involved in the regulation of specific gene
transcription. A study by Tsai et al. (2010) demonstrated
that HOTAIR regulates gene expression by interacting with
polycomb repressive complex 2 (PRC2) and lysine-specific
demethylase 1A (LSD1). The 5′- and 3′-domains of HOTAIR
can bind to the PRC2 and LSD1/CoREST/REST complex,
respectively. Serving as a scaffold, HOTAIR can tether two
distinct complexes together and recruit specific histone
modification enzymes, thereby resulting in H3K27 methylation
and H3K4 demethylation and ultimately gene silencing (Tsai
et al., 2010). In addition, HOTAIR could also serve as an
inducer of ubiquitin-mediated proteolysis to control protein
levels. HOTAIR facilitates the ubiquitination of Ataxin-1
through E3 ubiquitin ligases Dzip3, Snurportin-1, and Mex3b
to further accelerate their degradation. Through the rapid decay
of targets Ataxin-1 and Snurportin-1, HOTAIR can prevent
cellular premature senescence (Yoon et al., 2013). In addition,
aberrant HOTAIR expression has been extensively revealed to
correlate with cancer metastasis and is characterized as a negative
prognostic factor for cancer patients (Cai et al., 2014; Wu et al.,
2014).

Hox transcript antisense intergenic RNA expression is up-
regulated in glioma tissues and cell lines, and can serve
as a potential biomarker or therapeutic target for human
gliomas (Kiang et al., 2015; Zhou et al., 2015) (Figure 3).
Recent studies have indicated that HOTAIR expression is a
critical regulator of cell cycle progression in gliomas (Zhang
J.X. et al., 2013). HOTAIR regulates cell cycle progression
predominantly via the HOTAIR 5′-domain-PRC2 axis, which is
EZH2 (predominant PRC2 complex component)-dependent in
GBM cells (Zhang K. et al., 2015). In addition, bromodomain
and extraterminal (BET) domain proteins are required for
GBM cell proliferation. BET protein inhibitors can reduce
the proliferation of gliomas, in part, through the induction
of the cyclin-dependent kinase inhibitor p21Cip1 in vitro
and in vivo (Pastori et al., 2014). Pastori et al. (2014)
found that the bromodomain protein BRD4 could directly
control HOTAIR expression by binding to its promoter. The
overexpression of HOTAIR in conjunction with the BET

FIGURE 2 | Schematic diagram of the two archetypes of lncRNA
mechanisms in gliomas. (A) LncRNAs in gliomas can serve as molecular
decoys, which take proteins or RNAs away from a specific location.
(B) LncRNAs in gliomas can serve as molecular signaling mediators, which
modulate the expression of a certain set of genes.

protein inhibitor I-BET151 abolishes the anti-proliferative
activity of the BET bromodomain inhibitor (Pastori et al.,
2015). Furthermore, the HOTAIR-miRNA axis has an important
role in malignant biological behaviors of human glioma. Ke
et al. (2015) found that fibroblast growth factor 1 (FGF1)
mediates oncogenic effects by activating the PI3K/AKT and
MEK 1/2 pathways. HOTAIR, one target of miR-326, has
been confirmed to down-regulatemiR-326; then, it exerts its
tumor-suppressive activities by reducing the expression of
FGF1 (Ke et al., 2015). Similarly, HOTAIR can act as an
endogenous “sponge” of miR-141, thereby promoting the
promoter methylation of miR-141 by DNA methyltransferase
1 (DNMT1) in glioma cells. Then, the hypermethylated miR-
141 can repress the expression of the spindle and kinetochore
associated complex subunit 2 (SKA2), which results in a
significant increase in tumor growth (Bian et al., 2016).
Collectively, these results suggest that HOTAIR may potentiate
glioma development in many facets; thus, it is worthy of further
investigation.

LncRNA H19
Long non-coding RNA H19, produced from the imprinted gene
H19, is one of the most highly conserved transcripts involved
in mammalian development. Studies have also demonstrated
that H19 could potentially serve as an oncogenic lncRNA in
different types of cancers, including gliomas (Kiang et al.,
2015; Chen et al., 2016). Mechanistically, the product of the
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FIGURE 3 | Roles of lncRNA HOTAIR in glioma malignancy. See text for detailed discussion.

MYC oncogene, c-Myc, induces the expression of the H19
non-coding RNA, thereby potentiating gliomagenesis (Barsyte-
Lovejoy et al., 2006). Furthermore, serving as a miRNA precursor,
H19 could modulate glioma progression by generating miR-675.
The oncogenic function of H19/miR-675 is dependent on the
expression of cancer-associated cadherin 13 (CDH13), which is
the direct target of miR-675 (Shi et al., 2014). Li C. et al. (2015)
found that miRNA-675, which is derived from the first exon of
H19, could regulate the immoderate proliferation and migration
of glioma cell lines by inhibiting the expression of CDK6, which
is a pivotal regulator of the cell cycle and involved in glioma
development (Rader et al., 2013; Sherr et al., 2016). These findings
agree with another study showing that H19 overexpression can
promote the cell-cycle progression of cancer cells (Berteaux et al.,
2005). Moreover, the knockdown of H19 by siRNA displays
higher therapy efficiency when induced by the chemotherapy
drug TMZ in GBM cells (Li W. et al., 2016). Thus, LncRNA H19
could be increasingly recognized as a potential target for glioma
treatment.

Accumulating evidence has identified that tumorigenic CSCs,
with self-renewing capability, contribute to tumor initiation and
therapeutic resistance (Lathia et al., 2015). Intriguingly, H19
overexpression could maintain the stem cell properties of GBM
cells. Li W. et al. (2016) found that the markers of CSCs,
including CD133, NANOG, Oct4, and Sox2, are significantly
down-regulated in H19-deficient cells. This conclusion was
further confirmed by Jiang et al. (2016), who found that the
increased level of H19 promotes invasion, angiogenesis, and
stemness of GBM cells. H19 is significantly overexpressed in
CD133-positive GBM cells, and higher H19 expression levels are
associated with increased tumor growth (Jiang et al., 2016). In
spite of the critical role of H19 in the maintenance of glioma
stemness, its exact mechanism is still unclear and needs to be
further investigated.

LncRNA CRNDE
Colorectal neoplasia differentially expressed was initially
identified by Derrien et al. (2012) as a putative non-coding

RNA; it is highly expressed in developmental neurobiology and
neuropathology. Studies have found that CRNDE expression is
also elevated in many colorectal cancers and brain cancers, such
as GBM, astroblastomas, and astrocytomas (Ellis et al., 2012;
Kiang et al., 2015). Of note, among the 129 lncRNAs differentially
expressed in glioma tissues, CRNDE is consistently identified as
the most up-regulated lncRNA by 32-fold up (Zhang X. et al.,
2012).

Colorectal neoplasia differentially expressed potentiates
glioma development possibly by maintaining the stemness
of the tumor cells, as it functions in neural precursors (Ellis
et al., 2012; Watkins and Sontheimer, 2012). In support of this
notion, a previous study by Zheng J. et al. (2015) demonstrated
a direct link between the overexpression of CRNDE and GSCs.
Mechanistically, CRNDE could negatively regulate miR-186
and depress the expression of the downstream target genes
XIAP (X-linked inhibitor of apoptosis) and PAK7 [p21 protein
(Cdc42/Rac)-activated kinase 7], thus contributing to the
malignant characteristics of human GSCs (Zheng J. et al.,
2015). In addition to these observations, Wang Y. et al. (2015)
showed that the overexpression of the CRNDE transcript
promotes glioma cell growth in vitro and in vivo through
mammalian target of rapamycin (mTOR) signaling. Intriguingly,
epigenetic modifications, including histone acetylation in the
promoter region, can also promote CRNDE expression (Wang
Y. et al., 2015). More recently, CRNDE was reported to promote
malignant behavior by attenuating the miR-384/PIWIL4 (piwi-
like RNA-mediated gene silencing 4) axis. Briefly, CRNDE
knockdown can decrease the protein level of PIWIL4, a target
of miR-384, which leads to glioma regression in vivo (Zheng J.
et al., 2016). Overall, these results revealed that CRNDE could
potentiate glioma via multiple signaling pathways and may be a
promising novel therapeutic target for glioma therapy.

LncRNA CASC2
Cancer susceptibility candidate 2, located at chromosome 10q26,
is a lncRNA originally identified as a tumor suppressor gene
in endometrial cancer. CASC2 consists of three alternatively
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spliced transcript isoforms, CASC2a, CASC2b and CASC2c,
which contain identical first three exons and diverse downstream
exons (Zhao et al., 2014). CASC2a expression is down-regulated
at the transcription level in endometrial cancer. Baldinu et al.
(2007) revealed that the exogenous expression of CASC2a in
undifferentiated endometrial cancer cells significantly inhibits
the clonal growth. Using a positional candidate approach, 7%
CASC2a mutations in tumor DNA from 44 endometrial cancer
patients were identified (Baldinu et al., 2004), suggesting that
inactivation of CASC2a might probably be due to mechanisms
different from genetic alterations. In non-small cell lung cancer
(NSCLC) tissues and cell lines, He X. et al. (2016)) reported
that CASC2 expression is involved in the development and
progression of NSCLC. However, little is known about the role
and function of CASC2 in human gliomas.

Recently, Wang P. et al. (2015) reported that CASC2
expression is decreased in glioma tissues as well as glioma
cell lines (U251 and U87). Consistent with previous studies in
other tumors, the overexpression of CASC2 could inhibit the
malignancy of glioma cells through an arrest of proliferation and
migration, correspondingly promoting cellular apoptosis. RIP
and RNA pull-down assays confirmed that the tumor suppressive
role of CASC2 is mainly mediated via the down-regulation of
miR-21, one potential direct target of CASC2, in a sequence-
specific manner (Wang P. et al., 2015). A growing body of
literature has shown that miR-21 serves as an oncogene, and the
inhibition of miR-21 is a novel therapeutic strategy for specific
and effective action against gliomas (Harmalkar et al., 2015; Belter
et al., 2016). Mechanistically, miR-21 promotes gliomagenesis
by regulating multiple oncogenesis-related processes, including
proliferation, apoptosis, migration and invasion. Therefore,
targeting the CASC2-miR-21 axis may be an effective strategy for
the treatment of malignant gliomas.

LncRNA XIST
X-chromosome inactivation (XCI) ensures dosage compensation
between the sexes in mammals and is a paradigm for allele-
specific gene expression on a chromosome-wide scale. The
lncRNA XIST, a product of the XIST gene, is located within the
500 kb stretch of XCI DNA at Xq13, which is known as the
X-inactivation center (XIC); XIST is the master regulator of X
chromosome inactivation in mammals (Furlan and Rougeulle,
2016; Maduro et al., 2016). The current model proposes
that XIST induces epigenetic silencing of multiple genes by
recruiting the chromatin modifier, the PRC2 complex, to the
XIC (Goodrich et al., 2016). With the help of the high-
affinity RNA-binding protein ATRX (alpha thalassemia/mental
retardation syndrome X-linked), a growing number of XIST
RNAs accumulate and are tethered to the X chromosome.
Afterward, the XIST RNA spreads and forms a RNA “cloud”
coating the XIC in cis. To recruit PRC2, the XIST RNA first
associates with approximately 150 intense PRC2 binding sites
(CpG islands), followed by its association with 3,000–4,000
moderate-strength binding sites of PRC2. Finally, XIST RNA
spreads to both gene-rich and poor regions in distinct stage-
specific forms on the X chromosome (Simon et al., 2013; Sarma
et al., 2014).

X-inactive specific transcript has been found to be
dysregulated in a variety of human cancers (Yildirim et al.,
2013; Tantai et al., 2015). Specifically, a recent study showed that
XIST expression is abnormally up-regulated in glioma tissues
and GSCs. The knockdown of XIST by short-hairpin RNA exerts
a tumor suppressive function in GSCs. Furthermore, as XIST
and miR-152 may form a reciprocal repression feedback loop
and are located in the same RNA induced silencing complex
(RISC), miR-152 can mediate the promotion of GSCs by XIST
(Yao et al., 2015). In addition, XIST can inhibit hepatoma cell
proliferation and metastasis by targeting miR-92b (Zhuang
et al., 2016). Moreover, XIST has been identified to directly bind
tomiR-210 (Fasanaro et al., 2009). Consistently, other miRNAs,
such as miR-92b and miR-210, may also regulate the expression
of XIST in gliomas. Altogether, further studies should focus on
the XIST-miRNA axis in glioma research and treatment.

LncRNA TUG1
Taurine up-regulated gene 1, a 7.1 kb lncRNA located at
chromosome 22q12, is a cancer-related lncRNA in some tumors,
including NSCLC (Zhang et al., 2014), bladder cancer (Tan et al.,
2015) and gliomas (Li J. et al., 2016). TUG1 was first identified in
a genomic screen for genes differentially regulated by taurine in
developing mouse retinal cells. Furthermore, TUG1 is found to
play crucial roles in the formation of photoreceptors and retinal
development (Young et al., 2005).

Recent investigations have reported that in human glioma
cell lines, TUG1 is down-regulated, in response to necrosis
induced by a high dose of DOX (Liu Q. et al., 2015). Li J.
et al. (2016) showed that TUG1 acts as a tumor suppressor in
glioma tumorigenesis, and is negative correlated with glioma
grade, tumor size, and overall survival. Further studies via gain-
and loss-of-function assays revealed that TUG1 induces glioma
cell apoptosis through caspases-mediated intrinsic pathways,
rather than the Bcl-2-mediated anti-apoptotic pathway (Li J.
et al., 2016). However, the precise mechanism of TUG1 in cell
proliferation, as well as invasion, in glioma development is still
unclear. The BTB limits the effect of conventional chemotherapy
by restricting drug delivery to brain tumor tissues (Hendricks
et al., 2015). Using a co-culture assay with glioma and endothelial
cells, Cai et al. (2015) revealed that the knockdown of TUG1
could reduce tight junction protein expression in endothelial
cells by down-regulating heat shock transcription factor 2
(HSF2), the target of miR-144, increasing BTB permeability of
chemotherapeutic agents. Thus, there may be potential role of
TUG1 in anti-glioma therapy, and BTB function may represent
a useful therapeutic intervention strategy in the future.

LncRNA NEAT1/2
Nuclear enriched abundant transcript 1 (NEAT1) is an essential
lncRNA for the formation of paraspeckles, which are nuclear
bodies named for their close proximity to nuclear speckles (Yu
and Shan, 2016). NEAT1 is an unusual RNA polymerase II (pol
II) transcript that lacks introns, and it is widely expressed in
many types of mammalian cells (Naganuma and Hirose, 2013).
NEAT2/MALAT1 is a highly conserved lncRNA associated with
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tumorigenesis and plays a prognostic role in various cancers (Wei
and Niu, 2015).

Up to date, lncRNAs have been demonstrated to be involved
in the DNA damage response, thus contributing to the process
of cellular defense against genotoxic agents (Zhang and Peng,
2015). Upon treatment with the DNA damage-inducing agent
resveratrol, NEAT1 is up-regulated in the glioma cell lines
U251 and U87 (Liu Q. et al., 2015). An increase in NEAT1
expression has also been reported in human glioma tissues
compared with non-cancerous brain tissues. NEAT1 promotes
glioma pathogenesis by regulating glioma cell proliferation,
invasion, and migration. Zhen et al. (2016) demonstrated that
functioning as a molecular sponge for miR-449b-5p, NEAT1
could up-regulate the expression of c-Met, a direct target of
miR-449b-5p, thus promoting glioma oncogenesis. Furthermore,
clinical investigations revealed that aberrant NEAT1 expression is
negatively associated with clinical outcome in high-grade glioma
patients (He C. et al., 2016).

Recent works have illustrated the tumor-suppressive
role of NEAT2 in the development of glioma cells. NEAT2
expression is lower in glioma tissues than in normal brain
tissues. Mechanistically, NEAT2 inhibits the proliferation and
invasion of glioma cells (U87 and U251) by inactivating
ERK/MAPK signaling and down-regulating MMP2
(matrix metalloproteinase 2; Han et al., 2016a). In contrast,
Xiang et al. (2016) showed an opposite role of NEAT2 in
gliomas. According to their observations, NEAT2 expression
is significantly increased in glioma tissues, as well as in U87
and U251 cells (Xiang et al., 2016). Remarkably, GSCs of the
U87, SHG44 and SHG139 cell lines expressed higher levels of
NEAT2 than their parental lines (Han et al., 2016a). In addition,
Han et al. (2016b) found that the down-regulation of NEAT2
suppresses the expression of stemness markers Sox2 and Nestin
in SHG139S cells, while NEAT2 down-regulation promotes
the proliferation of SHG139S cells. Therefore, NEAT2 plays a
complex role in gliomagenesis as both a positive and a negative
regulator, possibly based on its specific cellular context.

LncRNA GAS5
Growth arrest-specific 5, localized at chromosome 1q25.1, could
transcribe a tumor-suppressive lncRNA in human cancers. To
date, GAS5 has been considered to act as a “riborepressor”
or “miRNA sponge” that modulates the transcriptional activity
of cancer-associated genes (Kino et al., 2010; Zhang Z. et al.,
2013). Recent studies have reported that GAS5 negatively
regulates the growth of cancer cell lines in vitro and in vivo,
including gliomas (Pickard and Williams, 2015). GAS5 exerts
complementary effects on cell proliferation (inhibitory) and
apoptosis (stimulatory), and taken together, these cellular
mechanisms likely form the basis of its tumor-suppression
action (Yin et al., 2014; Shi X. et al., 2015). Mechanistically,
the up-regulation of Gas5 increases the expression of tumor
suppressor bmf (Bcl-2-modifying factor) and Plexin C1 via
directly reducing the expression of miR-222 (Zhao X. et al.,
2015). In addition, the overexpression of GAS5 could enhance the
cellular response to erlotinib, a tyrosine kinase inhibitor used as
a second line treatment for glioma (Garcia-Claver et al., 2013).

The induction of GAS5 is apparently detected during DOX-
induced apoptosis in human glioma cell lines (Liu Q. et al.,
2015). The above examples suggest that GAS5 may be used as
diagnostic markers or therapeutic targets for gliomas, but much
work needs to be done before such applications become clinically
practical.

LncRNA ADAMTS9-AS2
The ADAMTS family has been implicated in essential
physiological processes, such as angiogenesis and organ
development (Ho et al., 2016). ADAMTS9-AS2 is the antisense
transcript of ADAMTS9, a member of the ADAMTS family.
Walsh et al. (2016) pointed that ADAMTS9-AS2 plays a
critical role in epigenetic regulation, affecting early stage digit
development. Recently, the ADAMTS9-AS2 locus has been
revealed as a potential therapeutic target and prognostic marker
in gliomas. ADAMTS9-AS2 serves as a tumor suppressor,
which is significantly down-regulated in glioma tissues, and
its expression is negatively correlated with tumor grade and
prognosis. Meanwhile, DNMT1 knockdown remarkably
enhances ADAMTS9-AS2 expression, inhibiting cell migration
in gliomas (Yao et al., 2014).

LncRNA SPRY4-IT1
SPRY4-IT1, a 708 bp intron-retained lncRNA localized at
chromosome 5q31.3, is found to be significantly expressed in
breast cancer (Shi Y. et al., 2015), osteosarcoma (Ru et al., 2016)
and bladder cancer (Zhao X.L. et al., 2015), and its suppression
can inhibit proliferation and induce apoptosis in cancer cells.
SPRY4-IT1 was originally reported by Khaitan et al. (2011) to
play an important role in the molecular etiology, modulation of
cell apoptosis and invasion of human melanoma. Recently, the
expression of SPRY4-IT1 is shown to be significantly expressed
in glioma tissues and glioma cell lines compared with normal
donors (Liu H. et al., 2015). The epithelial-to-mesenchymal
transition (EMT), as a relevant molecular event in malignant
gliomas, is an essential process in tumor dissemination and
metastatic behavior (Kahlert et al., 2013). Liu H. et al. (2015)
showed that the knockdown of SPRY4-IT1 by siRNA could
suppress the EMT phenotype in glioma cells (U251 and SF295).
However, the exact mechanism underlying the role of SPRY4-IT1
in glioma pathology still remains to be elucidated.

LncRNA HULC
Highly up-regulated in liver cancer has pro-oncogenic activity
in many human malignancies, such as B-cell lymphoma (Peng
et al., 2016), hepatocellular carcinoma (Huang et al., 2016), and
osteosarcoma (Sun et al., 2015). Recently, Zhu’s et al. (2016)
reported that HULC has important biological function in human
gliomas. HULC can promote the angiogenesis, one hallmark of
malignant gliomas, by inhibiting the expression of angiogenesis-
related molecule ESM-1 (endothelial cell specific molecule 1). In
addition, the PI3K/AKT/mTOR signaling pathway is involved
in the response induced by HULC (Zhu et al., 2016). These
intriguing findings will help pave the way for exciting functional
studies of HULC in gliomagenesis.
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CONCLUSION AND REMARKS

Long non-coding RNA-based mechanisms alter cell fate during
development, and their dysregulation underscores many human
disorders, including gliomas. LncRNAs play indispensable roles
in the onset and progression of this malignancy, including
the proliferation, metastasis and EMT of glioma cells. Though
previously considered “junk sequences” in our genomes, the
epigenetic role of lncRNA should promise to be another exciting
marker for glioma research and therapy. In addition, extracellular
vesicles (EVs), like exosomes, isolated from blood, cerebrospinal
fluid (CSF), and other biofluids of GBM patients could offer new
insight into cancer biology with both diagnostic and therapeutic
implications. These exosomes have been found to harbor glioma-
derived specific lncRNAs that are significantly different in
cancer patients compared with normal controls (Chistiakov
and Chekhonin, 2014). Moreover, exosome-transmitted lncRNAs
could promote chemotherapeutic resistance in cancer by acting
as a competing endogenous RNA (ceRNA; Qu et al., 2016).
They can act as sponges for competitively binding miRNAs
through their miRNA-recognizing elements (MREs) and further
regulate the expression of miRNAs (Denzler et al., 2014; Yang
et al., 2016). Strikingly, these MRE elements implicated in
the ceRNA networks are also able to regulate the mRNA
expression playing critical roles in tumorigenesis (Guo et al.,
2015). Understanding the key roles of “lncRNA-miRNA” and
“lncRNA-mRNA” interactions in the pathogenesis of gliomas
will lead to the identification of new targets for GBM
treatment.

In addition, TMZ, an alkylating agent, is the most widely
used and effective first-line chemotherapeutic drug for treating
primary and recurrent high-grade gliomas (Messaoudi et al.,
2015). TMZ could activate autophagy in tumor cells. Autophagic
modulators could lead to either cell survival or cell death,
depending on the cellular context, which further affects the
therapeutic sensitivity of TMZ in GBM (Yan et al., 2016).
Recently, it has been proposed that serving as factors in gene
regulation, lncRNAs could control cellular processes such as
autophagy in disease conditions (Choudhry et al., 2016). The
oncogene lncRNA HNF1A-AS1 could promote tumor growth by
sponging tumor-suppressive hsa-miR-30b-5p in hepatocellular
carcinoma. Meanwhile, the HNF1A-AS1-miR-30b axis could
significantly up-regulate cell autophagy during starvation by
enhancing the expression of ATG5, the target of miR-30b (Liu
Z. et al., 2016). However, upon energy stress, lncRNA NBR2
(neighbor of BRCA1 gene 2) could promote AMP-activated
protein kinase (AMPK) activity through interacting with AMPK,
leading to a depressed autophagy response and increased tumor

development (Liu X. et al., 2016). Thus, further investigation of
lncRNAs in autophagy regulation would be able to identify novel
strategies to enhance the benefits of TMZ chemosensitivity and
chemoprotection in the treatment of gliomas.

In the last decade, lncRNAs have been regarded as molecular
targets for the treatment of many cancers, including gliomas
(Lavorgna et al., 2016). Furthermore, recent advancements
in deep sequencing are now providing new tools to
functionally annotate disease-associated lncRNAs, facilitating
the identification of these new transcripts for cancer therapy
(Huarte, 2015; Zheng L.L. et al., 2016). However, their biological
effects are easily influenced by many factors, such as delivery
strategies to cross the BTB. A better understanding of the real
efficacy and mechanisms of lncRNAs, particularly in human
patients, represents a matter of great interest for possible clinical
application in future. Ma et al. (2016) found that the knockdown
of the lncRNA NEAT2 in gliomas could result in the significantly
increased permeability of BTB, which might contribute to
enhancing potential therapeutic strategies for human gliomas.
Meanwhile, the results from Liu’s group indicated that the
lncRNA TUG1, which is highly expressed in vascular endothelial
cells from glioma tissues, could influence BTB permeability via
binding to miR-144, further reducing the expression of tight
junction proteins in endothelial cells, such as ZO-1, occludin, and
claudin-5 (Cai et al., 2015). Thus, extensive work should focus on
the role of lncRNAs in BTB permeability, which may represent a
useful therapeutic target for human glioma treatment.
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