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Abstract
Introduction: The	significant	abnormalities	of	precuneus	(PC),	which	are	associated	
with	brain	dysfunction,	have	been	identified	in	cirrhotic	patients	with	covert	hepatic	
encephalopathy	(CHE).	The	present	study	aimed	to	apply	radiomics	analysis	to	iden-
tify	the	significant	radiomic	features	in	PC	and	their	subregions,	combine	with	clinical	
risk	factors,	then	build	and	evaluate	the	classification	models	for	CHE	diagnosis.
Methods: 106	HBV-related	cirrhotic	patients	(54	had	current	CHE	and	52	had	non-
CHE)	underwent	the	three-dimensional	T1-weighted	imaging.	For	each	participant,	
PC and their subregions were segmented and extracted a large number of radiomic 
features and then identified the features with significant discriminative power as the 
radiomics signature. The logistic regression analysis was employed to develop and 
evaluate	the	classification	models,	which	are	constructed	using	the	radiomics	signa-
ture and clinical risk factors.
Results: The	classification	model	(R-C	model)	achieved	best	diagnostic	performance,	
which	incorporated	radiomics	signature	(4	radiomic	features	from	right	PC),	venous	
blood	ammonia,	and	the	Child-Pugh	stage.	And	the	area	under	the	receiver	operating	
characteristic	curve	values	(AUC),	sensitivity,	specificity,	and	accuracy	values	were	
0.926,	1.000,	0.765,	and	0.848,	in	the	testing	set.	Application	of	the	radiomics	nomo-
gram in the testing set still showed a good predictive accuracy.
Conclusions: This	study	presented	the	radiomic	features	of	the	right	PC,	as	a	poten-
tial	image	marker	of	CHE.	The	radiomics	nomogram	that	incorporates	the	radiomics	
signature	and	clinical	risk	factors	may	facilitate	the	individualized	prediction	of	CHE.
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1  | INTRODUC TION

Covert	 hepatic	 encephalopathy	 (CHE),	 which	 consists	 of	 minimal	
hepatic	encephalopathy	(MHE)	and	grade	1	West	Haven	Criteria	he-
patic	encephalopathy	(HE),	is	characterized	by	the	presence	of	mild	
cognitive	impairments	particularly	in	attention,	visuospatial	coordi-
nation,	executive	functions,	and	psychomotor	speed.	It	is	estimated	
that	 the	prevalence	of	CHE	 in	patients	with	cirrhosis	 is	30%–85%	
(Ampuero	et	 al.,	 2018;	Ortiz	et	 al.,	 2005;	Vilstrup	et	 al.,	 2014).	 In	
addition,	CHE	has	 significant	 impact	 on	 cirrhotic	 patients,	 includ-
ing declined the work performance and/or increased the traffic 
violations	 and	 accidents	 (Labenz	 et	 al.,	 2018;	 Ortiz	 et	 al.,	 2005).	
Furthermore,	CHE	is	associated	with	increased	progression	to	overt	
HE	(OHE),	which	have	a	negative	impact	on	patient's	quality	of	life	
(Ampuero	et	al.,	2018;	Labenz	et	al.,	2018;	Ortiz	et	al.,	2005)	and	
cause	a	high	mortality	(Cui	et	al.,	2018).	Therefore,	testing	for	CHE	
in	patients	with	HBV-related	cirrhosis	 is	beneficial	 to	 the	patients	
and	it	is	recommended	(Vilstrup	et	al.,	2014).	Due	to	its	subtle	clin-
ical	 symptoms,	 diagnosis	 of	 CHE	 mainly	 depends	 on	 specialized	
neurophysiologic,	computerized	and	paper–pencil	tests	such	as	psy-
chometric	hepatic	encephalopathy	score	(PHES).	These	tests	seem	
simple,	but	they	all	should	be	performed	by	experienced	examiners,	
and	 the	 test	 results	 are	 usually	 affected	 by	 the	 patient's	 age	 and	
literacy	(Ortiz	et	al.,	2005;	Vilstrup	et	al.,	2014).	Owing	to	the	com-
plexity	of	diagnostic	strategies,	the	subjectivity	of	evaluations	and	
the	 lack	of	sufficient	attentions	 (Patidar	&	Bajaj,	2015),	most	CHE	
patients do not receive timely diagnosis and appropriate treatment 
and	are	faced	with	risk	of	accidents.	Thus,	validating	a	noninvasive	
and objective method of diagnosis would be beneficial for both se-
lecting therapeutic strategies and prognosis in clinical practice.

Now,	 a	 variety	 of	 magnetic	 resonance	 imaging	 (MRI)	 tech-
nology	 has	 been	 widely	 used	 in	 HE	 researches.	MRI	 can	 identify	

abnormalities	in	brain	structures	and	functions	in	patients	with	HE.	
Many	researches	showed	that	patients	with	CHE	or	OHE	had	signifi-
cant	alterations	in	PC,	including	gray	and	white	matter	volume	(Chen	
et	al.,	2012;	Iwasa	et	al.,	2012;	Montoliu	et	al.,	2012;	Wu	et	al.,	2015),	
functional	connectivity	(Chen	et	al.,	2013,	2017;	Yang	et	al.,	2018),	
and	 diffusion	 properties	 (Chen	 et	 al.,	 2017;	 Lin	 et	 al.,	 2012;	 Qi	
et	al.,	2012).	In	addition,	some	researchers	found	that	the	alterations	
of the volume of PC were correlated with the ammonia levels and 
the	extent	of	cognitive	impairment	(Chen,	Liu,	et	al.,	2017;	Montoliu	
et	al.,	2012;	Wu	et	al.,	2015).	Therefore,	the	alterations	of	PC	might	
be one of important neuropathological mechanisms of cognitive 
dysfunction	and	be	relevant	to	the	early	diagnosis	of	CHE.

Radiomics	 is	an	auxiliary	detection	and	diagnostic	technique	that	
converts	 medical	 images	 into	 high-dimensional	 mineable	 data.	 It	 is	
intended to develop decision support tools. Radiomic data and avail-
able clinical factors can increase the power of the decision support 
models,	which	may	potentially	 improve	diagnostic	and	predictive	ac-
curacy	and	evaluation	of	prognosis	for	disorders	 (Gillies	et	al.,	2016).	
Nowadays,	radiomics	analysis	was	not	only	applied	in	the	tumor	field	
such	as	classifying	tumors	(Aerts	et	al.,	2014)	and	predicting	their	out-
comes	 (Huynh	et	al.,	2016),	but	also	was	used	 in	 the	nontumor	field	
of	Alzheimer's	disease	(AD)	(Feng,	Wang,	et	al.,	2018;	Li	et	al.,	2019),	
Parkinson's	 disease	 (Wu	 et	 al.,	 2019),	 attention-deficit	 hyperactivity	
disorder	 (Sun	et	 al.,	2018),	 and	Autism	Spectrum	Disorder	 (Chaddad	
et	al.,	2017;	Heinsfeld	et	al.,	2018).	Those	studies	had	shown	that	objec-
tive	and	quantitative	features	could	potentially	provide	a	new	approach	
to	develop	classifiers,	which	may	facilitate	the	individualized	diagnostic	
biomarkers.	But	currently,	CHE	has	no	research	use	radiomics	analysis.

The	aim	of	this	study	is	to	extract	quantitative	features	from	PC	
and their subregions and combine with clinical risk factors to de-
velop	 and	 evaluate	 classification	models	 for	HBV-related	 cirrhotic	
CHE	in	a	framework	of	radiomics	analysis	(Figure	1).

F I G U R E  1   The workflow of data processing
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2  | METHOD

2.1 | Participants

A	 total	 of	 106	 patients	 with	 HBV-related	 cirrhosis	 diagnosed	 by	
liver biopsy or clinical criteria were consecutively recruited from 
February	2018	 to	June	2019	and	written	 informed	consents	were	
obtained	 from	 all	 participants,	 and	 this	 study	 was	 approved	 by	
the	 local	 ethics	 committee	 (ethics	 reference	 number:	 2018–043).	
Exclusion	criteria	was	followings:	(a)	current	overt	HE	or	other	neu-
ropsychiatric disorders; (b) liver malignancy; (c) history of brain sur-
gery;	(d)	alcohol	abuse	within	6	months	prior	to	the	study;	(e)	active	
infection; (f) recent (<4	weeks)	gastrointestinal	bleeding;	 (g)	meta-
bolic diseases or endocrine diseases (e.g. diabetes mellitus or and 
thyroid dysfunction); (h) history of taking psychotropic medications; 
(i)	age	≤	18	years	or	≥75;	and	(j)	MRI	contraindications.

2.2 | Paper–pencil testing and diagnosis of CHE

The	 diagnosis	 of	 CHE	was	made	 according	 to	 the	 practice	 guide-
line	 of	 the	 14th	 International	 Society	 for	Hepatic	 Encephalopathy	
(Vilstrup	et	al.,	2014).	Patient	who	showed	abnormal	scores	 in	the	
number	connection	test	A	(NCT-A)	and	digit	symbol	test	(DST)	was	
defined	as	CHE.	The	abnormal	scores	were	defined	as	exceeding	the	

reference	value	by	two	standard	deviations,	referred	to	the	normal	
value	 of	 a	 domestic	 expert	 consensus	 of	 China	 (Xing,	 2009).	 The	
tests	were	performed	in	1	hr	before	MRI	scan.	As	a	result,	partici-
pants	were	divided	into	CHE	group	(54	patients)	and	non-CHE	group	
(nCHE)	group	(52	patients).

2.3 | Clinical staging and laboratory examinations

Data	including	the	Child-Pugh	stage	(based	on	albumin,	total	serum	
bilirubin,	prothrombin	time,	and	ascites)	and	venous	blood	ammonia	
were obtained within one week prior to MRI scan to assess the se-
verity of liver disease for each subject.

2.4 | MR imaging

MRI examinations were performed using a 3.0 T MR scanner 
(Achieva	3.0	T	TX;	Philips	Healthcare)	with	an	eight-channel	head	
coil	 for	 all	 participants.	 The	 three-dimensional	 (3D)	 T1-weighted	
images	of	 the	brain	were	acquired	 for	each	subject	using	a	 rapid	
gradient	 echo	 sequence	 (TR/TE:	 7.8/3.8	ms,	 TI:	 920.8	ms,	 FOV:	
240	 mm	 ×	 240	 mm,	 acquisition	 matrix:	 240	 ×	 240,	 flip	 angle:	
8°,	 slice	 thickness:	 1	 mm,	 150	 sagittal	 slices	 and	 resolution	 of	
1 mm × 1 mm × 1 mm).

TA B L E  1   Demographic and clinical characteristics of all subjects

Protocols

Training set (n = 73) Testing set (n = 33)

p
CHE
(n = 37)

nCHE
(n = 36) p

CHE
(n = 17)

nCHE
(n = 16) p

Demographics

Age	(year) 57	±	9.98 53.22	±	8.99 0.07 57.94	±	11.98 56.63	±	11.89 0.885 0.32

Gender	(M/F) 0.747 0.304 0.481

Male 25	(34.3%) 23	(31.5%) 11	(33.3%) 13	(39.4%)

Female 12	(16.4%) 13	(17.8%) 6	(18.2%) 3	(9.1%)

Education level 7.95	±	4.26 9.89	± 3.03 0.051 8.65	±	2.98 9.43	±	3.56 0.939 0.869

Laboratory	
examinations

NH3 (μmol/L) 57.43	±	44.45 21.36	± 12.13 <0.001* 63.63	±	33.81 21.94	± 12.37 <0.001* 0.716

Child–Pugh	stage <0.001* 0.002* 0.672

A 8	(11.0%) 21	(28.8%) 3	(9.1%) 10	(30.2%)

B 13	(17.8%) 12	(16.4%) 5	(15.2%) 5	(15.2%)

C 16	(21.9%) 3	(4.1%) 9	(27.3%) 1	(3.0%)

Neuropsychological	
tests

NCT-A	(s) 63.65	± 32.00 31.37 ±	7.26 <0.001* 67.91	± 27.33 36.45	± 13.77 <0.001* 0.400

DST 24.51	±	11.59 38.53	±	9.18 <0.001* 21.94	±	8.41 35.94	±	10.42 <0.001* 0.298

Note:: Values	are	expressed	as	mean	± SE.
Abbreviations:	CHE,	cirrhotic	patients	with	covert	hepatic	encephalopathy;	DST,	Digit	Symbol	Test;	nCHE,	cirrhotic	patients	without	hepatic	
encephalopathy;	NCT-A,	Number	Connection	Test	A;	NH3,	the	venous	blood	ammonia.
*Significant differences between groups. 
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2.5 | Segmentation of PC and their subregions

10 regions of interest (ROI) segmentation of the PC was carried 
out	 using	 the	 statistical	 parametric	 mapping	 (SPM8,	 www.fil.ion.
ucl.ac.uk/spm/)	and	 the	Brainnetome	Toolkit	 (version	3.35;	http://
atlas.brain	netome.org/)	(Feng,	Wang,	et	al.,	2018).	According	to	the	
Human	Brainnetome	Atlas	(based	on	anatomical	and	functional	con-
nections),	each	side	of	PC	has	4	subregions	including	medial	area	7	
(PEp),	medial	area	5	(PEm),	dorsomedial	parieto-occipital	sulcus	(PEr),	
and	area	31	(Lc1)	(Fan	et	al.,	2016).	10	ROIs	(right	PC,right	PEp,	right	
PEm,	right	PEr,	right	Lc1,	left	PC,	left	PEp,	left	PEm,	left	PEr,	and	left	
Lc1)	were	obtained	as	follows:	First,	the	3D	T1-weighted	images	of	
each subject were converted into the format that can be used for 
postprocessing;	second,	the	images	were	performed	skull	stripping	
and	normalized	to	the	Montreal	Neurological	Institute	(MNI)	space,	
and	 the	Brainnetome	Atlas	was	also	 resliced	 to	 the	 standard	MNI	
space;	third,	bilateral	PC	and	their	subregions’	3D	masks	were	auto-
matically	obtained	from	the	resliced	brain	atlas;	finally,	point	multi-
plication	of	the	3D	masks	and	the	normalized	T1	images	were	used	
to get the 10 ROIs.

2.6 | Quantitative radiomic features calculate

The	calculation	of	 radiomic	 features	were	carried	out	by	using	 in-
house	MATLAB	scripts	(http://atlas.brain	netome.org/)	(Feng,	Wang,	
et	al.,	2018).	423	radiomic	features	were	calculated	from	each	ROI.	
There	are	10	ROIs,	a	total	of	4,230	(423	× 10) radiomic features for 
the	 further	analysis.	The	 features	 included	 follows	 (1)	14	 intensity	
features,	 which	 calculated	 from	 the	 histogram	 of	 voxel	 intensity,	
(2)	22	 texture	 features	 from	the	Gray-Level	Co-occurrence	Matrix	
(GLCM)	 and	 11	 texture	 features	 from	 the	 Gray-Level	 Run-Length	
Matrix	(GLRLM),	and	(3)	376	post-Wavelet	transformation	features	
we	 applied	 wavelet	 transformation	 in	 LLL,	 LLH,	 LHL,	 LHH,	 HLL,	
HLH,	HHL,	and	HHH	directions.

2.7 | Statistical analysis

2.7.1 | Demographic	variables

All	demographic	and	clinical	details	analyses	were	performed	with	R	
software	(version	3.6.0;	http://www.Rproj	ect.org),	and	the	thresh-
old of significance was set at a level of p <	.05.	The	chi-square	test	
used	to	examine	differences	in	gender	between	the	CHE	and	nCHE,	
and	the	two-tailed	independent	samples	t test was hired to assess 
the other demographic variables.

2.7.2 | Feature	selection

First,	106	patients	with	HBV-related	cirrhosis	were	randomly	di-
vided	into	training	set	and	testing	set,	with	a	proportional	of	7:3.	

Thus,	73	patients	(37	CHE	and	36	nCHE)	were	randomly	selected	
as the training set for feature selection and classification models 
construction.	The	other	33	patients	(17	CHE	and	16	nCHE)	were	
included in the testing set and only used to test the models. The 
feature	selection	steps	are	described	below.	First	step:	the	Shapiro–
Wilk	 test	was	 used	 to	 check	 normality,	 the	 normally	 distributed	
data	were	 analyzed	by	 t	 test,	 and	non-normally	distributed	data	
were	analyzed	by	Mann–Whitney	U	test.	A	significance	threshold	
of p <	 .05	was	applied	to	each	test.	Second	step:	Spearman	rank	
correlation	was	 employed	 to	 eliminate	 high-dimensional	 feature	
redundancy. If the two features were highly correlated (correlation 
coefficient >	0.9),	then	excluded	one	of	them.	Third	step:	the	using	
of	 the	 least	 absolute	 shrinkage	 selection	 operator	 (LASSO).	 The	

F I G U R E  2  Plot	of:	(a),	coefficients-lambda;	(b),	error-lambda.	
A	10-fold	cross-validation	was	applied	with	the	regularization	
parameter (�)	of	the	LASSO	regression	model	and	was	selected	
when the deviance was minimal (a). Coefficients are plotted against 
the log (�)	sequence.	Ultimately,	four	nonzero	coefficients	were	
selected (b)

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://atlas.brainnetome.org/
http://atlas.brainnetome.org/
http://atlas.brainnetome.org/
http://www.Rproject.org
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LASSO	is	a	shrinkage	and	selection	method	for	linear	regression.	
It	minimizes	the	usual	sum	of	squared	errors,	with	a	bound	on	the	
sum	of	the	absolute	values	of	the	coefficients	(Meng	et	al.,	2020).	
The	optimization	objective	for	LASSO	is:

where xi is the i-th	patient's	feature	vector,	yi is the classification vari-
able,	�	is	the	weight	vector	of	the	linear	model,	and	𝜆>0 is a penalty 
term,	which	controls	the	value	of	shrinkage.

The	selection	step	was	embedded	 in	a	10-fold	cross-validation	
framework to obtain unbiased estimates of classification error and 
then chose the �	to	get	the	minimum	criteria	(Varma	&	Simon,	2006).

2.7.3 | Classification	models	construction

Two	classification	models	were	developed	 to	diagnose	CHE.	First,	
the logistic regression analysis was employed to construct the ra-
diomics	 signature	 model	 (R	 model),	 which	 only	 use	 the	 radiomic	
features	of	the	radiomics	signature.	Then,	multivariable	logistic	re-
gression	analysis	was	used	to	develop	another	model	 (R-C	model),	
which incorporated the radiomics score (Radscore) and clinical risk 
factors.	A	linear	combination	was	applied	on	radiomics	signature	to	
get the Radscore of each subject. The formula is as follows:

�0	represents	a	constant,	and	there	�0=−0.553,	� i is the coeffi-
cient	of	radiomic	feature,	xi is the value of the feature.

The diagnostic performance of the two models were assessed 
in	 the	 training	set	by	using	 the	area	under	 the	curve	 (AUC)	of	 the	
receiver	operating	characteristic	curve	(ROC),	and	then,	they	were	
evaluated	in	the	testing	set.	At	the	same	time,	Delong	test	was	used	
to	observe	whether	the	models	are	under-fitting	or	over-fitting.

2.7.4 | Development	of	radiomics	nomogram

To	provide	the	clinician	with	a	quantitative	tool	to	predict	individual	
probability	of	CHE,	the	radiomics	nomogram	was	built	on	the	basis	

of	the	model	with	the	highest	predictive	efficiency.	And	the	calibra-
tion curves of testing set and training set were plotted to assess the 
calibration	of	the	radiomics	nomogram.	And	the	Hosmer–Lemeshow	
test was employed to assess the goodness of fit of calibration curve 
for	radiomics	nomogram	(Huang	et	al.,	2016).

2.7.5 | Correlation	analysis

The	correlations	among	cognitive	test	scores	(NCT-A	and	DST),	ve-
nous	blood	ammonia,	the	Child-Pugh	stage,	demographic	character-
istics	(age,	gender,	and	education	level),	and	radiomic	features	were	
studied via Spearman correlation analysis.

3  | RESULTS

3.1 | Demographic characteristics and paper–pencil 
testing

The	 demographics,	 neuropsychological	 tests,	 and	 biochemical	 pa-
rameters	of	training	set	and	testing	set	are	summarized	in	Table	1.	
Compared	with	 the	nCHE,	CHE	 spent	more	 time	 to	 complete	 the	
NCT-A	and	had	less	correct	number	of	DST	(p <	.001).	And	the	ve-
nous	blood	 ammonia	of	CHE	was	 significantly	higher	 than	 that	of	
nCHE	(p <	.001).	More	CHE	patients	had	high-level	Child-Pugh	stage	
both in training and testing set (p < .001). There were no significant 
differences	in	age,	gender	and	education	level	between	the	CHE	and	
nCHE	(p >	.05)	in	the	training	set	and	testing	set.

3.2 | Feature selection results

346	 features	 remained	by	using	 t	 test	 and	Mann–Whitney	U	 test,	
including	247	 features	 (71.39%)	of	 the	 right	ROIs	and	99	 features	
(28.61%)	 of	 the	 left	 ROIs;	 178	 features	 were	 remained	 by	 using	
Spearman	 rank	 correlation	 method;	 4	 features	 were	 remained	 as	
the	 radiomics	 signature	 by	 using	 LASSO,	 the	 features	 as	 follows:	
(a)	right	PEp_Variance	HLH,	(b)	right	Lc1_Median	HLL,	(c)	right	Lc1_
GrayLevelNonuniformity	(GLN)	LLL,	and	(d)	right	Lc1_Informational	
Measure	of	Correlation	1	(IMC1)	LLL.	The	coefficients-lambda	graph	
and	error-lambda	graph	are	shown	in	Figure	2a,b.

min
�

�
1

n

�n

i=1

�
yi−xi�

T
�2

+�‖�‖1
�

Radscore=�0+�1x1+�2x2+�3x3+�4x4

TA B L E  2  Diagnostic	performance	of	the	different	models	for	predicting	CHE

Methods

Training set (n = 73) Testing set (n = 33)

pAUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

R model 0.904	
(0.812–0.960)

0.836 0.784 0.944 0.846	
(0.678–0.947)

0.848 1.000 0.706 0.455

R-C	model 0.962	
(0.889–0.993)

0.917 0.892 0.944 0.926	
(0.780–0.988)

0.848 1.000 0.765 0.463

Abbreviations:	ACC,	accuracy;	AUC,	area	under	the	curve;	CI,	confidence	interval;	R	model,	the	model	based	on	radiomics	signature;	R-C	model,	the	
model	based	on	radiomics	signature	and	clinical	risk	factors;	SEN,	sensitivity;	SPE,	specificity.
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3.3 | Classification models

The	results	showed	that	the	diagnostic	performance	of	R-C	model	
was	superior	than	the	R	model,	as	shown	in	Table	2.	The	R-C	model	
had	 higher	 AUC	 (0.926	 95%	 CI,	 0.780–0.988)	 and	 specificity	

(0.765)	and	with	the	same	accuracy	(0.848)	and	sensitivity	(1.000)	
than	the	R	model,	in	the	testing	set.	The	AUC,	accuracy,	sensitiv-
ity,	and	specificity	in	testing	set	of	the	R	model	were	0.846	(95%	
CI,	 0.678–s0.947),	 0.848,	 1.000,	 and	 0.706,	 respectively.	 The	
ROC	curve	of	models	is	shown	in	Figure	3a,b,	and	the	coefficients	
value of Radscore coefficient for each radiomic feature is shown 
in	Figure	4.

3.4 | The radiomics nomogram and the 
calibration curve

The	R-C	model	with	the	highest	predictive	efficiency	was	developed	
and	presented	as	 the	 radiomics	nomogram	 (Figure	5).	The	calibra-
tion	curve	for	the	radiomics	nomogram	was	tested	by	the	Hosmer–
Lemeshow	 test,	 and	 the	 results	 showed	 no	 significant	 difference	
between	the	calibration	curves	and	a	perfect	fit	for	predicting	CHE,	
whether in the training set (p =	 .850)	or	 the	 testing	set	 (p =	 .475)	
(Figure	6).

3.5 | Correlations analysis

Spearman	correlation	analysis	suggested	that	all	the	4	radiomic	fea-
tures	(right	PEp_Variance	HLH,	right	Lc1_Median	HLL,	right	Lc1_GLN	
LLL,	right	Lc1_IMC1	LLL)	are	positively	correlated	with	DST	scores	
and	negatively	correlated	with	NCT-A	scores	(Figure	7a).	The	corre-
lation	coefficients	of	the	typical	feature	(DR241,	right	Lc1_	Median	
HLL)	with	DST	score	and	NCT-A	score	are	0.42	and	−0.40,	respec-
tively	(Figure	7b,c).

4  | DISCUSSION

In	our	study,	we	identified	significantly	different	radiomic	features	
in	PC	between	CHE	and	nCHE.	After	LASSO,	we	finally	found	4	ra-
diomic	features	 including	Variance,	Median,	GLN,	and	IMC1	which	
showed	 significant	 differences	 in	 PC	 of	 CHE	when	 contrasted	 to	
nCHE.	PC	must	have	great	changes	in	CHE.	As	a	result	of	liver	dys-
function,	subsequently	concentrations	of	the	ammonia,	reactive	ox-
ygen,	and	nitrogen,	etc.	rise	in	the	blood.	Those	chemicals	cross	the	
blood–brain	barrier,	then	effect	on	many	signal	transduction	path-
ways	 (Wang	 et	 al.,	 2015)	 and	 trigger	 astrocyte	 swelling	 (Mínguez	
et	al.,	2006)	and	even	cellular	senescence	(Görg	et	al.,	2014).	As	we	
know,	Median	and	Variance	are	measures	of	voxel	 intensity	values	
in	brain	images	and	GLN	1	and	IMC1	represent	the	distributions	of	
voxel values. The abnormalities of cerebral cells such as astrocyte 
swelling even cellular senescence lead to changes of the voxel inten-
sity	and	its	special	distribution	feature	and	pattern	in	PC,	and	cause	
the	significantly	changed	radiomic	features	in	CHE.

At	 the	 same	 time,	 our	 study	 showed	 radiomic	 features	
(Median,	Variance,	GLN	1,	and	IMC1)	in	CHE	correlated	with	NCT-
A,	DST.	This	was	coincident	with	previous	studies,	they	found	the	

F I G U R E  3  Graph	shows	the	ROC	curves	of:	(a),	the	models	of	
training	set;	(b),	the	models	of	testing	set.	R	model:	the	model	based	
on	radiomics	signature.	R-C	model:	the	model	based	on	radiomics	
signature and clinical risk factors
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functional	 connectivity	 strength,	 and	 diffusion	 kurtosis	 imaging	
metrics	 and	 cortical	 thickness	of	PC	were	 correlated	with	PHES	
in	 cirrhotic	 patients	without	OHE	 (Chen,	 Lin,	 et	 al.,	 2017;	Chen,	
Liu,	 et	 al.,	 2017;	Wu	et	 al.,	 2015)	 as	well.	 PC	 is	 a	major	 associa-
tion	area,	which	has	wide-spread	connectivity	with	both	cortical	
and subcortical structures. It was proven to be a critical area with 
multimodal	and	integrative	functions	including	consciousness,	vi-
suospatial	imagery,	episodic	memory	retrieval,	and	self-processing	
operations	(Cavanna	&	Trimble,	2006;	Margulies	et	al.,	2009).	The	
underlying pathological changes of PC may cause impaired psy-
chomotor	 speed,	 visual	 scanning	efficiency,	 attention,	 and	other	
functions,	that	is	why	patients	with	CHE	spend	more	time	to	com-
plete	NCT-A.	And	the	dysfunction	of	cognitive	processing	speed,	
visual	perception,	and	working	memory	(Weissenborn,	2008)	lead	
to	the	lower	DST	in	CHE.

More	 interesting,	 most	 of	 our	 significant	 radiomic	 features	 of	
CHE	were	from	the	right	PC,	and	this	kept	in	line	with	previous	stud-
ies revealing right PC was seem to have more obvious changes than 
the	left	side	(Montoliu	et	al.,	2012;	Qi	et	al.,	2013;	Wu	et	al.,	2015).	
Right	PC	recall	memories	more	(Freton	et	al.,	2013)	and	have	more	
prominent	characteristics	about	people's	social	interactions	(Petrini	
et	al.,	2014).	This	can	explain	CHE	patients	have	declined	work	per-
formance	 (Labenz	 et	 al.,	 2018;	 Ortiz	 et	 al.,	 2005)	 and	 life	 quality	

(Ampuero	et	al.,	2018;	Labenz	et	al.,	2018;	Ortiz	et	al.,	2005).	We	
strongly believe abnormalities of PC especially the right one can pro-
vide	a	new	potential	image	marker	for	CHE.

For	 the	 radiomics	 model,	 previous	 CHE	 studies	 (Chen,	 Liu,	
et	al.,	2017;	Wu	et	al.,	2015)	only	revealed	the	abnormalities	of	PC	
but they did not construct a classifier to prove its diagnostic power. 
In	our	 research,	 firstly	we	constructed	 the	R	model,	 it	had	a	good	
diagnostic	performance	(AUC	0.846)	to	differentiate	the	CHE	from	
nCHE.	 To	 our	 understanding,	 no	 clinical	 risk	 factors	were	 applied	
to	form	a	classifier	for	CHE.	Further,	associated	the	clinical	risk	fac-
tors	 (venous	 blood	 ammonia	 and	Child-Pugh	 stage),	we	made	 the	
R-C	model.	This	improved	the	diagnostic	performance	(AUC	0.926).	
Radiomics classifier was proven to be a powerful diagnostic tool; 
it	 successfully	 verified	 the	AD	by	 radiomic	 features	 of	 hippocam-
pus	 (Feng,	Wang,	 et	 al.,	 2018)	 and	 corpus	 callosum	 (Feng,	 Chen,	
et	al.,	2018).	One	recent	radiomics	study	used	hippocampus	to	rec-
ognize	autism	spectrum	disorder	(Chaddad	et	al.,	2017)	with	high	di-
agnostic	performance	(AUC	76.80%).	Compared	with	other	medical	
image-based	 researches,	 radiomics	 extracts	 high-dimensional	 fea-
tures.	Those	data	are	quantitative	and	objective.	It	can	improve	pre-
dictive	accuracy	compared	with	traditional	ways	(Gillies	et	al.,	2016).	
Further,	using	the	R-C	model	we	developed	the	radiomics	nomogram	
it reached a satisfactory result when applied to the testing set. This 
nomogram	could	be	conveniently	used	to	the	individualized	predic-
tion	of	CHE	in	patients	with	cirrhosis.

Nevertheless,	there	are	several	limitations	in	this	study.	First,	due	
to	the	small	sample	size,	the	classification	performance	may	show	high	
sensitivity,	using	multicenter	data	sets	 is	a	solution	for	challenges	of	
lager	sample	size	in	the	future.	Second,	PC	may	also	have	alterations	
in	function	and	structure,	such	as	diffusion	properties	and	functional	
connectivity.	Combination	of	other	MRI-based	markers,	radiomic	fea-
tures,	and	other	clinical	factors	is	needed	for	future	researches.	Third,	
in	our	study,	the	CHE	patients	were	diagnosed	according	to	the	expert	
consensus on diagnosis and treatment of hepatic encephalopathy in 
China	(Xing,	2009).	The	cirrhotic	group	without	CHE	might	be	underes-
timated.	Finally,	healthy	group	was	not	included	in	this	study	due	to	the	
aim	of	our	study.	Which	was	to	develop	radiomics-based	classification	
models	for	differentiate	CHE	from	cirrhotic	patients	without	CHE.	It	is	

F I G U R E  4  Graph	shows	radiomics	signature.	There	are	4	
features	and	their	coefficients	value	(Radscore	coefficient).	AR296,	
right	PEp_Variance	HLH.	DR241,	right	Lc1_Median	HLL.	DR86,	
right	Lc1_GrayLevelNonuniformity	(GLN)	LLL.	DR74,	right	Lc1_
Informational	Measure	of	Correlation	1	(IMC1)	LLL

F I G U R E  5   Graph shows the radiomics 
nomogram. The radiomics nomogram was 
developed in the multivariable logistic 
regression	classifier	of	training	set	data,	
which	combines	three	items:	Radscore,	
NH3,	and	Child–Pugh	stage.	Radscore,	
radiomics	score;	NH3: venous blood 
ammonia
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an interesting attempt to explore whether the radiomic features of PC 
show similar or different changes between cirrhotic patients without 
CHE	and	healthy	group.	This	requires	further	research	in	the	future.

5  | CONCLUSION

In	conclusion,	our	results	highlight	the	importance	of	radiomic	fea-
tures	of	PC	subregions,	especial	the	right	PC;	this	can	be	regarded	
as	a	potential	image	marker	of	CHE.	The	radiomics	nomogram	that	
incorporates the radiomics signature and clinical risk factors may fa-
cilitate	the	individualized	diagnosis,	which	can	be	conveniently	used	
to	identify	the	cirrhotic	patients	with	CHE.
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