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Abstract
Introduction: The significant abnormalities of precuneus (PC), which are associated 
with brain dysfunction, have been identified in cirrhotic patients with covert hepatic 
encephalopathy (CHE). The present study aimed to apply radiomics analysis to iden-
tify the significant radiomic features in PC and their subregions, combine with clinical 
risk factors, then build and evaluate the classification models for CHE diagnosis.
Methods: 106 HBV-related cirrhotic patients (54 had current CHE and 52 had non-
CHE) underwent the three-dimensional T1-weighted imaging. For each participant, 
PC and their subregions were segmented and extracted a large number of radiomic 
features and then identified the features with significant discriminative power as the 
radiomics signature. The logistic regression analysis was employed to develop and 
evaluate the classification models, which are constructed using the radiomics signa-
ture and clinical risk factors.
Results: The classification model (R-C model) achieved best diagnostic performance, 
which incorporated radiomics signature (4 radiomic features from right PC), venous 
blood ammonia, and the Child-Pugh stage. And the area under the receiver operating 
characteristic curve values (AUC), sensitivity, specificity, and accuracy values were 
0.926, 1.000, 0.765, and 0.848, in the testing set. Application of the radiomics nomo-
gram in the testing set still showed a good predictive accuracy.
Conclusions: This study presented the radiomic features of the right PC, as a poten-
tial image marker of CHE. The radiomics nomogram that incorporates the radiomics 
signature and clinical risk factors may facilitate the individualized prediction of CHE.
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1  | INTRODUC TION

Covert hepatic encephalopathy (CHE), which consists of minimal 
hepatic encephalopathy (MHE) and grade 1 West Haven Criteria he-
patic encephalopathy (HE), is characterized by the presence of mild 
cognitive impairments particularly in attention, visuospatial coordi-
nation, executive functions, and psychomotor speed. It is estimated 
that the prevalence of CHE in patients with cirrhosis is 30%–85% 
(Ampuero et  al.,  2018; Ortiz et  al.,  2005; Vilstrup et  al.,  2014). In 
addition, CHE has significant impact on cirrhotic patients, includ-
ing declined the work performance and/or increased the traffic 
violations and accidents (Labenz et  al.,  2018; Ortiz et  al.,  2005). 
Furthermore, CHE is associated with increased progression to overt 
HE (OHE), which have a negative impact on patient's quality of life 
(Ampuero et al., 2018; Labenz et al., 2018; Ortiz et al., 2005) and 
cause a high mortality (Cui et al., 2018). Therefore, testing for CHE 
in patients with HBV-related cirrhosis is beneficial to the patients 
and it is recommended (Vilstrup et al., 2014). Due to its subtle clin-
ical symptoms, diagnosis of CHE mainly depends on specialized 
neurophysiologic, computerized and paper–pencil tests such as psy-
chometric hepatic encephalopathy score (PHES). These tests seem 
simple, but they all should be performed by experienced examiners, 
and the test results are usually affected by the patient's age and 
literacy (Ortiz et al., 2005; Vilstrup et al., 2014). Owing to the com-
plexity of diagnostic strategies, the subjectivity of evaluations and 
the lack of sufficient attentions (Patidar & Bajaj, 2015), most CHE 
patients do not receive timely diagnosis and appropriate treatment 
and are faced with risk of accidents. Thus, validating a noninvasive 
and objective method of diagnosis would be beneficial for both se-
lecting therapeutic strategies and prognosis in clinical practice.

Now, a variety of magnetic resonance imaging (MRI) tech-
nology has been widely used in HE researches. MRI can identify 

abnormalities in brain structures and functions in patients with HE. 
Many researches showed that patients with CHE or OHE had signifi-
cant alterations in PC, including gray and white matter volume (Chen 
et al., 2012; Iwasa et al., 2012; Montoliu et al., 2012; Wu et al., 2015), 
functional connectivity (Chen et al., 2013, 2017; Yang et al., 2018), 
and diffusion properties (Chen et  al.,  2017; Lin et  al.,  2012; Qi 
et al., 2012). In addition, some researchers found that the alterations 
of the volume of PC were correlated with the ammonia levels and 
the extent of cognitive impairment (Chen, Liu, et al., 2017; Montoliu 
et al., 2012; Wu et al., 2015). Therefore, the alterations of PC might 
be one of important neuropathological mechanisms of cognitive 
dysfunction and be relevant to the early diagnosis of CHE.

Radiomics is an auxiliary detection and diagnostic technique that 
converts medical images into high-dimensional mineable data. It is 
intended to develop decision support tools. Radiomic data and avail-
able clinical factors can increase the power of the decision support 
models, which may potentially improve diagnostic and predictive ac-
curacy and evaluation of prognosis for disorders (Gillies et al., 2016). 
Nowadays, radiomics analysis was not only applied in the tumor field 
such as classifying tumors (Aerts et al., 2014) and predicting their out-
comes (Huynh et al., 2016), but also was used in the nontumor field 
of Alzheimer's disease (AD) (Feng, Wang, et al., 2018; Li et al., 2019), 
Parkinson's disease (Wu et  al.,  2019), attention-deficit hyperactivity 
disorder (Sun et  al., 2018), and Autism Spectrum Disorder (Chaddad 
et al., 2017; Heinsfeld et al., 2018). Those studies had shown that objec-
tive and quantitative features could potentially provide a new approach 
to develop classifiers, which may facilitate the individualized diagnostic 
biomarkers. But currently, CHE has no research use radiomics analysis.

The aim of this study is to extract quantitative features from PC 
and their subregions and combine with clinical risk factors to de-
velop and evaluate classification models for HBV-related cirrhotic 
CHE in a framework of radiomics analysis (Figure 1).

F I G U R E  1   The workflow of data processing



     |  3 of 11LUO et al.

2  | METHOD

2.1 | Participants

A total of 106 patients with HBV-related cirrhosis diagnosed by 
liver biopsy or clinical criteria were consecutively recruited from 
February 2018 to June 2019 and written informed consents were 
obtained from all participants, and this study was approved by 
the local ethics committee (ethics reference number: 2018–043). 
Exclusion criteria was followings: (a) current overt HE or other neu-
ropsychiatric disorders; (b) liver malignancy; (c) history of brain sur-
gery; (d) alcohol abuse within 6 months prior to the study; (e) active 
infection; (f) recent (<4 weeks) gastrointestinal bleeding; (g) meta-
bolic diseases or endocrine diseases (e.g. diabetes mellitus or and 
thyroid dysfunction); (h) history of taking psychotropic medications; 
(i) age ≤ 18 years or ≥75; and (j) MRI contraindications.

2.2 | Paper–pencil testing and diagnosis of CHE

The diagnosis of CHE was made according to the practice guide-
line of the 14th International Society for Hepatic Encephalopathy 
(Vilstrup et al., 2014). Patient who showed abnormal scores in the 
number connection test A (NCT-A) and digit symbol test (DST) was 
defined as CHE. The abnormal scores were defined as exceeding the 

reference value by two standard deviations, referred to the normal 
value of a domestic expert consensus of China (Xing,  2009). The 
tests were performed in 1 hr before MRI scan. As a result, partici-
pants were divided into CHE group (54 patients) and non-CHE group 
(nCHE) group (52 patients).

2.3 | Clinical staging and laboratory examinations

Data including the Child-Pugh stage (based on albumin, total serum 
bilirubin, prothrombin time, and ascites) and venous blood ammonia 
were obtained within one week prior to MRI scan to assess the se-
verity of liver disease for each subject.

2.4 | MR imaging

MRI examinations were performed using a 3.0  T MR scanner 
(Achieva 3.0 T TX; Philips Healthcare) with an eight-channel head 
coil for all participants. The three-dimensional (3D) T1-weighted 
images of the brain were acquired for each subject using a rapid 
gradient echo sequence (TR/TE: 7.8/3.8 ms, TI: 920.8 ms, FOV: 
240  mm  ×  240  mm, acquisition matrix: 240  ×  240, flip angle: 
8°, slice thickness: 1  mm, 150 sagittal slices and resolution of 
1 mm × 1 mm × 1 mm).

TA B L E  1   Demographic and clinical characteristics of all subjects

Protocols

Training set (n = 73) Testing set (n = 33)

p
CHE
(n = 37)

nCHE
(n = 36) p

CHE
(n = 17)

nCHE
(n = 16) p

Demographics

Age (year) 57 ± 9.98 53.22 ± 8.99 0.07 57.94 ± 11.98 56.63 ± 11.89 0.885 0.32

Gender (M/F) 0.747 0.304 0.481

Male 25 (34.3%) 23 (31.5%) 11 (33.3%) 13 (39.4%)

Female 12 (16.4%) 13 (17.8%) 6 (18.2%) 3 (9.1%)

Education level 7.95 ± 4.26 9.89 ± 3.03 0.051 8.65 ± 2.98 9.43 ± 3.56 0.939 0.869

Laboratory 
examinations

NH3 (μmol/L) 57.43 ± 44.45 21.36 ± 12.13 <0.001* 63.63 ± 33.81 21.94 ± 12.37 <0.001* 0.716

Child–Pugh stage <0.001* 0.002* 0.672

A 8 (11.0%) 21 (28.8%) 3 (9.1%) 10 (30.2%)

B 13 (17.8%) 12 (16.4%) 5 (15.2%) 5 (15.2%)

C 16 (21.9%) 3 (4.1%) 9 (27.3%) 1 (3.0%)

Neuropsychological 
tests

NCT-A (s) 63.65 ± 32.00 31.37 ± 7.26 <0.001* 67.91 ± 27.33 36.45 ± 13.77 <0.001* 0.400

DST 24.51 ± 11.59 38.53 ± 9.18 <0.001* 21.94 ± 8.41 35.94 ± 10.42 <0.001* 0.298

Note:: Values are expressed as mean ± SE.
Abbreviations: CHE, cirrhotic patients with covert hepatic encephalopathy; DST, Digit Symbol Test; nCHE, cirrhotic patients without hepatic 
encephalopathy; NCT-A, Number Connection Test A; NH3, the venous blood ammonia.
*Significant differences between groups. 
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2.5 | Segmentation of PC and their subregions

10 regions of interest (ROI) segmentation of the PC was carried 
out using the statistical parametric mapping (SPM8, www.fil.ion.
ucl.ac.uk/spm/) and the Brainnetome Toolkit (version 3.35; http://
atlas.brain​netome.org/) (Feng, Wang, et al., 2018). According to the 
Human Brainnetome Atlas (based on anatomical and functional con-
nections), each side of PC has 4 subregions including medial area 7 
(PEp), medial area 5 (PEm), dorsomedial parieto-occipital sulcus (PEr), 
and area 31 (Lc1) (Fan et al., 2016). 10 ROIs (right PC,right PEp, right 
PEm, right PEr, right Lc1, left PC, left PEp, left PEm, left PEr, and left 
Lc1) were obtained as follows: First, the 3D T1-weighted images of 
each subject were converted into the format that can be used for 
postprocessing; second, the images were performed skull stripping 
and normalized to the Montreal Neurological Institute (MNI) space, 
and the Brainnetome Atlas was also resliced to the standard MNI 
space; third, bilateral PC and their subregions’ 3D masks were auto-
matically obtained from the resliced brain atlas; finally, point multi-
plication of the 3D masks and the normalized T1 images were used 
to get the 10 ROIs.

2.6 | Quantitative radiomic features calculate

The calculation of radiomic features were carried out by using in-
house MATLAB scripts (http://atlas.brain​netome.org/) (Feng, Wang, 
et al., 2018). 423 radiomic features were calculated from each ROI. 
There are 10 ROIs, a total of 4,230 (423 × 10) radiomic features for 
the further analysis. The features included follows (1) 14 intensity 
features, which calculated from the histogram of voxel intensity, 
(2) 22 texture features from the Gray-Level Co-occurrence Matrix 
(GLCM) and 11 texture features from the Gray-Level Run-Length 
Matrix (GLRLM), and (3) 376 post-Wavelet transformation features 
we applied wavelet transformation in LLL, LLH, LHL, LHH, HLL, 
HLH, HHL, and HHH directions.

2.7 | Statistical analysis

2.7.1 | Demographic variables

All demographic and clinical details analyses were performed with R 
software (version 3.6.0; http://www.Rproj​ect.org), and the thresh-
old of significance was set at a level of p < .05. The chi-square test 
used to examine differences in gender between the CHE and nCHE, 
and the two-tailed independent samples t test was hired to assess 
the other demographic variables.

2.7.2 | Feature selection

First, 106 patients with HBV-related cirrhosis were randomly di-
vided into training set and testing set, with a proportional of 7:3. 

Thus, 73 patients (37 CHE and 36 nCHE) were randomly selected 
as the training set for feature selection and classification models 
construction. The other 33 patients (17 CHE and 16 nCHE) were 
included in the testing set and only used to test the models. The 
feature selection steps are described below. First step: the Shapiro–
Wilk test was used to check normality, the normally distributed 
data were analyzed by t test, and non-normally distributed data 
were analyzed by Mann–Whitney U test. A significance threshold 
of p <  .05 was applied to each test. Second step: Spearman rank 
correlation was employed to eliminate high-dimensional feature 
redundancy. If the two features were highly correlated (correlation 
coefficient > 0.9), then excluded one of them. Third step: the using 
of the least absolute shrinkage selection operator (LASSO). The 

F I G U R E  2  Plot of: (a), coefficients-lambda; (b), error-lambda. 
A 10-fold cross-validation was applied with the regularization 
parameter (�) of the LASSO regression model and was selected 
when the deviance was minimal (a). Coefficients are plotted against 
the log (�) sequence. Ultimately, four nonzero coefficients were 
selected (b)

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://atlas.brainnetome.org/
http://atlas.brainnetome.org/
http://atlas.brainnetome.org/
http://www.Rproject.org
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LASSO is a shrinkage and selection method for linear regression. 
It minimizes the usual sum of squared errors, with a bound on the 
sum of the absolute values of the coefficients (Meng et al., 2020). 
The optimization objective for LASSO is:

where xi is the i-th patient's feature vector, yi is the classification vari-
able, � is the weight vector of the linear model, and 𝜆>0 is a penalty 
term, which controls the value of shrinkage.

The selection step was embedded in a 10-fold cross-validation 
framework to obtain unbiased estimates of classification error and 
then chose the � to get the minimum criteria (Varma & Simon, 2006).

2.7.3 | Classification models construction

Two classification models were developed to diagnose CHE. First, 
the logistic regression analysis was employed to construct the ra-
diomics signature model (R model), which only use the radiomic 
features of the radiomics signature. Then, multivariable logistic re-
gression analysis was used to develop another model (R-C model), 
which incorporated the radiomics score (Radscore) and clinical risk 
factors. A linear combination was applied on radiomics signature to 
get the Radscore of each subject. The formula is as follows:

�0 represents a constant, and there �0=−0.553, � i is the coeffi-
cient of radiomic feature, xi is the value of the feature.

The diagnostic performance of the two models were assessed 
in the training set by using the area under the curve (AUC) of the 
receiver operating characteristic curve (ROC), and then, they were 
evaluated in the testing set. At the same time, Delong test was used 
to observe whether the models are under-fitting or over-fitting.

2.7.4 | Development of radiomics nomogram

To provide the clinician with a quantitative tool to predict individual 
probability of CHE, the radiomics nomogram was built on the basis 

of the model with the highest predictive efficiency. And the calibra-
tion curves of testing set and training set were plotted to assess the 
calibration of the radiomics nomogram. And the Hosmer–Lemeshow 
test was employed to assess the goodness of fit of calibration curve 
for radiomics nomogram (Huang et al., 2016).

2.7.5 | Correlation analysis

The correlations among cognitive test scores (NCT-A and DST), ve-
nous blood ammonia, the Child-Pugh stage, demographic character-
istics (age, gender, and education level), and radiomic features were 
studied via Spearman correlation analysis.

3  | RESULTS

3.1 | Demographic characteristics and paper–pencil 
testing

The demographics, neuropsychological tests, and biochemical pa-
rameters of training set and testing set are summarized in Table 1. 
Compared with the nCHE, CHE spent more time to complete the 
NCT-A and had less correct number of DST (p < .001). And the ve-
nous blood ammonia of CHE was significantly higher than that of 
nCHE (p < .001). More CHE patients had high-level Child-Pugh stage 
both in training and testing set (p < .001). There were no significant 
differences in age, gender and education level between the CHE and 
nCHE (p > .05) in the training set and testing set.

3.2 | Feature selection results

346 features remained by using t test and Mann–Whitney U test, 
including 247 features (71.39%) of the right ROIs and 99 features 
(28.61%) of the left ROIs; 178 features were remained by using 
Spearman rank correlation method; 4 features were remained as 
the radiomics signature by using LASSO, the features as follows: 
(a) right PEp_Variance HLH, (b) right Lc1_Median HLL, (c) right Lc1_
GrayLevelNonuniformity (GLN) LLL, and (d) right Lc1_Informational 
Measure of Correlation 1 (IMC1) LLL. The coefficients-lambda graph 
and error-lambda graph are shown in Figure 2a,b.

min
�

�
1

n

�n

i=1

�
yi−xi�

T
�2

+�‖�‖1
�

Radscore=�0+�1x1+�2x2+�3x3+�4x4

TA B L E  2  Diagnostic performance of the different models for predicting CHE

Methods

Training set (n = 73) Testing set (n = 33)

pAUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

R model 0.904 
(0.812–0.960)

0.836 0.784 0.944 0.846 
(0.678–0.947)

0.848 1.000 0.706 0.455

R-C model 0.962 
(0.889–0.993)

0.917 0.892 0.944 0.926 
(0.780–0.988)

0.848 1.000 0.765 0.463

Abbreviations: ACC, accuracy; AUC, area under the curve; CI, confidence interval; R model, the model based on radiomics signature; R-C model, the 
model based on radiomics signature and clinical risk factors; SEN, sensitivity; SPE, specificity.
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3.3 | Classification models

The results showed that the diagnostic performance of R-C model 
was superior than the R model, as shown in Table 2. The R-C model 
had higher AUC (0.926 95% CI, 0.780–0.988) and specificity 

(0.765) and with the same accuracy (0.848) and sensitivity (1.000) 
than the R model, in the testing set. The AUC, accuracy, sensitiv-
ity, and specificity in testing set of the R model were 0.846 (95% 
CI, 0.678–s0.947), 0.848, 1.000, and 0.706, respectively. The 
ROC curve of models is shown in Figure 3a,b, and the coefficients 
value of Radscore coefficient for each radiomic feature is shown 
in Figure 4.

3.4 | The radiomics nomogram and the 
calibration curve

The R-C model with the highest predictive efficiency was developed 
and presented as the radiomics nomogram (Figure 5). The calibra-
tion curve for the radiomics nomogram was tested by the Hosmer–
Lemeshow test, and the results showed no significant difference 
between the calibration curves and a perfect fit for predicting CHE, 
whether in the training set (p =  .850) or the testing set (p =  .475) 
(Figure 6).

3.5 | Correlations analysis

Spearman correlation analysis suggested that all the 4 radiomic fea-
tures (right PEp_Variance HLH, right Lc1_Median HLL, right Lc1_GLN 
LLL, right Lc1_IMC1 LLL) are positively correlated with DST scores 
and negatively correlated with NCT-A scores (Figure 7a). The corre-
lation coefficients of the typical feature (DR241, right Lc1_ Median 
HLL) with DST score and NCT-A score are 0.42 and −0.40, respec-
tively (Figure 7b,c).

4  | DISCUSSION

In our study, we identified significantly different radiomic features 
in PC between CHE and nCHE. After LASSO, we finally found 4 ra-
diomic features including Variance, Median, GLN, and IMC1 which 
showed significant differences in PC of CHE when contrasted to 
nCHE. PC must have great changes in CHE. As a result of liver dys-
function, subsequently concentrations of the ammonia, reactive ox-
ygen, and nitrogen, etc. rise in the blood. Those chemicals cross the 
blood–brain barrier, then effect on many signal transduction path-
ways (Wang et  al.,  2015) and trigger astrocyte swelling (Mínguez 
et al., 2006) and even cellular senescence (Görg et al., 2014). As we 
know, Median and Variance are measures of voxel intensity values 
in brain images and GLN 1 and IMC1 represent the distributions of 
voxel values. The abnormalities of cerebral cells such as astrocyte 
swelling even cellular senescence lead to changes of the voxel inten-
sity and its special distribution feature and pattern in PC, and cause 
the significantly changed radiomic features in CHE.

At the same time, our study showed radiomic features 
(Median, Variance, GLN 1, and IMC1) in CHE correlated with NCT-
A, DST. This was coincident with previous studies, they found the 

F I G U R E  3  Graph shows the ROC curves of: (a), the models of 
training set; (b), the models of testing set. R model: the model based 
on radiomics signature. R-C model: the model based on radiomics 
signature and clinical risk factors
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functional connectivity strength, and diffusion kurtosis imaging 
metrics and cortical thickness of PC were correlated with PHES 
in cirrhotic patients without OHE (Chen, Lin, et  al.,  2017; Chen, 
Liu, et  al.,  2017; Wu et  al.,  2015) as well. PC is a major associa-
tion area, which has wide-spread connectivity with both cortical 
and subcortical structures. It was proven to be a critical area with 
multimodal and integrative functions including consciousness, vi-
suospatial imagery, episodic memory retrieval, and self-processing 
operations (Cavanna & Trimble, 2006; Margulies et al., 2009). The 
underlying pathological changes of PC may cause impaired psy-
chomotor speed, visual scanning efficiency, attention, and other 
functions, that is why patients with CHE spend more time to com-
plete NCT-A. And the dysfunction of cognitive processing speed, 
visual perception, and working memory (Weissenborn, 2008) lead 
to the lower DST in CHE.

More interesting, most of our significant radiomic features of 
CHE were from the right PC, and this kept in line with previous stud-
ies revealing right PC was seem to have more obvious changes than 
the left side (Montoliu et al., 2012; Qi et al., 2013; Wu et al., 2015). 
Right PC recall memories more (Freton et al., 2013) and have more 
prominent characteristics about people's social interactions (Petrini 
et al., 2014). This can explain CHE patients have declined work per-
formance (Labenz et  al.,  2018; Ortiz et  al.,  2005) and life quality 

(Ampuero et al., 2018; Labenz et al., 2018; Ortiz et al., 2005). We 
strongly believe abnormalities of PC especially the right one can pro-
vide a new potential image marker for CHE.

For the radiomics model, previous CHE studies (Chen, Liu, 
et al., 2017; Wu et al., 2015) only revealed the abnormalities of PC 
but they did not construct a classifier to prove its diagnostic power. 
In our research, firstly we constructed the R model, it had a good 
diagnostic performance (AUC 0.846) to differentiate the CHE from 
nCHE. To our understanding, no clinical risk factors were applied 
to form a classifier for CHE. Further, associated the clinical risk fac-
tors (venous blood ammonia and Child-Pugh stage), we made the 
R-C model. This improved the diagnostic performance (AUC 0.926). 
Radiomics classifier was proven to be a powerful diagnostic tool; 
it successfully verified the AD by radiomic features of hippocam-
pus (Feng, Wang, et  al.,  2018) and corpus callosum (Feng, Chen, 
et al., 2018). One recent radiomics study used hippocampus to rec-
ognize autism spectrum disorder (Chaddad et al., 2017) with high di-
agnostic performance (AUC 76.80%). Compared with other medical 
image-based researches, radiomics extracts high-dimensional fea-
tures. Those data are quantitative and objective. It can improve pre-
dictive accuracy compared with traditional ways (Gillies et al., 2016). 
Further, using the R-C model we developed the radiomics nomogram 
it reached a satisfactory result when applied to the testing set. This 
nomogram could be conveniently used to the individualized predic-
tion of CHE in patients with cirrhosis.

Nevertheless, there are several limitations in this study. First, due 
to the small sample size, the classification performance may show high 
sensitivity, using multicenter data sets is a solution for challenges of 
lager sample size in the future. Second, PC may also have alterations 
in function and structure, such as diffusion properties and functional 
connectivity. Combination of other MRI-based markers, radiomic fea-
tures, and other clinical factors is needed for future researches. Third, 
in our study, the CHE patients were diagnosed according to the expert 
consensus on diagnosis and treatment of hepatic encephalopathy in 
China (Xing, 2009). The cirrhotic group without CHE might be underes-
timated. Finally, healthy group was not included in this study due to the 
aim of our study. Which was to develop radiomics-based classification 
models for differentiate CHE from cirrhotic patients without CHE. It is 

F I G U R E  4  Graph shows radiomics signature. There are 4 
features and their coefficients value (Radscore coefficient). AR296, 
right PEp_Variance HLH. DR241, right Lc1_Median HLL. DR86, 
right Lc1_GrayLevelNonuniformity (GLN) LLL. DR74, right Lc1_
Informational Measure of Correlation 1 (IMC1) LLL

F I G U R E  5   Graph shows the radiomics 
nomogram. The radiomics nomogram was 
developed in the multivariable logistic 
regression classifier of training set data, 
which combines three items: Radscore, 
NH3, and Child–Pugh stage. Radscore, 
radiomics score; NH3: venous blood 
ammonia
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an interesting attempt to explore whether the radiomic features of PC 
show similar or different changes between cirrhotic patients without 
CHE and healthy group. This requires further research in the future.

5  | CONCLUSION

In conclusion, our results highlight the importance of radiomic fea-
tures of PC subregions, especial the right PC; this can be regarded 
as a potential image marker of CHE. The radiomics nomogram that 
incorporates the radiomics signature and clinical risk factors may fa-
cilitate the individualized diagnosis, which can be conveniently used 
to identify the cirrhotic patients with CHE.
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