
Article

Semiparametric estimation of the
proportional rates model for recurrent
events data with missing event category
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Abstract

Proportional rates models are frequently used for the analysis of recurrent event data with multiple event categories.

When some of the event categories are missing, a conventional approach is to either exclude the missing data for a

complete-case analysis or employ a parametric model for the missing event type. It is well known that the complete-case

analysis is inconsistent when the missingness depends on covariates, and the parametric approach may incur bias when

the model is misspecified. In this paper, we aim to provide a more robust approach using a rate proportion method for

the imputation of missing event types. We show that the log-odds of the event type can be written as a semiparametric

generalized linear model, facilitating a theoretically justified estimation framework. Comprehensive simulation studies

were conducted demonstrating the improved performance of the semiparametric method over parametric procedures.

Multiple types of Pseudomonas aeruginosa infections of young cystic fibrosis patients were analyzed to demonstrate the

feasibility of our proposed approach.
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1 Introduction

Recurrent event data with multiple categories frequently arise in medical science and population health studies.

Different causes of hospitalizations, multiple strains of bacteria infections, and various types of treatment failures

all belong to such data type. Taking cystic fibrosis (CF) as an example, recurrent Pseudomonas aeruginosa (PA)

infections are commonly observed in patients with CF. PA infection includes mucoid and nonmucoid strains.

Without appropriate treatment, the recurrent infections with mucoid strains often become persistent and chronic,

causing increased CF mortality and morbidity.1–3 As another example, patients who received renal transplants

may have different types of recurrent infections.4 End-stage renal disease patients who received continuous

ambulatory peritoneal dialysis may have multiple types of treatment failures that make the patient switch to

other dialysis methods.5

When modeling this kind of recurrent event data, a proportional rates model that is conditional only on the

current value of covariates is commonly used.6 Let N�
ijðtÞ denote the number of recurrent events up to time t for
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subject i (i ¼ 1; . . . ; n) and event category j (j ¼ 1; . . . ; J). Let ZijðtÞ denote the column vector of covariates which

are possibly time-varying. A proportional rates model proposed by Cai and Schaubel6 is defined by

EfdN�
ijðtÞjZijðtÞg ¼ expfbT0ZijðtÞgdl0jðtÞ (1)

where b0 is the regression coefficient and dl0jðtÞ is the baseline rate function for the jth type of the recurrent event.

Although b0 is not indexed by event category j, the model is flexible enough to accommodate covariate effects that

are specific to the event type in each individual model. For example, if there are two types of recurrent events and

one uses q1- and q2-column vector of covariates, ~Zi1 and ~Zi2, for the first and second type of recurrent events,

respectively, one can define Zi1 ¼ ð ~ZT

i1; 0
T
q2
ÞT and Zi2 ¼ ð0Tq1 ; ~Z

T

i2ÞT to specify the individual models, where 0qj is a

qj-column vector of zeros. Accordingly, one may define b0 ¼ ðbT1 ; bT2 ÞT, where bj ¼ ðbj1; . . . ; bjqjÞT for j¼ 1, 2.

Let YiðtÞ ¼ IðCi � tÞ indicate whether subject i with censoring time Ci is under observation at time t, where

t 2 ½0; s�, and s is the end of follow-up time. Let NijðtÞ ¼ YiðtÞN�
ijðtÞ denote the observed number of events up to

time t. When the event category is fully observed, Cai and Schaubel6 showed that the coefficient b0 in (1) could be

consistently estimated by the estimating equations

UnðbÞ ¼
Xn
i¼1

XJ
j¼1

Z s

0

fZijðtÞ � �Zjðt; bÞg dNijðtÞ ¼ 0 (2)

where �Zjðt; bÞ ¼ S
ð1Þ
j ðt; bÞ=Sð0Þ

j ðt; bÞ with

S
ðdÞ
j ðt; bÞ ¼ n�1

Xn
i¼1

YiðtÞZijðtÞ�dexpfbTZijðtÞg

for d¼ 0, 1, where a�0 ¼ 1; a�1 ¼ a, and a�2 ¼ aaT for a column vector a.
However, when the event category is possibly missing, the estimating equation (2) is not feasible since the

quantity dNijðtÞ is not always observable. A naive approach, which uses completely observed data that include

only events with known type, can be valid if the event category is missing completely at random, but may give

biased results if the missingness depends on the covariates. Schaubel and Cai5 suggested that one rewrite dNijðtÞ as

dNijðtÞ ¼ RiðtÞdNijðtÞ þ f1� RiðtÞgdijðtÞdNi�ðtÞ (3)

where RiðtÞ indicates whether the event category is observed, dijðtÞ indicates whether the event category is type j,

and dNi�ðtÞ ¼
XJ

j¼1
dNijðtÞ indicates the total number of events at time t. Note that dNi�ðtÞ equals 0 or 1 since they

assume events with different types do not occur simultaneously. They further suggested that one replace the

unknown quantity dijðtÞ with a consistent estimator for pijðtÞ, where

pijðtÞ ¼ EfdijðtÞjdNi�ðtÞ ¼ 1;ZijðtÞg

One may consider parametric, multinomial logit models for estimation of pijðtÞ.5,7 However, the association

between the covariates and dij may not be correctly specified, which may lead to inconsistent estimation. This

motivates us to develop a more robust method that weakens the impact of model misspecification.
In this paper, we extend the proportional rates method previously developed for estimation of pijðtÞ8 using a

semiparametric approach that exploits a special form of the rate proportion of event type j to the overall rate

function. Interestingly, under the proportional rates model (1), the ratio of two rate proportions can be expressed as

logfpijðtÞ=piJðtÞg ¼ bT0XijðtÞ þ g0jðtÞ (4)

where XijðtÞ ¼ ZijðtÞ � ZiJðtÞ and g0jðtÞ ¼ logfdl0jðtÞ=dl0JðtÞg. In fact, model (4) can be viewed as a generalized

partially linear model. Under certain regularity conditions, one can estimate b0 and g0j simultaneously via
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semiparametric regression techniques such as local polynomials,9 generalized additive models,10 and polynomial
spline functions.11

When there is no missing data in the event type, one can estimate pijðtÞ using all of the data based on model (4).
With missing event types, however, one can only estimate pcijðtÞ using completely observed data, where

pcijðtÞ ¼ EfdijðtÞjdNi�ðtÞ ¼ 1;RiðtÞ ¼ 1;ZijðtÞg

Letting pijðtjZijÞ ¼ EfRiðtÞjdNijðtÞ ¼ 1;ZijðtÞg denote the probability of non-missingness given that the event
type j occurs, one can show

logfpcijðtÞ=pciJðtÞg ¼ bT0XijðtÞ þ g0jðtÞ þ jjðtjZijÞ (5)

where jjðtjZijÞ ¼ logfpijðtjZijÞ=piJðtjZiJÞg is the log-ratio of non-missingness for two event types. Since model (5)
is time-varying, estimation is complicated. A common assumption in the previous literature is that pijðtjZijÞ does
not depend on j and jjðtjZijÞ ¼ 0 for each j.5,7,8 This assumption corresponds to missing at random (MAR)
assumption when the missingness does not depend on unobserved information.12 In this paper, we adopt the
same assumption and assume jjðtjZijÞ ¼ 0.

Theoretical challenge remains when the semiparametric estimator of pijðtÞ is substituted for the unknown dijðtÞ
in the estimating equations for b. Specifically, it is not clear if one can still obtain a n1=2 convergence rate in the
estimation of b since the convergence rate of pijðtÞ estimation is generally slower than n1=2 with a semiparametric
approach. We will show that, under mild regularity conditions, our estimator of b converges at a n1=2 rate to a
normal distribution with variance that may be consistently estimated using a simple plug-in formula.

The remaining sections are organized as follows. In Section 2, we exploit a cubic B-spline function for the
estimation of pijðtÞ and propose general estimating equations for the regression coefficient b0 and baseline mean
function l0jðtÞ in model (1). Consistency and large sample normality of the estimators are shown in Section 3.
Finite-sample performances evaluated by comprehensive simulation experiments are studied in Section 4. A real-
data analysis on multiple types of PA infections in the United States 2016 Cystic Fibrosis Foundation Patient
Registry is presented in Section 5. Conclusions and discussions on future research are presented in Section 6.

2 Estimation method

Assume that g0jðtÞ can be approximated by a cubic B-spline function

~g0jðt; njÞ ¼ nj0 þ
Xmþ3

k¼1

njkbkðtÞ

where bkðtÞ ðk ¼ 1; . . . ;mþ 3Þ are basis functions, m is the number of interior knots, and nj ¼ ðnj0; . . . ; njðmþ3ÞÞT is
a vector of spline coefficients. Let h0 ¼ ðbT0 ; nT0 ÞT, where n0 ¼ ðnT1 ; . . . ; nTJ�1ÞT. One can estimate h0 by maximizing
an approximate log-likelihood function

‘ðhÞ ¼
Xn
i¼1

Z s

0

‘iðt; b; nÞRiðtÞdNi�ðtÞ (6)

where

‘iðt; b; nÞ ¼
XJ
j¼1

dijðtÞmc
ijðtÞ � log

XJ
j¼1

expfmc
ijðtÞg

2
4

3
5

with mc
ijðt; hÞ ¼ bTXijðtÞ þ nTBjðtÞ, where BjðtÞ is a ðmþ 4Þ � ðJ� 1Þ column vector with bðtÞ ¼

ð1; b1ðtÞ; . . . ; bmþ3ðtÞÞT in the jth block for j ¼ 1; . . . ; J� 1, and BJðtÞ ¼ 0 for all t. The number of interior
knots m can be selected by Akaike information criteria (AIC) that minimizes �2‘ðhÞ plus two times the
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number of parameters in h. However, other approaches such as generalized cross-validation that approximates the
leave-one-out cross-validation may also be considered.13

Letting ~h ¼ ð~bT
; ~n

TÞT denote the maximizer of (6), one can estimate pijðtÞ by

pijðt; ~hÞ ¼ expf~bT
XijðtÞ þ ~n

T
BjðtÞgXJ

‘¼1
expf~bT

Xi‘ðtÞ þ ~n
T
B‘ðtÞg

By solving the estimating equations

UrðbÞ ¼
Xn
i¼1

XJ
j¼1

Z s

0

fZijðtÞ � �Zjðt; bÞgdNr
ijðt; ~hÞ ¼ 0 (7)

where dNr
ijðt; hÞ ¼ RiðtÞdNijðtÞ þ f1� RiðtÞgpijðt; hÞdNi�ðtÞ, one can obtain our proposed estimator b̂

r
for b0. With

b replaced by b̂
r
in the estimating equation

Xn
i¼1

XJ
j¼1

Z s

0

½dNijðtÞ � YiðtÞexpfbTZijðtÞgdl0jðtÞ� ¼ 0

one can obtain an empirical estimator l̂r
0jðt; b̂

r
; ~hÞ for the baseline mean function l0jðtÞ, where

l̂r
0jðt; b̂

r
; ~hÞ ¼ n�1

Xn
i¼1

Z t

0

S
ð0Þ
j ðt; b̂rÞ�1 dNr

ijðt; ~hÞ (8)

Note that, although b is denoted the same in the log-rate ratio model (4) and proportional rates model (1), the b
in the model (4) may not be fully identifiable. The covariate with b in model (4) is XijðtÞ ¼ ZijðtÞ � ZiJðtÞ, which is
the difference between ZijðtÞ and ZiJðtÞ. If a covariate, for example, age is included and has the common effect on
the rate function for all event categories, then the corresponding Xij equals 0, and consequently, the corresponding
component in b is not identifiable. Another situation is when a covariate is included in rate model for all event
categories, but the effects are different for different event category. In this situation, what is estimable in b in
model (4) is the difference between the effects of that covariate for different categories and not the effects them-
selves. Taking J¼ 2 for example, one can write Zi1 ¼ ð ~Zi; 0ÞT and Zi2 ¼ ð0; ~ZiÞT, where ~Zi is the covariate in the
rates models for both event categories, for example, gender, and b ¼ ðb1; b2ÞT, where bj is the effect of ~Zi on rate
function for event category j for j¼ 1, 2. The difference between Zi1 and Zi2 is Xi1ðtÞ ¼ ð ~Zi;� ~ZiÞT, and one can
write bTXi1ðtÞ ¼ ðb1 � b2Þ ~Zi. From this expression, we can see that only the contrast b1 � b2 can be estimated
from model (4), not b1 and b2 individually. Including some same set of covariates in the rate models for some
event categories is common in practice. Therefore, it is not feasible to use the log-likelihood function (6) to
estimate b in general. However, even though b in model (4) is not identifiable, our proposed method can still
work because pijðtÞ can still be consistently estimated using function (6).

Also note that the proportional rates model (1) with a baseline rate function specific for each event type is quite
general. One may restrict the model with the baseline rate function to be proportional to a reference category J,
meaning dl0jðtÞ ¼ c0jdl0ðtÞ, where dl0ðtÞ is the baseline rate function of the reference category. The model can be
written as

EfdN�
ijðtÞjZijðtÞ;�jg ¼ expfbT0ZijðtÞ þ cT0�jgdl0ðtÞ (9)

where �j is a column vector of 1 in the jth element and 0 otherwise with c0 ¼ ðc01; . . . ; c0ðJ�1ÞÞT as the correspond-
ing coefficient. One can show that the formula (5) becomes

logfpcijðtÞ=pciJðtÞg ¼ bT0XijðtÞ þ c0j þ jjðtjZijÞ (10)
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and estimate b0 and c0j using completely observed data via parametric estimating equations

Xn
i¼1

XJ
j¼1

Z s

0

XijðtÞfdijðtÞ � pcijðt; b; cÞgRiðtÞdNi�ðtÞ ¼ 0 (11)

where

pcijðt; b; cÞ ¼
expfbTXijðtÞ þ c0jgXJ

‘¼1
expfbTXi‘ðtÞ þ c0‘g

assuming jjðtjZijÞ ¼ 0 for j ¼ 1; . . . ; J.
With b̂

c
and ĉc solving equation (11), one can obtain a more efficient estimator for b0 and c0 using all of the

events by replacing the unknown quantity dijðtÞ with pcijðt; b̂
c
; ĉcÞ. This yields the estimating equations

Urðb; cÞ ¼
Xn
i¼1

XJ
j¼1

Z s

0

fWijðtÞ � �Wðt; b; cÞg dNr
ijðt; b̂

c
; ĉcÞ ¼ 0 (12)

where WijðtÞ ¼ ðZT
ij ðtÞ;�T

j ÞT; �Wðt; b; cÞ ¼ Sð1Þðt; b; cÞ=Sð0Þðt; b; cÞ with

SðdÞðt; b; cÞ ¼ n�1
Xn
i¼1

XJ
j¼1

YiðtÞWijðtÞ�dexpfbTZijðtÞ þ cT�jg

for d¼ 0, 1, and

dNr
ijðt; b; cÞ ¼ RiðtÞdNijðtÞ þ f1� RiðtÞgpijðt; b; cÞdNi�ðtÞ

By comparing models (5) and (10), one can conduct a statistical test for the proportionality of the baseline rate
functions by testing if g0jðtÞ is constant for all t, i.e., testing the null hypothesis H0 : g0jðtÞ ¼ c0j for t � 0. Using
our approach, the null hypothesis is equivalent to H0 : nj1 ¼ . . . ¼ njðmþ3Þ ¼ 0 for each j, which can be tested via a
Wald-type test procedure. Under a more restricted model (9), the fully parametric model (10) for pijðtÞ is some-
what different from the one proposed by Schaubel and Cai.5 The fully parametric model for pijðtÞ in Schaubel and
Cai5 includes more covariates than model (10), such as time of event occurrence t and number of previous events
Ni�ðt�Þ.

3 Asymptotic theory

Large sample properties of the semiparametric estimators b̂
r
and l̂r

0j using model (5) will be derived in this section.
The developments are more challenging than those in Schaubel and Cai,5 which covers only the more restrictive
parametric model (10). We first state our notations. Let

pcijðt; hÞ ¼ expfmc
ijðt; hÞg=

XJ
‘¼1

expfmc
i‘ðt; hÞg

and let

_pcijðt; hÞ ¼ @pcijðt; hÞ=@h ¼ pcijðt; hÞf ~XijðtÞ �
XJ
‘¼1

~Xi‘ðtÞpci‘ðt; hÞg

1628 Statistical Methods in Medical Research 30(7)



where ~XijðtÞ ¼ ðXijðtÞT;BjðtÞTÞT. The score function of n�1‘ðhÞ can be written as UðhÞ ¼ n�1
Xn

i¼1

XJ

j¼1
UijðhÞ,

where

UijðhÞ ¼
Z s

0

~XijðtÞfdijðtÞ � pcijðt; hÞgRiðtÞdNi�ðtÞ

and the negative Hessian matrix of n�1‘ðhÞ can be written as

HðhÞ ¼ n�1
Xn
i¼1

XJ
j¼1

Z s

0

~XijðtÞ _pcijðt; hÞRiðtÞ dNi�ðtÞ

Regularity conditions, especially for the number of interior knots, are outlined here. These conditions are

required for the proof of the large sample properties of our estimators.

a. Variables fNijð�Þ;Yijð�Þ;Zijð�ÞgJj¼1 ði ¼ 1; . . . ; nÞ are independent and identically distributed.
b. The distribution of censoring time Ci satisfies PðCi � sÞ > 0 for each i.
c. The sample path of the covariates satisfies jZij‘ð0Þj þ

R s
0 jdZij‘ðtÞj < cZ < 1 for every ‘, where Zij‘ is the ‘th

element of the covariate Zij.
d. The limiting matrices Xðb0Þ and Hðh0Þ are positive-definite.
e. The baseline rate functions dl0jð�Þ; j ¼ 1; . . . ; J are bounded away from zero and infinity on ½0; s�.
f. The second derivative of g0jð�Þ exists and satisfies Lipschitz condition of order � on ½0; s� for j ¼ 1; . . . ; J for

some � 2 ð0; 1�.
g. The number of interior knots satisfies n1=ð4þ2�Þ < m < n1=4.

Note that Conditions (a)–(e) are regularity conditions for recurrent event processes, outlined in Cai and

Schaubel.6 The smoothness condition in (f) is similar to the condition (C1) in Wang et al.11 and enables estimation

of g0jðtÞ using spline functions, with Condition (g) describing the number of parameters used in the spline

functions relative to the sample size.
According to Wang et al.,11 the convergence rate of the estimator of b0 in model (5) is n1=2 under Conditions

(c)–(g), while the convergence rate of the nonparametric estimator of g0jðtÞ is slower than n1=2. This makes that the

convergence rate of the estimator for pijðtÞ is slower than n1=2. However, we can show that the convergence rate of

our estimator for the regression parameter b0 is n1=2. The following theorem describes the large sample theory of

our estimator. The detailed proof is given in Appendix 1.

Theorem 1 Under Conditions (a)–(g), the estimator b̂
r
is a consistent estimator of b0 and n1=2ðb̂r � b0Þ converges in

distribution to a normal variable with mean 0 and variance R, which can be consistently estimated by

X̂ðb̂rÞ�1Ûðb̂rÞX̂ðb̂rÞ�1, where

X̂ðbÞ ¼ n�1
Xn
i¼1

XJ
j¼1

Z s

0

S
ð2Þ
j ðt; bÞ=Sð0Þ

j ðt; bÞ � �Zjðt; bÞ�2
n o

dNr
ijðt; ~hÞ

and

ÛðbÞ ¼ n�1
Xn
i¼1

Ŵiðb; ~hÞ�2

with

Ŵiðb; hÞ ¼
XJ
j¼1

Z s

0

fZijðtÞ � �Zjðt; bÞgdM̂r

ijðt; b; hÞ þ Ĉðb; hÞHðhÞ�1
UijðhÞ;

dM̂
r

ijðt; b; hÞ ¼ dNr
ijðt; hÞ � YiðtÞexpfbTZijðtÞgdl̂r

0jðt; b; hÞ;
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and

Ĉðb; hÞ ¼ n�1
Xn
i¼1

XJ
j¼1

Z s

0

fZijðtÞ � �Zjðt; bÞgqijðt; hÞ ~XijðtÞTf1� RiðtÞgdNi�ðtÞ

where qijðt; hÞ ¼ pijðt; hÞf1� pijðt; hÞg.
The consistency of b̂

r
can be proved via consistency of ~h and conventional convex theories. Large sample

normality can be established via an approximation to n1=2ðb̂r � b0Þ by a summation of independent and identical
random vectors, as shown in Appendix 1. Note that the variation of b̂

r
is larger than that for b̂

n
which solves

equation (2) assuming that there are no missing data, since the estimation for pijðtÞ creates additional uncertainty
when the event type is missing. This additional variation can be seen in the second term of Ŵiðb; hÞ. Empirical
studies show that the efficiency loss compared to the estimator with no missing data may be rather small.

Let Ajðt; b; hÞ ¼ �R t

0
�Zjðs; bÞdl̂0jðs; b; hÞ; and

Djðt; b; hÞ ¼ n�1
Xn
i¼1

Z t

0

S
ð0Þ
j ðs; bÞ�1qijðs; hÞ ~XijðsÞf1� RiðsÞgdNi�ðsÞ

The following theorem describes the limiting properties of the baseline mean function estimator l̂r
0jðt; b̂

r
; ~hÞ for

l0jðtÞ in model (1).

Theorem 2 Under the same conditions of Theorem 1, the baseline mean function estimator l̂r
0jðt; b̂

r
; ~hÞ is uniformly

consistent for l0jðtÞ; t 2 ½0; s�, and n1=2fl̂r
0jðt; b̂

r
; ~hÞ � l0jðtÞg converges weakly to a Gaussian process with mean 0

and covariance function Vjðs; tÞ; s; t 2 ½0; s�, which can be consistently estimated by

V̂
r

j ðs; tÞ ¼ n�1
Xn
i¼1

/̂ijðs; b̂
r
; ~hÞ/̂ijðt; b̂

r
; ~hÞ (13)

where

/̂ijðt; b; hÞ ¼ Ajðt; b; hÞTX̂ðbÞ�1Ŵiðb; hÞ

þDjðt; b; hÞHðhÞ�1
XJ
j¼1

UijðhÞ þ
Z t

0

S
ð0Þ
j ðs; bÞ�1 dM̂

r

ijðs; b; hÞ

The proof begins by decomposing x̂jðtÞ ¼ l̂r
0jðt; b̂

r
; ~hÞ � l0jðtÞ as x̂ð1Þ

j ðtÞ þ x̂ð2Þ
j ðtÞ, where x̂ð1Þ

j ðtÞ ¼
l̂r
0jðt; b̂

r
; ~hÞ � l̂r

0jðt; b0; h0Þ and x̂ð2Þ
j ðtÞ ¼ l̂r

0jðt; b0; h0Þ � l0jðtÞ. The uniform consistency of l̂r
0jðt; b̂

r
; ~hÞ can be

proved by showing that both supt2½0;s� jx̂ð1Þ
j ðtÞj and supt2½0;s� jx̂ð2Þ

j ðtÞj converge to 0. The uniform convergence of

x̂ð2Þ
j ðtÞ can be proved using a law of large numbers for empirical processes and uniform convergence of ~g0j to g0j.

The uniform convergence of x̂ð1Þ
j ðtÞ involves some additional assumptions. The details of the proof are provided

in Appendix 1. The proof of weak convergence, which establishes tightness and convergence to finite-dimensional
distributions, follows the standard tools in Pollard14 and van der Vaart and Wellner;15 see Appendix 1 for details.

4 Simulation study

In this section, we demonstrate the feasibility of our proposed method via comprehensive simulations. We first
examine a scenario when the proportional baseline rate model (9) holds; therefore, the general model (1) also
holds. We then investigate a scenario when the baseline rate functions are nonproportional, in that model (1)
holds, but not model (9). For subject i, two types of recurrent events were simulated from two intensity functions
sharing the same latent variable Gi, which was sampled from Gammað1=a; aÞ with EðGiÞ ¼ 1 and varðGiÞ ¼ a. In
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the first scenario, the intensity functions are assumed ki1ðtÞ ¼ Gir01texpðb1 ~ZiÞ and ki2ðtÞ ¼ Gir02texpðb2 ~ZiÞ with
constants r01 and r02, while, in the second scenario, the intensity functions are ki1ðtÞ ¼ Gir01expðb1 ~ZiÞ and

ki2ðtÞ ¼ Gir02h0ðtÞexpðb2 ~ZiÞ, where h0ðtÞ ¼ expf�sinðt=3Þ � 3cosð3tÞg. We let a¼ 0, 0.5, or 1 for different depen-
dencies between two types of recurrent events, where a¼ 0 indicates two types of recurrent events are independent.
We set r01 ¼ 0:125 and r02 ¼ 0:0625 in the first scenario and r01 ¼ r02 ¼ 0:125 in the second scenario. We let b1 ¼
0 or logð2Þ and b2 ¼ 0. The covariate ~Zi was randomly drawn from a Bernoulli distribution with probability 0.5.
The censoring time was generated uniformly between 0 and 5 for each subject. In summary, there are 1.2–1.4 total
number of events on average in these simulation scenarios, with a 1:2 or 1:3 ratio of type 1 events to type 2 events.
The maximum number of events in a subject ranges from 6 to 11 events on average among the scenarios.

One can show that the rate functions can be expressed as EfdN�
ijðtÞjZijðtÞg ¼ expðbT0ZijÞdl0jðtÞ, where b0 ¼

ðb1; b2ÞT; Zij ¼ ðIðj ¼ 1Þ ~Zi; Iðj ¼ 2Þ ~ZiÞT; dl01ðtÞ ¼ r01t and dl02ðtÞ ¼ r02t in the first scenario, and dl01ðtÞ ¼ r01
and dl02ðtÞ ¼ r02h0ðtÞ in the second scenario. Note that the weighted estimating equations method in Schaubel
and Cai5 is unbiased in the first scenario if one uses ~Zi as the covariate in the logistic regression model for pi1ðtÞ.
However, it is quite evident that the model is misspecified if one uses the same model in the second scenario.

We assumed that the probability of having a missing category was given by

1� piðtÞ ¼ ½1þ expf��0ziðtÞg��1

where ziðtÞ ¼ ð1; t;Ni�ðt�Þ; ~ZiÞ0. We let � ¼ ð�0; �t; �n; �zÞ0, with �t ¼ �0:15; �n ¼ 0:1, and �z ¼ 0; logð2Þ, where �z ¼
0 indicated that the missingness depends on covariates and the missingness assumption is MAR. Various values of
�0 were given to control the percentages of events with missing categories, denoted by Mp. Here, we assume that
the missingness does not depend on the event type, i.e., pi1 ¼ pi2 ¼ pi and j1 ¼ 0.

Table 1 shows the simulation results for b1 under 1,000 repetitions of sample size n¼ 200. We present the
results of our proposed estimator b̂

r

1 and the weighted estimating equations method b̂
w

1 , where ziðtÞ was used as a
covariate in the logistic regression model for pi1ðtÞ to derive b̂

w

1 . We also present the results of the estimator b̂
n

1

assuming that there is no missing event category. This approach is generally not feasible in practice but provides
the best possible results in the ideal situation. Note that our proposed estimator is obtained under a more general
model (1). Later, we will show that our estimator endures little efficiency loss even when the underlying model has
proportional baseline rates. We report the average of biases in our replicated estimates, empirical standard
deviation r1, and the relative mean-squared error to our proposed method, denoted by exr ¼ mx=mr, where
mx ¼ ðb̂x

1 � b1Þ2 þ ðrx1Þ2; x ¼ n; r;w. The result shows that our estimator provides comparable estimates when
the weighted estimating equations method correctly specifies the model in the first scenario. The efficiency loss is
minimal, as the relative mean-squared errors are all close to 1. When the model is misspecified by the weighted
estimating equations method in the second scenario, the estimator has a relatively larger variation, especially when
more events with missing type are present in the data. Our estimator on the other hand provides a more robust
approach with significant efficiency improvements. Overall, our proposed estimator does not lose much efficiency
compared to the ideal solution, while outperforming the current existing parametric estimator.

Table 2 demonstrates that the distribution of our estimator can be well approximated by a normal distribution
in finite samples. We show the results based on model (1) in the second scenario when n¼ 200 and 400. The results
based on model (9) in the first scenario are similar; hence omitted here. As one can see, the average of our
standard error estimates, denoted by �r1 and �r2, is close to the empirical standard deviation, r1 and r2, respec-
tively, and the coverage rate Cp for b1 based on the 95% confidence interval is close to the nominal level.
Meanwhile, the size of the Wald-type test C0 for b2 ¼ 0 is close to the given significance level at 0.05.

As seen in Tables 1 and 2, our estimator is robust to the MAR assumption when �z 6¼ 0. Both point and
variance estimation are consistent. In fact, the efficiency is slightly better compared to the estimator when �z ¼ 0.
We also set different values of j1 to examine the performance of our estimation method under the missingness not
at random assumption. However, since the simulation results are similar, we do not report the results here.

5 CF registry data

CF is one of the most common life-shortening, autosomal recessive genetic disorders, affecting about 30,000
individuals in the United States.16 It is caused by mutations in the gene encoding the CF transmembrane con-
ductance regulator.17 Chronic lung infection and associated inflammation lead to significant morbidity in CF,
with respiratory failure the leading cause of mortality. PA, one of the major virulent pathogens in CF patients, is a

Lin et al. 1631



well-known risk factor for CF lung disease progression and survival. Several baseline risk factors for PA acqui-
sition were examined in Lai et al.18 Meconium ileus, late CF diagnosis through signs and symptoms, severe CF
genotypes, and female gender are associated with a higher risk of acquiring PA. However, most of the PA cases
examined in the study were initial infections, which may be transient and less predictive of negative outcomes. On
the other hand, mucoid PA, which is thought to develop after recurrent infections, is likely more critical to a
patient’s lung disease progression.19 Therefore, regression modeling for different PA types, i.e., mucoid and
nonmucoid, is important, since the baseline risk factors may differentially impact different infection types in
various manners.

In this section, we extended the analysis in Lai et al.18 to multiple event types using the United States 2016 CF
Foundation Patient Registry (CFFPR), in which baseline characteristics, such as genotype, phenotype, and other
prognosis factors, are recorded upon enrollment. The CFFPR documents the diagnosis and follow-up of 29,887
individuals with CF in the registry. We aim to model the nonmucoid and mucoid PA occurrence rates in asso-
ciation with three baseline risk factors, which include (1) gender, (2) genotype, categorized based on the most

Table 1. Simulation results are reported based on scenario 1, where data were generated from model (9), and scenario 2, where
data were generated from model (1).

b̂1 � b1 r1 Ratio

Scenario b1 a �z Mp (%) b̂
n

1 b̂
r

1 b̂
w

1 b̂
n

1 b̂
r

1 b̂
w

1 enr ewr

1 0.69 0.5 0 10 0.008 0.009 0.010 0.230 0.233 0.233 0.97 1.00

20 0.011 0.011 0.237 0.236 0.95 0.99

30 0.010 0.011 0.242 0.241 0.90 0.99

0.69 10 0.010 0.010 0.234 0.234 0.97 1.00

20 0.011 0.011 0.238 0.237 0.93 0.99

30 0.011 0.011 0.241 0.240 0.91 0.99

1.0 0 10 0.010 0.011 0.011 0.257 0.260 0.260 0.98 1.00

20 0.012 0.012 0.260 0.260 0.98 1.00

30 0.012 0.012 0.263 0.262 0.96 0.99

0.69 10 0.012 0.012 0.260 0.259 0.98 1.00

20 0.012 0.012 0.261 0.260 0.97 0.99

30 0.013 0.013 0.261 0.260 0.97 0.99

2 0 0 0 20 –0.001 0.001 –0.003 0.249 0.267 0.279 0.87 1.09

30 0.003 –0.007 0.280 0.300 0.80 1.15

40 0.006 –0.005 0.294 0.322 0.72 1.20

0.69 20 0.001 –0.005 0.265 0.280 0.88 1.11

30 0.005 –0.005 0.278 0.297 0.81 1.14

40 –0.006 –0.008 0.297 0.323 0.71 1.19

0.5 0 20 –0.010 –0.015 –0.018 0.287 0.307 0.314 0.88 1.05

30 –0.013 –0.020 0.321 0.339 0.80 1.12

40 –0.013 –0.027 0.325 0.346 0.78 1.14

0.69 20 –0.017 –0.021 0.307 0.316 0.87 1.06

30 –0.015 –0.024 0.315 0.330 0.83 1.10

40 –0.016 –0.022 0.333 0.357 0.75 1.15

3 0.69 0 0 20 0.002 0.008 0.007 0.222 0.238 0.245 0.87 1.06

30 0.006 0.007 0.251 0.263 0.78 1.10

40 0.005 0.006 0.266 0.281 0.70 1.12

0.69 20 0.005 0.005 0.234 0.244 0.90 1.08

30 0.007 0.008 0.247 0.258 0.81 1.09

40 0.002 0.007 0.257 0.270 0.75 1.11

0.5 0 20 –0.001 –0.003 –0.003 0.248 0.264 0.273 0.89 1.07

30 –0.004 0.000 0.270 0.287 0.85 1.13

40 –0.004 –0.001 0.283 0.302 0.77 1.14

0.69 20 –0.003 –0.004 0.259 0.269 0.92 1.07

30 –0.002 0.000 0.270 0.282 0.85 1.10

40 –0.004 –0.004 0.274 0.287 0.82 1.10
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common mutation: F508del homozygous, F508del heterozygous, and neither or unknown, and (3) method of

diagnosis, categorized in four groups described elsewhere:18 newborn screening, meconium ileus, family history

without symptom, and symptom and sign. Medication use for chronic PA infections and study site/center is

included in the model for adjustment of possible confounding effects.

Table 2. Simulation results of parameter estimations from our proposed method for model (1).

b̂
r

1 b̂
r

2

ðb1;b2Þ a �z Mp (%) n Bias r1 �r1 Cp Bias r2 �r2 C0
(0,0) 0 0 20 200 0.001 0.267 0.272 0.961 –0.006 0.149 0.151 0.035

400 –0.002 0.185 0.191 0.959 –0.005 0.105 0.106 0.041

30 200 0.003 0.280 0.287 0.961 –0.007 0.152 0.154 0.040

400 –0.002 0.190 0.199 0.960 –0.005 0.107 0.108 0.045

40 200 0.006 0.294 0.294 0.957 –0.007 0.153 0.155 0.038

400 0.003 0.198 0.207 0.961 –0.006 0.109 0.109 0.049

0.69 20 200 0.001 0.265 0.272 0.967 –0.006 0.149 0.151 0.041

400 –0.003 0.184 0.191 0.964 –0.004 0.106 0.106 0.048

30 200 0.005 0.278 0.282 0.961 –0.008 0.150 0.153 0.037

400 –0.001 0.190 0.198 0.955 –0.005 0.107 0.108 0.046

40 200 –0.006 0.297 0.295 0.950 –0.005 0.153 0.155 0.041

400 –0.006 0.200 0.207 0.958 –0.004 0.109 0.110 0.050

0.5 0 20 200 –0.015 0.307 0.297 0.948 0.000 0.195 0.188 0.067

400 –0.004 0.212 0.207 0.944 –0.004 0.134 0.133 0.060

30 200 –0.013 0.321 0.306 0.947 0.000 0.196 0.190 0.062

400 –0.004 0.222 0.215 0.941 –0.004 0.135 0.134 0.057

40 200 –0.013 0.325 0.317 0.951 –0.001 0.199 0.192 0.056

400 –0.005 0.228 0.222 0.950 –0.004 0.136 0.136 0.057

0.69 20 200 –0.017 0.307 0.297 0.946 0.000 0.194 0.188 0.062

400 –0.005 0.213 0.207 0.948 –0.004 0.133 0.133 0.056

30 200 –0.015 0.315 0.306 0.952 –0.001 0.197 0.190 0.064

400 –0.003 0.220 0.214 0.945 –0.005 0.135 0.134 0.056

40 200 –0.016 0.333 0.318 0.950 –0.001 0.198 0.192 0.064

400 –0.010 0.234 0.223 0.950 –0.003 0.138 0.136 0.059

(0.69,0) 0 0 20 200 0.008 0.238 0.234 0.958 –0.006 0.158 0.152 0.060

400 0.002 0.163 0.164 0.948 –0.001 0.110 0.107 0.063

30 200 0.006 0.251 0.246 0.957 –0.005 0.164 0.157 0.065

400 0.003 0.170 0.170 0.952 –0.001 0.111 0.109 0.053

40 200 0.005 0.266 0.251 0.947 –0.004 0.167 0.158 0.068

400 0.004 0.177 0.177 0.950 –0.002 0.113 0.111 0.059

0.69 20 200 0.005 0.234 0.232 0.955 –0.006 0.159 0.152 0.066

400 0.000 0.160 0.163 0.954 –0.001 0.110 0.107 0.061

30 200 0.007 0.247 0.239 0.948 –0.007 0.163 0.155 0.064

400 0.002 0.168 0.168 0.950 –0.002 0.112 0.109 0.056

40 200 0.002 0.257 0.248 0.954 –0.005 0.169 0.159 0.067

400 0.002 0.173 0.174 0.956 –0.001 0.115 0.112 0.060

0.5 0 20 200 –0.003 0.264 0.260 0.952 0.004 0.201 0.189 0.071

400 –0.004 0.178 0.183 0.956 0.001 0.136 0.133 0.058

30 200 –0.004 0.270 0.268 0.950 0.004 0.203 0.191 0.068

400 –0.006 0.183 0.189 0.961 0.001 0.138 0.135 0.055

40 200 –0.004 0.283 0.277 0.946 0.004 0.204 0.193 0.064

400 –0.005 0.191 0.195 0.960 0.001 0.140 0.137 0.049

0.69 20 200 –0.003 0.259 0.259 0.952 0.004 0.201 0.189 0.070

400 –0.005 0.176 0.182 0.964 0.001 0.137 0.134 0.060

30 200 –0.002 0.270 0.265 0.955 0.003 0.201 0.191 0.068

400 –0.005 0.180 0.187 0.962 0.000 0.138 0.135 0.066

40 200 –0.004 0.274 0.272 0.952 0.003 0.205 0.193 0.063

400 –0.004 0.184 0.191 0.962 –0.001 0.140 0.137 0.055
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In the 2016 registry, we identified 14,888 patients who were born after 1997 and had complete baseline risk data
in 188 accredited CF centers. In summary, half of these patients were male, 47% were F508del homozygous, 39%
were F508del heterozygous, 47% were diagnosed by newborn screening, 31% were diagnosed by emerging
symptoms and signs, and 19% and 3% were diagnosed by meconium ileus and family history, respectively. In
the follow-up visits, there were 27,288 nonmucoid and 6,323 mucoid PA infections, in addition to 5,445 culture
positives for both nonmucoid and mucoid types at the same visit. Since our method assumes two kinds of events
cannot occur simultaneously, we treated those visits with both infections as the third type of recurrent event.
Meanwhile, there were 5,392 culture positives in PA but with unknown status, which is in a high frequency of
missing event type (12% of the total events). Addressing the missing information is highly desirable.

Table 3 shows the estimation results by the complete-case analysis and our proposed rate proportion method,
assuming that the missingness does not depend on the event category, i.e., j1 ¼ j2 ¼ 0. We used AIC to choose
the number of interior knots in the B-spline function in model (5). Up to five interior knots were examined, the
minimum value of AIC was achieved by using a cubic function without any interior knots. We report rate ratio,
expðbÞ, and its 95% confidence interval (95% CI) with Wald-type test p-value with respect to a reference group.

Table 3. Summary table for the complete-case analysis and rate proportion method.

Complete-case Rate proportion

Covariates expðbÞ 95% CI p-value expðbÞ 95% CI p-value

Nonmucoid PA infection

Female 1.09 1.03, 1.15 0.001 1.08 1.01, 1.15 0.017

Genotype F508del <0.001a <0.001a

Homozygous 1.00 – – 1.00 – –

Heterozygous 0.89 0.83, 0.94 <0.001 0.89 0.84, 0.94 <0.001

Neither or unknown 0.89 0.77, 1.03 0.121 0.90 0.83, 0.97 0.008

Diagnostic method 0.079a 0.025†

Newborn screening 1.00 – – 1.00 – –

Meconium ileus 1.15 0.99, 1.34 0.069 1.10 1.01, 1.21 0.037

Family history 0.99 0.77, 1.27 0.946 0.94 0.80, 1.10 0.445

Symptom 1.13 0.93, 1.35 0.212 1.07 0.98, 1.16 0.127

Medication 1.85 1.64, 2.09 <0.001 1.88 1.68, 2.09 <0.001

Mucoid PA infection

Female 1.18 1.01, 1.38 0.038 1.16 1.08, 1.24 <0.001

Genotype F508del 0.298a 0.089†

Homozygous 1.00 – – 1.00 – –

Heterozygous 0.95 0.81, 1.12 0.547 0.95 0.86, 1.06 0.374

Neither or unknown 1.20 0.91, 1.59 0.199 1.21 1.00, 1.46 0.052

Diagnostic method 0.004a <0.001†

Newborn screening 1.00 – – 1.00 – –

Meconium ileus 1.18 0.91, 1.54 0.212 1.13 0.99, 1.29 0.063

Family history 1.45 0.96, 2.21 0.079 1.38 1.02, 1.87 0.035

Symptom 1.59 1.17, 2.15 0.003 1.51 1.30, 1.75 <0.001

Medication 3.06 2.57, 3.66 <0.001 2.98 2.71, 3.28 <0.001

Both PA infection

Female 1.22 1.03, 1.44 0.018 1.21 1.12, 1.31 <0.001

Genotype F508del 0.287a 0.217†

Homozygous 1.00 – – 1.00 – –

Heterozygous 0.92 0.78, 1.09 0.341 0.93 0.81, 1.06 0.258

Neither or unknown 1.11 0.87, 1.42 0.388 1.13 0.90, 1.42 0.294

Diagnostic method <0.001a <0.001a

Newborn screening 1.00 – – 1.00 – –

Meconium ileus 1.62 1.24, 2.11 <0.001 1.54 1.32, 1.80 <0.001

Family history 1.91 1.11, 3.28 0.019 1.78 1.23, 2.58 0.002

Symptom 1.99 1.47, 2.70 <0.001 1.88 1.68, 2.11 <0.001

Medication 2.47 1.98, 3.08 <0.001 2.39 2.13, 2.68 <0.001

aRefer to the overall comparison among levels in genotype and diagnostic method.
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We also report the p-value, indicated with a dagger, for the overall comparison among levels in genotype and

diagnostic method.
As one can see, in the nonmucoid PA acquisition, both methods agree that female gender and heterozygous

F508del genotype are significantly associated with the infection rate. While female has around 8% higher infec-

tion rate than male, patients with heterozygous F508del genotype have 11% lower infection rate than those with

homozygous F508del genotype. However, the two methods have different test results in neither F508del nor

unknown genotype and diagnosed by meconium ileus. While both methods have similar rate ratios, our proposed

method, with more data points involved, has a narrower confidence interval and significant test result, which leads

one to conclude that patients with a mild genotype (heterozygous F508del, neither F508del genotype, or

unknown) have 10% lower nonmucoid PA infection rate than those with a more severe genotype (homozygous

F508del), and patients diagnosed by with meconium ileus have 10% higher infection rate than those diagnosed by

newborn screening. The finding is consistent with Lai et al.18 and other scientific reports. The disparity between

the complete-case analysis and our method can be considered as an evidence against the missingness completely at

random assumption. In fact, based on a multiple logistic regression model for the likelihood of missingness, the

probability of missing event type is significantly associated with age, gender, genotype, and frequency of previous

events. The results demonstrate that missing event type is more likely to occur in younger patients, in female

patients, in patients with mild genotypes, and in patients with more prior PA infections.
Two methods otherwise have similar results in the mucoid PA acquisition and in both the types of infection in

the same culture. One difference is that patients diagnosed by family history without symptoms are statistically

significant in the mucoid PA infection using our proposed method, but not significant using the complete-case

analysis.
The baseline mean function estimation for the three types of infections by our proposed estimator is shown in

Figure 1. The testing for the proportionality of the baseline rate functions based on the Wald-type test is signif-

icant with p-value <0.0001, suggesting that model (9) is not a good fit to our data. Hence, we only report the

results for the model (1). We also assess the assumption of equal probability of missingness by assuming that the

log-ratio of the missingness probability jjðtjZijÞ in model (5) is possibly non-zero. Here, we implemented different

values of j1 and j2, ranging from –1.5 to 1.5, to explore the sensitivity of the parameter estimation when the

missingness is not at random. The result in the supplementary material shows that our estimation is quite robust

to the violation of the MAR assumption, as the changes in the point and variance estimates of the regression

coefficients are minimal, even when j1 and j2 are large.

6 Conclusion and discussion

It is worth noting that the same proportionality property exploited by our method was also discussed in an

intensity-based recurrent event model20 and in competing risk models with missing or uncertain cause of fail-

ure.21–24 A semiparametric framework for the estimation of pijðtÞ otherwise has never been explored. It is widely
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Figure 1. The baseline mean function estimation by our proposed method is shown in log-scale for nonmucoid (solid), mucoid
(dash), and both (dot) PA infections.
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anticipated that the semiparametric estimation will be more robust if the underlying unknown function is indeed

time-dependent, which is quite likely in practice with time to event data.
The estimation procedure in this paper is tailored for the proportional rates model. It may not be feasible for a

nonproportional rates model since the ratio of the rate functions may not be log-linearly correlated with cova-

riates. It would be of interest to develop a more general approach for different types of rate models. One pos-

sibility is to derive the probability of missingness and then inversely weigh the estimating equations for unbiased

estimation. Along these lines, one may also utilize the nonparametric estimation for the rate function to construct

a doubly robust estimator, providing additional protection against the model misspecification.
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Appendix 1

A.1. Proof of theorem 1

By Taylor expansion of UrðbÞ around b0, one can have n1=2ðb̂r � b0Þ ¼ X̂ð�bÞ�1n�1=2Urðb0Þ, where X̂ð�bÞ ¼
�n�1@UrðbÞ=@bjb¼�b with �b lying between b̂

r
and b0. Under Conditions (a)–(e), law of large numbers, consistency

of b̂
r
and ~h, and uniform convergence of ~g0j, one can show that X̂ð�bÞ converges to

Xðb0Þ ¼
XJ
j¼1

Z s

0

vjðt; b0Þsð0Þj ðt; b0Þdl0jðtÞ

where for d¼ 0, 1, 2,

vjðt; bÞ ¼ s
ð2Þ
j ðt; bÞ=sð0Þj ðt; bÞ � �zjðt; bÞ�2

s
ðdÞ
j ðt; bÞ ¼ lim

n!1 n�1
Xn
i¼1

E½YiðtÞZijðtÞ�dexpfbTZijðtÞg�

and �zjðt; bÞ ¼ s
ð1Þ
j ðt; bÞ=sð0Þj ðt; bÞ: Let Urðb0Þ ¼ Ur

1ðb0Þ þUr
2ðb0Þ, where

Ur
1ðb0Þ ¼

Xn
i¼1

XJ
j¼1

Z s

0

fZijðtÞ � �Zjðt; b0Þg dMr
ijðt; b0Þ

with

dMr
ijðt; bÞ ¼ RiðtÞdNijðtÞ þ f1� RiðtÞgpijðtÞdNi�ðtÞ � YiðtÞexpfbTZijðtÞgdl0jðtÞ

and

Ur
2ðb0Þ ¼

Xn
i¼1

XJ
j¼1

Z s

0

fZijðtÞ � �Zjðt; b0Þgfpijðt; ~hÞ � pijðtÞgf1� RiðtÞgdNi�ðtÞ

Again, using Taylor expansion, one can get pijðt; ~hÞ � pijðtÞ ¼ qijðt; �hÞfmijðt; ~hÞ �mijðtÞg; where mijðtÞ ¼
bT0XijðtÞ þ g0jðtÞ and �h ¼ ð�b; �nÞ satisfying jmijðt; �hÞ �mijðtÞj < jmijðt; ~hÞ �mijðt; �hÞj for every i and j. Rewriting

Lin et al. 1637



mijðt; ~hÞ �mijðtÞ ¼ ð~b � b0ÞTXijðtÞ þ ð~g0j � g0jÞðtÞ, where ~g0jðtÞ ¼ ~n
T
BjðtÞ, and letting qijðtÞ ¼ pijðtÞf1� pijðtÞg,

one can show that both

n�1
Xn
i¼1

XJ
j¼1

Z s

0

fZijðtÞ � �zjðt; b0ÞgqijðtÞð~b � b0ÞTXijðtÞf1� RiðtÞg dNi�ðtÞ

and

n�1
Xn
i¼1

XJ
j¼1

Z s

0

fZijðtÞ � �zjðt; b0ÞgqijðtÞð~g0j � g0jÞðtÞf1� RiðtÞg dNi�ðtÞ

are opðn�1=2Þ when the number of interior knots follows Condition (g) since ~b � b0 ¼ opðn�1=2Þ andR s
0 ð~g0j � g0jÞðtÞdt ¼ opðn�1=2Þ, as derived by Wang et al.11 Hence

n�1=2Ur
2ðb0Þ ¼ Cðb0; h0Þhðh0Þ�1n�1=2

Xn
i¼1

XJ
j¼1

Uijðh0Þ þ opð1Þ;

where Cðb0; h0Þ ¼ limn!1 Ĉðb0; h0Þ and hðh0Þ ¼ limn!1 Hðh0Þ.
Using conventional theories for empirical processes, one can also show that

n�1=2Ur
1ðb0Þ ¼ n�1=2

Xn
i¼1

XJ
j¼1

Z s

0

fZijðtÞ � �zjðt; b0ÞgdMr
ijðt; b0Þ þ opð1Þ

Accordingly, one has n�1=2Urðb0Þ ¼ n�1=2
Xn
i¼1

Wiðb0; h0Þ þ opð1Þ, where

Wiðb; hÞ ¼
XJ
j¼1

Z s

0

fZijðtÞ � �zjðt; bÞg dMr
ijðt; bÞ þ Cðb; hÞhðhÞ�1

XJ
j¼1

UijðhÞ

The rest of the proof follows the central limit theorem.

A.2. Proof of theorem 2

First, we let x̂jðtÞ ¼ l̂r
0jðt; b̂

r
; ~hÞ � l0jðtÞ and express n1=2x̂jðtÞ as n1=2x̂jðtÞ ¼ n1=2x̂ð1Þ

j ðtÞ þ n1=2x̂ð2Þ
j ðtÞ; where

x̂ð1Þ
j ðtÞ ¼ l̂r

0jðt; b̂
r
; ~hÞ � l̂r

0jðt; b0; h0Þ and x̂ð2Þ
j ðtÞ ¼ l̂r

0jðt; b0; h0Þ � l0jðtÞ. Furthermore, we let

x̂ð1Þ
j ðtÞ ¼ x̂ð1Þ

j1 ðtÞ þ x̂ð1Þ
j2 ðtÞ, where

x̂ð1Þ
j1 ðtÞ ¼ n�1

Xn
i¼1

Z t

0

fSð0Þ
j ðs; b̂rÞ�1 � S

ð0Þ
j ðs; b0Þ�1gdNr

ijðs; ~hÞ

and

x̂ð1Þ
j2 ðtÞ ¼ n�1

Xn
i¼1

Z t

0

S
ð0Þ
j ðs; b0Þ�1fdNr

ijðs; ~hÞ � dNr
ijðs; h0Þg

Recall that Ajðt; b; hÞ ¼ �R t

0
�Zjðs; bÞdl̂0jðs; b; hÞ. By Taylor expansion, weak law of large numbers, and consis-

tency of ~h, one can claim that x̂ð1Þ
j1 ðtÞ ¼ Ajðt; b0; h0ÞTðb̂

r � b0Þ þ opð1Þ because @x̂ð1Þ
j1 ðtÞ=@b ¼ Ajðt; b; h0Þ þ opð1Þ,

since limn!1 n�1
Xn

i¼1
dNr

ijðs; ~hÞ ¼ dl0jðtÞsð0Þj ðt; b0Þ and limn!1 S
ðdÞ
j ðt; b0Þ ¼ s

ðdÞ
j ðt; b0Þ for d¼ 0, 1 uniformly in
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t 2 ½0; s�. Under Conditions (a)–(g), one can show that supt2½0;s� jx̂ð1Þ
j1 ðtÞj converges to 0 since Ajðt; b0; h0Þ is bound-

ed when n ! 1 and b̂
r

is consistent for b0. Similarly, one can write

x̂ð1Þ
j2 ðtÞ ¼ n�1

Xn

i¼1

R t

0 S
ð0Þ
j ðs; b0Þ�1fpijðt; ~hÞ � pijðt; h0Þgf1� RiðsÞgdNi�ðsÞ. By writing pijðt; ~hÞ � pijðt; h0Þ ¼

qijðt; �hÞfmijðt; ~hÞ �mijðt; h0Þg, one can show that supt2½0;s� jx̂ð1Þ
j2 ðtÞj converges to 0 since

x̂ð1Þ
j2 ðtÞ ¼ Djðt; b0; h0ÞTð~h � hÞ þ opð1Þ, consistency of ~h, and the fact that Djðt; b0; h0Þ is bounded when n ! 1.

Along with the uniform consistency of x̂ð2Þ
j ðtÞ, the uniform consistency of x̂jðtÞ is proved.

By consistency of ~h and l̂0jðs; b0; ~hÞ in s 2 ð0; t�, one can claim that Ajðt; b0; ~hÞ converges in probability to

ajðt; b0Þ ¼ �R t

0 �zjðs; b0Þ dl0jðsÞ. To prove the large sample normality, one can show that

n1=2x̂ð1Þ
j1 ðtÞ ¼ ajðt; b0ÞTXðb0Þ�1n�1=2

Xn

i¼1
Wiðb0; h0Þ þ opð1Þ, and n1=2x̂ð1Þ

j2 ðtÞ ¼ djðt; b0Þhðh0Þ�1n�1=2
Xn

i¼1XJ

j¼1
Uijðh0Þ þ opð1Þ, where

djðt; b0Þ ¼ lim
n!1 n�1

Xn
i¼1

Z t

0

s
ð0Þ
j ðs; b0Þ�1qijðsÞ ~XijðsÞf1� RiðsÞgdNi�ðsÞ

Furthermore, one can write n1=2x̂ð2Þ
j ðtÞ ¼ n�1=2

Xn

i¼1

R t

0 s
ð0Þ
j ðs; b0Þ�1dMr

ijðs; b0; h0Þ þ opð1Þ, where

dMr
ijðt; b0; h0Þ ¼ dNr

ijðt; hÞ � YiðtÞexpfbTZijðtÞgdl0jðtÞ

Accordingly, the process n1=2x̂jðtÞ can be written as n1=2x̂jðtÞ ¼ n1=2x̂ð1Þ
j1 ðtÞ þ n1=2x̂ð1Þ

j2 ðtÞ þ n1=2x̂ð2Þ
j ðtÞ, which

can be expressed as n�1=2
Xn

i¼1
/ijðt; b0; h0Þ þ opð1Þ, where

/ijðt; b0; h0Þ ¼ ajðt;b0ÞTXðb0Þ�1Wiðb0; h0Þ

þ djðt; b0Þhðh0Þ�1
XJ
j¼1

Uijðh0Þ þ
Z t

0

s
ð0Þ
j ðs;b0Þ�1dMr

ijðs; b0; h0Þ

One can see that n�1=2
Xn

i¼1
/ijðt; b0; h0Þ is a normalized sum of independent and identically distributed random

variables and, by the central limit theory, converges to a multivariate normal distribution with mean zero and
covariance Vjðs; tÞ ¼ Ef/1jðs; b0; h0Þ/1jðt; b0; h0Þg given finitely many s; t 2 ½0; s�. Since /1jðt; b0; h0Þ is

monotone in t, n1=2x̂jðtÞ is tight and hence converges weakly to a Gaussian process by the functional central
limit theorem.
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