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Abstract This paper studies the global behaviors of a nonlinear autonomous neutral delay differ-

ential population model with impulsive perturbation. This model may be suitable for describing the

dynamics of population with long larval and short adult phases. It is shown that the system may

have global stability of the extinction and positive equilibria, or grow without being bounded under

some conditions.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many evolutionary processes in nature are characterized by
the fact that their states experience abrupt changes at certain
moments, which can be described by impulsive systems. More-

over, the impulsive systems have much richer dynamics than
the corresponding non-impulsive systems. This is the reason
that this paper studies the neutral delay equation for an insect

population with impulsive perturbations.
In Stephen and Kuang (2009), we get

u0mðtÞ ¼ u0ðs� tÞe�lt � dðumðtÞÞt 6 s ð1:1Þ

u0mðtÞ ¼ b2u
0
mðt� sÞ þ b2dðumðt� sÞÞ þ b0uiðs� tÞ�

þ b1umðs� tÞÞe�lt � dðumðtÞÞt P s ð1:2Þ
Just like Stephen and Kuang (2009), let t and a denote time

and age and let uðt; aÞ be the density of individuals of age a at
time t. It will be assumed that individuals take time s to
mature, so that the total numbers of mature and immature

numbers um and ui are given respectively by

umðtÞ ¼
Z 1

s
uðt; aÞda; uiðtÞ ¼

Z 1

0

uðt; aÞda

and with the initial condition u0 ¼ uð0; aÞ P 0, a P 0

uðt; 0Þ ¼ R1
0

bðaÞuðt; aÞda
Following Bocharov and Hadeler (2000), the birth rate

function,
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bðaÞ ¼ b0 þ ðb1 � b0ÞHða� sÞ þ b2dða� sÞ
where HðaÞ is Heaviside function and dðaÞ the Dirac delta
function. This choice for bðaÞ implies that individuals age less

than s produce b0 eggs per unit time, those of age greater than
s produce b1 eggs per unit time, and additionally each individ-
ual lays b2 eggs on reaching maturation age s (the b2 eggs all
being laid at exactly that instant). In fact, we shall take

b0 ¼ 0 for most of this paper, because most individuals do
not lay eggs until they reach maturation age s in nature.

In this paper, we will study the following system with

impulsive perturbations, we will drop the subscript m for
convenience,

u0ðtÞ¼ u0ðs� tÞe�ut�dðuðtÞÞ t6 s

u0ðtÞ¼ ðb2u0ðs� tÞþb2dðuðt�sÞÞþb1uðs� tÞÞe�ut�dðuðtÞÞ tP s

uðsþk Þ¼ ð1þckÞuðskÞ k¼ 1;2;3; . . .

8><
>:

We will use the following hypotheses:

(H1) 0 ¼ s0 < s1 < s2 < . . . are fixed impulsive points with
limk!1 ¼ 1, sk ¼ ks.

(H2) ðckÞ is a real sequence and ck > �1, k ¼ 1; 2; 3; . . . ;Q
06sk<tð1þ ckÞ < 1.

(H3) dð�Þ is a linear and continuous strictly monotonic
increasing function of u satisfying dð0Þ ¼ 0.

Here ðckÞ; k ¼ 1; 2; 3; . . . are proportional coefficients.

Impulsive reduction of the population is possible by catching
or poisoning with chemicals used in agriculture
(�1 < ck < 0), an impulsive increasing of the population is

possible by artificial means by the population’s impulsive
immigration and introduction of natural enemies (ck P 0). In
this paper, we assume sk ¼ ks which means the individuals

lay eggs only once all their life.
The dynamic of the delay system (1.1) and (1.2) has been

studied in Stephen and Kuang (2009), we could obtain the pos-
itivity and boundedness of solution by ad hoc methods and

global stability of the extinction and positive equilibria by
the method of iteration. We also know that if the time adjusted
instantaneous birth rate at the time of maturation is greater

than 1, then the population will grow without being bounded.
Thus, it is interesting how the dynamics of (1.3) is affected by
the impulsive perturbations.

2. Preliminary

From Stephen and Kuang (2009), we could apply (1.2) recur-

sively and could get a non-neutral delay equation

u0ðtÞ ¼ bn2e
�utu0ððnþ 1Þs� tÞ þ b1e

�us
Xn�1

j¼0

b j
2e

�jltuðt� ðjþ 1ÞsÞ

þ dðuðtÞÞ t 2 ðns; ðnþ 1ÞsÞ ð2:1Þ

Since sk ¼ ks so (1.3) can be written as

u0ðtÞ ¼ bn2e
�utu0ðsnþ1 � tÞ þ b1e

�us
Xn�1

j¼0

b j
2e

�jltuðt� ðsjþ1Þ

�dðuðtÞÞ t 2 ðns; ðnþ 1ÞsÞ
uðsþk Þ ¼ ð1þ ckÞuðskÞ k ¼ 1; 2; 3; . . .

8>>>><
>>>>:

ð2:2Þ
Under the hypotheses (H1)–(H3), by a transformation

zðtÞ ¼ Q
06sk<tð1þ ckÞ�1

uðtÞ, we consider the nonimpulsive

delay differential equation

z0ðtÞ ¼ bn2e
�ut

Y
snþ1�t6sk<t

ð1þ ckÞz0ðsnþ1 � tÞ

þ b1e
�us

Xn�1

j¼0

b j
2e

�jlt
Y

t�sjþ1�t6sk<t

ð1þ ckÞ�1
zðt� sjþ1Þ

� dðzðtÞÞ ð2:3Þ
and t 2 ðns; ðnþ 1ÞsÞ, n ¼ 1; 2; 3; . . . ; with the initial condition

z0ðaÞ ¼ zð0; aÞ ¼
Y

06sk<t

ð1þ ckÞ�1
u0ðaÞ P 0; a P 0

Lemma 2.1. Assume that (H1)–(H3) hold,

(i) If zðtÞ is a solution of (2.3) on ð0;1Þ, then
uðtÞ ¼ Q

06sk<tð1þ ckÞzðtÞ is a solution of (2.2) on ð0;1Þ.
(ii) If uðtÞ is a solution of (2.2) on ð0;1Þ, then

zðtÞ ¼ Q
06sk<tð1þ ckÞ�1uðtÞ is a solution of (2.3) on

ð0;1Þ.

Proof. First, we prove (i). It is easy to see that

zðtÞ ¼ Q
06sk<tð1þ ckÞ�1

uðtÞ is absolutely continuous on each

interval ðsk; skþ1Þ; k ¼ 1; 2; 3; . . ., On the other hand, for every

sk.

uðsþk Þ ¼ lim
t!sþ

k

Y
06sk<t

ð1þ cjÞzðtÞ ¼
Y

06sk<t

ð1þ cjÞzðtÞ and

uðskÞ ¼
Y

06sk<t

ð1þ cjÞzðskÞ

Thus for every

k ¼ 1; 2; 3; . . . ; uðsþk Þ ¼ ð1þ ckÞuðskÞ ð2:4Þ
Now, one can easily check that uðtÞ ¼ Q

06sk<tð1þ ckÞzðtÞ is
a solution of (1.1) on (0;1).

Next, we prove (ii), since uðtÞ is absolutely continuous on
each interval ðsk; skþ1Þ, k ¼ 1; 2; 3; . . ., and in view of (2.4), it

follows that for any k ¼ 1; 2; 3; . . ..

zðsþk Þ ¼
Y

06sk<t

ð1þ cjÞ�1
uðsþk Þ ¼

Y
06sk<t

ð1þ cjÞ�1
uðskÞ ¼ zðskÞ

and zðs�k Þ ¼
Q

06sk<tð1þ cjÞ�1
uðs�k Þ ¼

Q
06sk<tð1þ cjÞ�1

uðskÞ ¼
zðskÞ. Which implies that zðtÞ is continuous on (0, 1), it is easy
to prove zðtÞ is also absolutely continuous on (0, 1). Now one

can easily check that zðtÞ ¼ Q
06sk<tð1þ ckÞ�1

uðtÞ is a solution

of (2.3) on (0, 1). The proof of Lemma 2.1 is complete.
3. Main results

Theorem 3.1. Assume that (H1)–(H3) hold, and z0ðaÞ P 0 for
all a P 0. Then the solution of (2.3) satisfies zðtÞ P 0 for all
t P 0. Furthermore, if z0ðaÞ ¼ 0 on the interval (0, 1), then

zðtÞ > 0 for all t > 0.
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Proof. On the interval t 2 ð0; s�, zðtÞ satisfies (2.3), and so

z0ðtÞe�ltz0ðs� tÞ P �dðzðtÞÞ 0 < t 6 s

The initial value for zðtÞ is zðtÞ P 0, also, since dð0Þ ¼ 0 by

Taylor expansions it follows that dðzðtÞÞ has a factor of zðtÞ
and so from the standard argument it follows that zðtÞ P 0 for
all 0 < t 6 s.

Next we will prove non-negativity of zðtÞ for t 2 ðs; 2s�.
For such times, t� s 6 s, so that, from (2.3),

z0ðtÞ ¼ bn2e
�utð1 þ c1Þ�1z0ð2s � tÞ þ b1e

�usð1 þ c1Þ�1zðt � sÞ�
dðzðtÞÞ P �dðzðtÞÞ because we already show non-negativity of

zðtÞ on the interval t 2 ð0; s�, using dð0Þ ¼ 0 and non-negativity
of zðsÞ, it follows that zðtÞ P 0 for all t 2 ðs; 2s�.

This argument can be continued to include all positive times
and so non-negativity of zðsÞ has been shown. If z0ðaÞ ¼ 0 on
the interval (0, 1), then zðtÞ > 0 for all t > 0, in this situation,

inspection of the details of the above analysis shows that we
can draw the conclusion that zðtÞ is strictly positive for all
positive times. The proof of Theorem 3.1 is complete.

Since uðtÞ ¼
Y

06sk<t

ð1þ ckÞzðtÞ

Corollary 3.1. Assume that (H1)–(H3) hold, and u0ðaÞ P 0
for all a P 0. Then the solution of (2.2) satisfies uðtÞ P 0 for

all t P 0. Furthermore, if u0ðaÞ ¼ 0 on the interval (0, 1), then
uðtÞ > 0 for all t > 0.

Here we get the results mainly used in the method Stephen
and Kuang (2009), of course, by Theorem 1 in Stephen and
Kuang (2009) and ck > �1, k ¼ 1; 2; 3; . . . ; we could get the

same result directly.

Theorem 3.2. Assume that (H1)–(H3) hold, b0 ¼ b1 ¼ 0 and
b2e

�lt < 1. Then the solution of (2.3) satisfies limt!1zðtÞ ¼ 0.

Proof. Eq. (2.3) is for t 2 ðns; ðnþ 1Þs�; so t and n must go to

infinity together. Since b1 ¼ 0; the term with summation is
absent. Furthermore, the involvement of z0ð�Þ is for value of
its argument between 0 and s only, so z0ððnþ 1Þs� tÞ can be

bounded independently of n and t.

Since 0 <
Q

06sk�tð1þ ckÞ < 1, there exists 0 < A < B,

such that A <
Q

06sk<tð1þ ckÞ�1 < B.

Let e > 0 be arbitrary, and choose N sufficiently large that
bn2e

�lssupa2ð0;s�z0ðaÞ < e; whenever n P N.

Then it follows that, for t > Ns; z0ðtÞ 6 eB� dðzðtÞÞ.
From a simple comparison argument, and using the sated

properties of the function dð�Þ and also the positivity of z; it

follows that 0 6 lim supt!1zðtÞ 6 d�1ðeBÞ.
This is true for any e > 0 and therefore limt!1zðtÞ ¼ 0. The

proof is complete.

Since uðtÞ ¼ Q
06sk<tð1þ ckÞzðtÞ, there exists 0 < A < B;

such that A <
Q

06sk<tð1þ ckÞ�1 < B, and by Theorem 3.2. We

could get that.

Corollary 3.2. Assume that (H1)–(H3) hold, b0 ¼ b1 ¼ 0 and
b2e

�ls < 1. Then the solution of (2.2) satisfies limt!1uðtÞ ¼ 0.
Theorem 3.3. Assume that (H1)–(H3) hold, b0 ¼ 0, b1 > 0 and

Bb1ze
�ls < dðzÞð1� b2e

�lsÞ for all z P 0 ð3:1Þ
Then the solution of (2.3) satisfies limt!1zðtÞ ¼ 0.

Proof. Noted that (3.1) forces b2e
�ls < 1. Firstly we shall

establish that these solutions zðtÞ are bounded.

Let Z ¼ maxðmaxðz0ðaÞ : a 2 ð0; s�Þ; maxðzðtÞ : t 2 ð0; s�ÞÞ

p ¼
Y

snþ1�t6sk<t

ð1þ ckÞ�1
and qj ¼

Y
t�sjþ16sk<t

ð1þ ckÞ�1

absolutely A < p < B, A < qj < B, of course

z0ðtÞ¼bn2e
�ltpz0ðsnþ1� tÞþb1e

�ls
Xn�1

j¼0

bj
2e

�jlsqjzðt�sjþ1Þ�dðzðtÞÞ

ð3:2Þ
and choose a sufficiently large that a > b2=b1, we claim that

lim sup
t!1

zðtÞ 6 ðaþ 1ÞZ ð3:3Þ

Suppose the contrary, then since the solution is bounded by

Z for t 2 ð0; s�, there must exist t1 > s; such that

Zðt1Þ ¼ ðaþ 1ÞZzðtÞ < ðaþ 1ÞZ for all t < t1 and z0ðt1Þ P 0

ð3:4Þ
and an integer k such that t1 2 ðks; ðkþ 1Þs�, but from (3.2)

z0ðtÞ ¼ bk2e
�lt1pz0ðskþ1 � tÞ þ b1e

�ls
Xk�1

j¼0

bj
2e

�jlsqjzðt1 � sjþ1Þ

� dðzðt1ÞÞ6 bk2e
�lksZ�Bb1e

�lsbk�1
2 e�ðk�1ÞlsaZ

þBb1e
�ls

Xk�1

j¼0

bj
2e

�jlsðaþ 1ÞZ� dððaþ 1ÞZÞ

6 bk�1
2 e�lksZðpb2 �Bb1eaÞ þBb1e

�lsðaþ 1ÞZ=ð1� b2e
�lsÞ

� dððaþ 1ÞZÞ< 0 ð3:5Þ
This is contradictory (3.4) and there for zðtÞ is bounded.
Let K be an upper bound for zðtÞ and let g > 0 be arbitrary.

As noted earlier, the nonautonomous term in (3.2) goes to zero
as t ! 1.

It follows that for a sufficiently large integer the nonau-
tonomous term is bounded by g and therefore

Z0ðtÞ 6 gþ KBb1e
�ls=ð1� b2e

�lsÞ � dðzðtÞÞ.

So lim sup
t!1

ZðtÞ 6 d�1ðgþ KBb1e
�lsÞ=ð1� b2e

�lsÞ

This is true for all g > 0; and therefore

lim supt!1ZðtÞ 6 d�1ðKBb1e�lsÞ=ð1� b2e
�lsÞ :¼ z�1.

That z�1 is well defined follows from (3.1) and the other

hypotheses on dð�Þ.
In the subsequent steps of this analysis the nonautonomous

term in (2.3) can be rigorously dealt with by introducing a

small parameter which is later shrunk to zero as just described,
and it is therefore sufficient to study the asymptotically
autonomous from of (2.3), which is
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z0ðtÞ ¼ b1e
�ls

Xn�1

j¼0

b j
2e

�jlsqjzðt� sjþ1Þ � dðzðtÞÞ;

t 2 ðns; ðnþ 1Þs� n ¼ 1; 2; 3; . . . ð3:6Þ
Using Heaviside’s function HðtÞ, (3.6) can be rewritten as

z0ðtÞ ¼ b1e
�ls

X1
j¼0

b j
2e

�jlsHðt� sjþ1Þqjzðt� sjþ1Þ � dðzðtÞÞ;

t 2 ðns; ðnþ 1Þs� n ¼ 1; 2; 3; . . . ð3:7Þ
Let e P 0, there exists T > 0 such that, for all t > T;

zðtÞ 6 z�1 þ e, and choose an integer N sufficiently large thatP1
j¼Nb

j
2e

�jls < e, which is possible because b2e
�ls < 1.

From (3.6), we find that, for t > Nsþ T

z0ðtÞ ¼ b1e
�ls

X1
j¼0

b j
2e

�jlsHðt� sjþ1Þqjzðt� sjþ1Þ � dðzðtÞÞ

6 b1e
�lsB

XN�1

j¼0

b j
2e

�jlszðt� sjþ1Þ
"

þ
X1
j¼N

b j
2e

�jlsHðt� sjþ1Þzðt� sjþ1Þ
#
� dðzðtÞÞ

6 b1e
�lsB ðz�1 þ eÞ

XN�1

j¼0

b j
2e

�jls þ Ke

" #
� dðzðtÞÞ

< b1e
�lsB ðz�1 þ eÞ=ð1� b2e

�lsÞ þ Ke
� �� dðzðtÞÞ ð3:8Þ

From this, we deduce an e-dependent upper bound for
limt!1zðtÞ, and we may then shrink e to zero to obtain

lim supt!1ZðtÞ 6 d�1ðBb1e�lsz�1Þ=ð1� b2e
�lsÞ :¼ z�2.

By repeating the above procedure, we generate a sequence
z�nn ¼ 1; 2; 3; . . ., of real numbers with the property that

lim supt!1zðtÞ 6 z�n for each n and dðz�nþ1Þ ¼ Bb1e
�lsz�n=

ð1� b2e
�lsÞ n ¼ 1; 2; 3; . . ..

From (3.1) it follows that dðz�nþ1Þ 6 dðz�nÞ and therefore,

since dð�Þ is strictly monotonic increasing, z�nþ1 6 z�n, therefore
z�n approaches a limit z�n P 0 as n ! 1, which satisfies

dðz�Þ ¼ Bb1e
�lsz�n=ð1� b2e

�lsÞ. By (3.1) limits z� must be zero

and therefore limt!1zðtÞ ¼ 0.

The proof of the theorem is complete.

Corollary 3.3. Assume that (H1)–(H3) hold, b0 ¼ 0, b1 > 0

and Bb1ue
�ls < dðuÞð1� b2e

�lsÞ for all z P 0.

Then the solution of (2.2) satisfies limt!1uðtÞ ¼ 0.

Under the hypothesis of Theorems 3.2 and 3.3, if we don’t

protect the population, it will become extinct. So we must take
measures to protect it, for instance, by the immigrating
population artificially at every impulsive point
ks; k ¼ 1; 2; 3ldots to make the population persistent existence.

Of course, under this condition
Q

06sk<tð1þ ckÞ ! 1 as

k ! 1.

Theorem 3.4. Assume that (H1)–(H3) hold, b0 ¼ 0, b1 > 0 and
b2e

�ls < 1, dðzÞ ¼ oðzÞ as dðzÞ ¼ oðzÞast ! 0 and there exists z�

such that
b1Bue
�ls < dðzÞð1� b2e

�lsÞ when 0 < z < z�

b1Ae
�ls < dðzÞð1� b2e

�lsÞ when z > z�

Then if z0ðaÞ is continuous on the interval [0, 1), z0ðaÞ P 0
and z0ðaÞ ¼ 0, then the solution of Eq. (2.3) satisfies zðtÞ ! z� as
t ! 1.

Proof. By Theorem 3.1, we know that if z0ðaÞ ¼ 0 on the inter-
val ½s;1Þ. Then zðtÞ > 0 for all t > 0. Without loss of general-
ity, we assume that zðtÞ > 0. t 2 ½0; s�.

As noted previously, since b2e
�ls < 1, the asymptotic

behavior of solution of (2.3) is the same as the asymptotic

behavior of solution of

z0ðtÞ ¼ b1e
�ls

Xn�1

j¼0

b j
2e

�jlsqjzðt� sjþ1Þ � dðzðtÞÞ t 2 ðns; ðnþ 1Þs�

n ¼ 1; 2; 3; . . . ; ð3:9Þ
we shall consider (3.9) as an initial value problem starting at

t ¼ s, with the function zðsÞ, s 2 ½0; s� treated as the initial

data. From our comments above, we may assume that
mins2½0;s�zðsÞ > 0.

We claim that a comparison principle holds for (3.9), that is

to say, if we take three sets of initial data ordered such as that
zðsÞ 6 zðsÞ 6 �zðsÞ s 2 ½0; s�, then zðtÞ 6 zðtÞ 6 �zðtÞ for all t > s.
Let d > 0 be small and let �zdðsÞ satisfy the equation

@zd=@t ¼ b1e
�ls

Xn�1

j¼0

b j
2e

�jlsqjz
dðt� sjþ1Þ � dðzdðtÞÞ

þ d t 2 ðns; ðnþ 1Þs� n ¼ 1; 2; 3; . . . ; ð3:10Þ
and �zdðsÞ ¼ �zðsÞ þ d s 2 ½0; s�.

We claim that zðtÞ < �zdðtÞ for all t > s, shrinking d to 0 then

gives zðtÞ 6 �zðtÞ certainly zðsÞ 6 �zðsÞ ¼ �zdðsÞ � d < �zdðsÞ. So
suppose that our claim is violated at the same time, i.e. suppose

there exists t� > s such that zðt�Þ ¼ �zdðt�Þ and zðtÞ < �zdðtÞ for
all t 2 ½s; t�Þ. Then for appropriate n,

@zd=@t ¼ b1e
�ls

Xn�1

j¼0

b j
2e

�jlsqj�z
dðt� � sjþ1Þ � dð�zdðt�ÞÞ þ d

> b1e
�ls

Xn�1

j¼0

b j
2e

�jlsqjzðt� � sjþ1Þ � dðzðt�ÞÞ

¼ @zðt�Þ=@t: ð3:11Þ

Let FðtÞ ¼ �zdðtÞ � zðtÞ, then FðtÞ has the following proper-

ties: FðsÞ > 0, Fðt�Þ ¼ 0, FðtÞ > 0 on ½s; t�Þ and F0ðt�Þ > 0. This
is a contradiction. The proof that zðtÞ 6 zðtÞ is similar to show

that zðtÞ ! z� it suffices to show that zðtÞ ! z� and �zðtÞ ! z�

as t ! 1, where zðtÞ and �zðtÞ are comparison functions that
satisfy (3.9) subject to the initial conditions

zðsÞ ¼ e s 2 ½0; s�; where 0 < e < min z�; min
n2½0;s�

zðnÞ
� �

ð3:12Þ

zðsÞ ¼ K s 2 ½0; s�; where K > max z�; min
n2½0;s�

zðnÞ
� �

: ð3:13Þ
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We shall show that zðtÞ is monotonic increasing for all

t > s, and this will be achieved via the methods of steps.
Starting with t 2 ðs; 2sÞ. For a time t 2 ðs; 2sÞ, choose h> 0
sufficiently small that tþ h 2 ðs; 2s� and such that zðsþ hÞ�
zðsÞ P 0. The latter is possible because

z0ðtÞ ¼ b1e
�lsq0zð0Þ � dðzðtÞÞ ¼ b1e

�lse� dðeÞ > 0 ð3:14Þ
for sufficiently small e. Since dðzÞ ¼ oðzÞ as t ! 0. Let
wðtÞ ¼ zðtþ hÞ � zðtÞ, then for t 2 ðs; 2sÞ
x0ðtÞ ¼ b1e

�lt½zðtþ h� sÞ � zðt� sÞ� � ½dðzðtþ hÞÞ � dðzðtÞÞ�
¼ xðtÞd0ðhðt� hÞÞ ð3:15Þ

where hðt; hÞ is some function arising from an application of
mean value theorem. Also, xðsÞ P 0, thus, xðsÞ P 0 for all

t 2 ðs; 2sÞ. Letting h ! 0, we deduce that z0ðtÞ P 0 for all
t 2 ðs; 2sÞ, and this can be extended to t 2 ðs; 2s� by continu-
ous. For t 2 ð2s; 3sÞ
x0ðtÞ ¼ b1b2e

�2ltq1½zðtþ h� 2sÞ � zðt� 2sÞ�
þ b1e

�lt½zðtþ h� sÞ � zðt� sÞ� � ½dðzðtþ hÞÞ � dðzðtÞÞ�
P �xðtÞd0ðhðt; hÞÞ ð3:16Þ

Also, xð2sÞ P 0, therefore, xðtÞ P 0 for all t 2 ð2s; 3sÞ,
and hence also z0ðtÞ P 0 on ð2s; 3sÞ. This argument can be con-
tinued to deal with all intervals ðns; ðnþ 1ÞsÞ and therefore all
times t > s, and we conclude that zðtÞ is monotonic increasing
for all t > s.

The proof that �zðtÞ is monotonic decreasing is similar, and

from the first step in the process it will became apparent that K

has to be such that b1e
�ltK < dðKÞ. However, the theorem

hypotheses assures us that this is automatically true for any K
consistent with (3.13).

We have established that zðtÞ is monotonic increasing and
bounded above (by K), and therefore must approach some

lim P e > 0, while �zðtÞ is monotonic decreasing and bounded
below (by e). Thus limt!1zðtÞ ¼ z�. Hence limt!1zðtÞ ¼ z�.
The proof is complete.

Since 0 <
Q

06sk<tð1þ ckÞ < 1, uðtÞ ¼ Q
06sk<tð1þ ckÞzðtÞ,

so the solution of (2.2) has the same result, only the time to
reach the steady state is different. By Theorem 5, in Stephen
and Kuang (2009), we have the next theorem:

Theorem 3.5. Assume that (H1)–(H3) hold, b0 ¼ 0, b1 > 0,

b2e
�lt > 1,

Q
06sk<tð1þ ckÞ P 1. Then, if u0ðaÞ is continuous
on the interval ½0;1Þ, u0ðaÞ P 0 and u0ðaÞ ¼ 0, then the solution

of (2.2) grows without being bounded as t increases.

Under the hypothesis of Theorem 3.5, the birth rate is high

and the population will grow without being bounded, so we
must control the rate at every impulsive point. For instance,
we could use a combination of biological (natural enemies),

agricultural (catching), and chemical (killing) tactics to control
the population. Of course, at these times, 0 > ck > �1,
k ¼ 1; 2; 3; . . ..
4. Conclusions

Organizational management research and management

phenomenon can be described by differential equations,
Impulsive effect of differential equations is caused by people’s
attention. The pulse phenomenon as a kind of instantaneous
mutation and its mathematical model can often be attributed

to an impulsive differential system. The most prominent
feature of the pulse differential system is to give full consid-
eration to the effect of transient mutation on the state. It can

reveal the law of things more deeply. The enterprises are like
the species in natural ecosystem. Every enterprise of the
enterprise ecosystem has to share with the entire enterprise

ecosystem in the end. The mutations of each enterprise man-
agement also affect the value of the entire enterprise popula-
tion. So the pulse differential system can also give us
inspiration.
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