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Abstract

Background: Post-translational modifications of histones play important roles in regulating nucleosome structure and gene
transcription. It has been shown that biotinylation of histone H4 at lysine-12 in histone H4 (K12Bio-H4) is associated with
repression of a number of genes. We hypothesized that biotinylation modifies the physical structure of nucleosomes, and
that biotin-induced conformational changes contribute to gene silencing associated with histone biotinylation.

Methodology/Principal Findings: To test this hypothesis we used atomic force microscopy to directly analyze structures of
nucleosomes formed with biotin-modified and non-modified H4. The analysis of the AFM images revealed a 13% increase in
the length of DNA wrapped around the histone core in nucleosomes with biotinylated H4. This statistically significant
(p,0.001) difference between native and biotinylated nucleosomes corresponds to adding approximately 20 bp to the
classical 147 bp length of nucleosomal DNA.

Conclusions/Significance: The increase in nucleosomal DNA length is predicted to stabilize the association of DNA with
histones and therefore to prevent nucleosomes from unwrapping. This provides a mechanistic explanation for the gene
silencing associated with K12Bio-H4. The proposed single-molecule AFM approach will be instrumental for studying the
effects of various epigenetic modifications of nucleosomes, in addition to biotinylation.
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Introduction

Modifications of histones are among the epigenetic marks that

influence gene expression. Distinct histone modifications of one or

more tails have been proposed to act sequentially or in

combination to form a ‘histone code’ that is read by other

proteins to bring about distinct downstream events [1]. Posttrans-

lational modifications of histone tails include methylation [2],

phosphorylation [3], acetylation [4], ubiquitination [5] and

biotinylation [6]. Our understanding of the molecular and

structural mechanisms of how these modifications impact

transcriptional activity remains inadequate. The demonstration

that acetylation of histones affects chromatin compaction at the

mononucleosomal [7] and trinucleosomal [8] levels provided

initial mechanistic insight into the relationship between nucleo-

some structure and gene expression. Using fluorescence resonance

energy transfer (FRET) analysis, Gansen et al. demonstrated that

histone acetylation decreased stability of mononucleosomes [9].

Histone H4 acetylation at lysine 16 (K16Ac-H4) was shown to

impact chromatin structure by inhibiting the formation of compact

30-nanometer–like fibers and to impede the ability to form cross-

fiber interactions [10]. In addition, K16Ac-H4 inhibits the

chromatin assembly process and interferes with the function of

the ATP-dependent chromatin assembly and remodeling factor,

ACF. Recently, single-pair FRET was used to probe conforma-

tional changes in mononucleosomes induced by DNA methylation

[11]. These studies showed that CpG methylation leads to the

compaction of nucleosomes and nucleosome structural rigidity.

Most recently, a novel posttranslational modification of

histones, biotinylation, was discovered by one of the co-authors

[6,12,13] and independently confirmed in another laboratory

[14]. More recently, using LC/MS/MS, a third laboratory

detected large quantities of biotinylated histone H4 in Candida

albicans [15]. Initially, a mechanism for enzymatic catalysis of

histone biotinylation by biotinidase was proposed by Wolf and co-

workers based on in vitro studies [16]. However, recent studies used

recombinant histones and holocarboxylase synthetase (HCS) to

unambiguously demonstrate that HCS has histone biotinyl ligase

activity [17], and it is now evident that biotinylation of histones is

mediated preferentially by HCS [18]. Biotinylated histones have

been detected in human cells [13] and distinct histone biotinyla-

tion sites were defined using peptide and in vivo studies [6], [12].
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Ten distinct histone biotinylation sites have been identified: five in

histone H2A, three in histone H3 and two in histone H4. Histone

H4 can be biotinylated at amino terminal lysines 8 (K8Bio-H4)

and 12 (K12Bio-H4) [6].

Several lines of evidence suggest a functional role for histone

biotinylation in gene silencing, cellular responses to DNA damage,

and cell proliferation as reviewed elsewhere [19]. Briefly, K8bio-

H4 and K12bio-H4 localize to alpha-satellite repeats in pericen-

tromeric regions, as well as to transcriptionally repressed

chromatin loci [20]. K12bio-H4 is highly enriched in telomeric

repeats from human lung IMR-90 fibroblasts, where one out of

three H4-histones is biotinylated at K12 [21]. Low abundance of

biotinylation marks has been linked with cleft palate in mice [14]

and genome instability in humans [22].

Based on the biochemical evidence above, we hypothesized that

H4 biotinylation alters the structure of nucleosomes and reduces

the accessibility of DNA to transcriptional machinery. Biophysi-

cally testing this concept was a major goal of this paper. We have

recently shown that high-resolution AFM imaging can detect the

subtle conformational changes in nucleosomes and reveal their

dynamic character [23,24]. In the current work, the same AFM

technology was employed to quantify histone biotinylation-

dependent changes in nucleosome structure. We report that

K12-biotinylation in histone H4 causes a significant change in

nucleosome structure leading to a ,15% increase in the amount

DNA wrapped around nucleosomes. We propose that this effect

provides a partial mechanistic explanation for the correlation

between histone biotinylation and gene silencing.

Results

Experimental design
Similar to previous studies [23,24], the DNA template designed

for this work was a fragment of 353 bp DNA containing the

147 bp nucleosome positioning 601 sequence [25], flanked by two

arms of different lengths (79 bp and 127 bp). Differential arm

lengths enables mapping of the nucleosome position [25].

Depending on the number of DNA turns around the histone

core, the nucleosome will adopt one of several different

morphologies shown schematically in Fig. 1.The initial design

corresponds to the complex with one turn and the four other

conformations correspond to complexes with 1.25, 1.5, 1.75 and 2

turns. For clarity, Fig. 1 shows rotation of the long arm only,

although uniform wrapping of both arms occurs starting at a

position in the center of the 147 bp region, so the length of the

arms gradually decreases upon DNA wrapping. In addition, DNA

wrapping is accompanied by changes in the interarm angle. We

assigned a rotation angle of zero to the position of the long arm for

the complex with one turn. The conformation with 1.25 DNA

turns is characterized by a 90u rotation angle, and the complexes

with 1.5, 1.75 and 2 turns have the rotation angles 180u, 270u and

360u, respectively. These parameters were used in the procedure

of assigning of the nucleosome core particle (NCP) conformation.

Previous studies have demonstrated that histone proteins

produced in E. coli are competent to form nucleosomes with

DNA in vitro. For AFM studies we required significant quantities of

purified H4 with and without the biotin mark at K12. In addition,

we needed to be able to verify that biotinylation of H4 was only

present at the twelfth residue and not at alternate or additional

sites. Previous studies suggested that the E. coli HCS ortholog BirA

has histone biotinyl ligase activity and that recombinant histones

produced in bacteria could be biotinylated [26]. Since the N-

terminal tail of histone H4 is solvent-exposed and contains several

lysine residues [27] that could be biotinylated by BirA, we used

site-directed mutagenesis to convert the codon for K12 to that for

Cys. Importantly, this mutation introduces the only Cys in the

entire recombinant H4 sequence. After expression in E. coli, the

undesired BirA-biotinylated minor fraction of recombinant histone

could then be removed from lysates by avidin chromatography,

and the unbiotinylated major fraction was subjected to sulfhydryl-

specific biotinylation of cysteine-12 in K12C-H4 in a chemical

reaction with maleimide-PEG2-biotin (K12Cbio-H4). The level of

chemical biotinylation of K12C-H4 was assessed by Western

blotting with streptavidin conjugates (Fig. S1, panel a) and anti-

biotin antibodies (Fig. S1, panel b). A faint biotin signal is

detectable in K12C-H4 purified from E. coli prior to avidin

chromatography (Fig. S1b, lane 1), consistent with low-level E. coli

BirA biotinylation of the heterologous H4 protein. No band was

observed in the purified fraction of histone K12C-H4, whereas a

strong signal was produced by chemical biotinylation with

maleimide-PEG2-biotin (Fig. S1, lane 3, both panels a and b).

Protein identity was confirmed using anti-H4 (Fig. S1, panel c).

Nucleosomes were formed with the 601 positioning sequence

(described above) in the presence of biotinylated K12CBio-H4 or

alternately with K12C-H4 that was not subjected to the maleimide

reaction. The other histone components, H2A, H2B, and H3 were

derived from E. coli and purchased from NEB. Wild-type or K12-

H4 was also acquired from NEB and was used in nucleosome

preparations to control for structural changes induced by the Cys

substitution.

AFM imaging of mononucleosomes
As previously [24], nucleosomes were deposited on APS-mica,

rinsed, dried and imaged with AFM in air (Fig. 2 and Fig. S2). In

AFM images, the nucleosomes are visible as bright globules with

the DNA arms extending from both sides of the particles. Samples

prepared with WT histones and those with the use of K12C H4

were very similar. The yield of nucleosome sample in these

samples was 70–80% with the rest being the naked DNA. The

morphology of NCP is different when assembled from biotin-free,

native histone H4 as compared to those with biotinylated histone,

K12Cbio-H4. For instance, the number of molecules with 1.7–

1.75 turns with crossed DNA arms is 17% (2 molecules out of 12

total) and 31% (5 molecules out of 16 total), for the nucleosome

samples with native H4 and K12Cbio-H4, respectively. This is

further illustrated in Fig. 3 where enlarged images for the native

and biotinylated nucleosomal samples are shown. These images

can be interpreted in terms of different number of DNA turns

around the histone core, the number of DNA turns are marked

Figure 1. Schematics for various stages of the nucleosome
unwrapping. Nucleosome conformations are shown with different
number of turns, rotation angle and length of wrapped DNA.
doi:10.1371/journal.pone.0016299.g001

AFM of Nucleosomes
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next to the nucleosome particles. The analysis of the images as

described below enabled us to characterize the structure of

nucleosomes in a number of the nucleosomal DNA turns (see

Materials and Methods S1, section II for details). The molecule

with 1.31 turn has a 110urotation angle, (110u+360u)/360u = 1.31.

The molecule with 1.41 turn has almost parallel arms and rotation

angle of 147u. The arms of the molecules with 1.79 and 1.76 turns

are crossed with a rotation angle of 283u and 275u, respectively.

The arms form almost a straight line with rotation angle of 380u in

particle with 2.06 turns of DNA. Therefore, biotinylated

nucleosomes (Fig. 3b) compared to native nucleosome population

(Fig. 3a) is enriched with complexes with a large number of turns

with the mean value of turns being 1.61 and 1.72 for native and

biotinylated nucleosomes, respectively.

Analysis of AFM data
To assess the effect of biotin on the structure of nucleosome we

measured the following parameters of nucleosomes over a large

number of AFM images: (1) the length of the two protruding DNA

arms and (2) the angle between the DNA arms [23,24]. Then the

number of DNA turns around the histone core octamer was

calculated, The length of nucleosomal DNA wrapped around

octamer (nsDNA) was calculated by subtracting the lengths of both

free DNA arms from total length of uncomplexed DNA (see Fig.

S3).

Figure 4 compares the distribution of nsDNA length in

K12Cbio-H4 nucleosomes to those in native H4 and K12C-H4

controls. Each dataset was in the range of 100–110 complexes.

While lengths of nsDNA were similar in nucleosomes with native

H4 (panel a) and K12C-H4 (panel b), 49.861.5 nm, 48.861.4 nm

respectively, the length of nsDNA was greater in sample K12Cbio-

H4 (panel c), 56.661.1 nm. The difference between samples

native H4 and K12Cbio-H4 equaled 6.862.6 nm, which is larger

then the sum of standard errors and is statistically significant

(p,0.001), with degree of freedom of 198). The length difference

of nsDNA is ,20 bp in the length and is equivalent to extra 0.2

turns of nsDNA or to the increase of the number of turns per

octamer from 1.75 to almost 2 turns.

The effect of the histone H4 biotinylation on nucleosome

structure was reproducible (Fig. S4). Mean values for the nsDNA

lengths for native nucleosomes and K12Cbio-H4 NCP were

47.561.3 and 54.261.2 nm, respectively for second independent

set of samples. In this set of measurements the average difference

in the length of nsDNA was 6.762.5 nm, which is statistically

identical to the 6.862.6 nm obtained for the first set.

We confirmed our findings by using an alternative approach in

which the value of angle between the arms is used to calculate the

number of DNA turns [23,24]. Table 1 summarizes the results

based on angle measurements for two independent experiments.

The number of DNA turns in nucleosomes was greater for

K12Cbio-H4 compared with H4 and K12C-H4 controls. The

proportion of molecules with more than 1.5 turns was 55, 56 and

73% in samples H4, K12C-H4 and K12Cbio-H4, respectively.

Table 2 shows the differences in number of nucleosomal turns for

DNA between the native and biotinylated nucleosomes calculated

with both methods. The difference is 0.2 turns of nsDNA for both

sets of native and biotinylated nucleosomes when calculated based

on angle measurements. Thus, both procedures reproducibly

yielded similar results: biotinylation increases the length of DNA

Figure 2. Representative AFM scans of nucleosome core
particles. Nucleosomes were reconstituted using native histone H4
(a) or biotinylated histone K12Cbio-H4 (b). Images were acquired with
NanoScope IIId AFM system operating in Tapping mode. Scan sizes are
0.5 mm.
doi:10.1371/journal.pone.0016299.g002

Figure 3. Representative enlarged AFM scans of NCP. Nucleo-
somes were reconstituted using non-biotinylated native histone H4 (a)
and biotinylated K12C histone H4 (b). The complexes are labeled with
the number of DNA turns around histone octamers. Scans sizes are
2006200 nm.
doi:10.1371/journal.pone.0016299.g003

AFM of Nucleosomes
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associated directly with the nucleosome by ,13% that leads to the

increase in the mean number of DNA turns in nucleosomes from

1.75 (native) to about 2 (biotinylated mutant).

Discussion

This work shows directly and unambiguously that biotinylation

of histone H4 at K12 leads to a statistically significant increase in

the length of DNA wrapped around the histone core octamer.

This change of the nucleosome structure is shown schematically in

Fig. 5. Compared to 147 bp length of nsDNA wrapped around

nucleosomes formed with non-biotinylated wt H4 or with K12C-

H4, biotinylation at position 12 increases the length of nsDNA to

an average of 167 bp, which corresponds to adding to nsDNA of

almost 0.2 nucleosomal turns. Such a substantial increase of the

length of wrapped DNA should lead to elevated stability of

nucleosomes and is congruent with functional studies demonstrat-

ing a role for histone biotinylation in transcriptional repression.

The conclusion on elevated stability of nucleosomes with increased

number of turns is supported by our recent time-lapse AFM

imaging data [23,24] on the dynamics of nucleosomes. These data

showed that nucleosomes with 2 turns are much more stable than

those with 1.7 turns. Therefore, biotinylation of H4 at position 12

leads to stabilization of nucleosomes, suggesting that this structural

change contributes to regulation of gene expression.

Similar to previous studies [23,24], individual nucleosomes

containing control H4 and K12Cbio-H4 vary in the number of

DNA turns around each histone core suggesting that biotinylated

nucleosomes, similar to controls, dynamically undergo transient

unwrapping-wrapping processes. However, comparison of the

histograms from all samples (Fig. 4) reveals that biotinylation

causes a uniform shift towards more condensed nucleosomal

structures across the entire histogram without a preferable shift to

any particular conformation. This observation suggests that

biotinylation of H4 does not lead to the formation of nucleosomes

with a particular number of turns, but rather that biotin-

containing nucleosomes maintain the ability to undergo conden-

sation and decondensation with a more condensed average

structure.

Based on crystallography data, the well-ordered domains in

histones mediate the strong interactions of the histone core with

DNA, but the N-terminus of histone H4 is unstructured and does

not contribute to DNA binding. We propose that biotinylation

stabilizes the structure of the N-terminus of histone H4, leading

to the formation of novel contacts with DNA and the other

histones that accommodate two additional DNA pitches in the

nucleosomal body. The magnitude of this effect is surprisingly

high, given that only one residue (C12) in one histone protein

(H4) was biotinylated. Indeed, biotin is capable of forming of

stable complexes with proteins and complexes of biotin with

avidin and streptavidin are among the strongest noncovalent

molecular associations (Kd,10215 M). According to crystallo-

graphic data for biotin-avidin complexes, an array of polar and

aromatic residues in avidin is involved in the tight binding [28].

Several aromatic residues such as tryptophan, phenylalanine and

tyrosine, in the biotin-binding site of avidin form a ‘‘hydrophobic

box’’, in which the biotin molecule resides. As histones also

possess aromatic and polar amino acids, similar attractive

interactions can be formed between biotin and histone molecules

within the nucleosome particle. There are a large number of

potential candidates for such interactions, and crystallography

studies are needed to test this model. Apparently the significant

change in nucleosome structure can increases nucleosome

stability and thus provides additional contacts for binding of

DNA leading to increasing of the stability of nucleosomes or

alternately provides novel binding sites for repressive epigenetic

factors. Therefore we speculate that the elevated stability of

nucleosomes due to the increase of the length of nsDNA is at least

partially responsible for silencing of genes reported in previous

biological activity studies [20],[21],[29].

We used a K12C mutant of histone H4 in our studies for

targeted biotinylation of position 12, while in vivo only lysine

residues are biotinylated. Our AFM studies suggest that nucleo-

somes composed of native H4 and non-biotinylated K12C-H4 had

similar conformations, implying that the K12C substitution does

Figure 4. Histograms for lengths of nucleosomal DNA (nsDNA)
wrapped around histone cores. Nucleosomes were reconstituted
using native H4 histone (a), K12C-H4 mutant (b) or K12Cbio-H4 histone
(c). It can be seen that in nucleosomes made with K12Cbio-H4 wDNA is
shifted towards higher value compared to samples reconstituted using
non-biotinylated native H4 or K12C-H4 mutant. The mean values of
nsDNA indicated with arrows were 49.8 nm 61.5 nm, 48.8 nm 61.4 nm
and 56.6 nm 61.1 nm for NCP containing native histone H4, K12C-H4
mutant, and K12Cbio-H4, respectively.
doi:10.1371/journal.pone.0016299.g004

AFM of Nucleosomes
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not alter the conformation of H4. Thus it is likely that changes in

NCP conformation are solely due to the biotinylation mark. Note

that chemical biotinylation scheme used in this work (via PEG

linker) is different from the in vivo biotinylation in which biotin is

bound to the epsilon amino group of lysine. The difference in the

linker may contribute to the structural change of the nucleosome,

but the finding that biotin is required for the observed effect

suggests that biotinylation per se rather than the chemical bond is

critical in the nucleosome structural change.

In conclusion, we should add that studies during the past decade

have dramatically changed our view of the structure of chromatin

and of its key unit, the nucleosome, in particular. A static picture is

currently being replaced with a dynamic one, and single-molecule

techniques were instrumental in characterizing these dynamic

properties of nucleosomes. AFM is capable of characterizing

complex molecular system at the nanoscale level making it possible

to visualize directly the unwrapping process of nucleosomes. The

current work highlights the ability of AFM to identify structural

changes in nucleosomes induced by a local modification, such as

biotinylation, and thus paves the way for studies of effects of other

epigenetic modifications of nucleosomes.

Materials and Methods

Preparation of mutant histone H4
Amino acid lysine at position 12 (K12) in histone H4 was

mutated to cysteine (K12C-H4), using Quick-change mutagenesis

(Stratagene) according to manufacturer’s instructions, to generate

a target for subsequent chemical biotinylation with a sulfhydryl-

reactive reagent. The coding sequence of H4 histone from Xenopus

laevis in a pET3a vector system was used as a template. The

primers were [29] 59-GGTAAAGGTGGTAAA GGTCTGGGT

TGCGGTGGTGCTAAACGTCAC-39 and (antisense) 59-GTG

ACGTTTAGCACCGCAACCCAGACCTTTACCACCTTTA

CC-39 (corresponding to protein sequence KGGKGLGCGG

AKRH). pET3a-transformed E. coli strain BL21(DE3) (Novagen)

was grown to abs600 = 0.8 in 2XYT medium, and the expression

of K12C-H4 was induced with 0.4 mM IPTG at 37uC for 90 min.

The cell pellet was lysed by Emulsiflex in wash buffer (50 mM Tris

HCl, pH 7.5; 100 mM NaCl, 1 mM 2-mercapthoethanol) and

centrifuged at 23,000 g for 10 min at 4uC. The inclusion body

pellet was washed in wash buffer containing 1% Triton X-100.

The pellet was suspended in 1 ml dimethyl sulfoxide, stirred

30 min at RT and wash buffer containing 6 M guanidine

hydrochloride was added. K12C-H4 was purified on Superdex200

HiLoad 16/60 column, Prep Grade (GE Healthcare).

Biotin-depletion of H4 histone
Previous studies suggested that microbial BirA has enzymatic

activity to biotinylate recombinant histones, albeit at low levels

[26]. Endogenously biotinylated K12C-H4 was removed using

avidin agarose resin (Pierce). Briefly, 3 mg of K12C-H4 in PBS

buffer were added to 2 ml of 50% resin slurry in PBS (equivalent

to 1 ml of settled gel) and incubated overnight at 4uC with shaking.

The sample was centrifuged for 1 min at 50006 g and the

supernatant, containing biotin-depleted histone, was used for

subsequent studies in amount of 1 mg at concentration

0.3 mg/ml.

Chemical biotinylation of K12C-H4
K12C-H4 was biotinylated at C12 residue to produce

K12Cbio-H4 by using the sulfhydryl-reactive reagent Malei-

mide-PEG2-Biotin according to the manufacturer’s instructions

(Thermo Scientific). Note that histone H4 contains no cysteine

residues other than the C12 inserted by mutation. Before

biotinylation, any C12-C12 disulfide bonds between two K12C-

H4 molecules were reduced with 5 mM tris(2-carboxyethyl)pho-

sphine (TCEP) for 30 min at RT. After TCEP removal with

Microcon centrifugal filters (Millipore), molecular weight cutoff

3,000, a 20-fold molar excess of Maleimide-PEG2-Biotin was

added and samples were incubated at 4uC overnight. The protein

was purified from nonreacted Maleimide-PEG2-Biotin using

Microcon filters with molecular weight cutoff 3,000.

Preparation of nucleosomal DNA
DNA for nucleosome assembly was generated by PCR using

plasmid pGEM3Z-601 as a template, which codes for a high-

affinity nucleosome positioning sequence [30]. The PCR reaction

(33 cycles of 94uC/30 s, 54uC/30 s, 72uC/30 s) was conducted in

buffer containing 2.5 mM MgCl2, 0.15 mM dNTPs and 0.016

U/ml of Taq DNA polymerase with the following primers: forward

primer 59-GEMf CGGCCAGTGAATTGTAATACG-39; reverse

primer GEMr 59-CGGGATCCTAATGACCAAGG-39.

Histone octamer assembly and purification
Histone octamers were assembled as follows [31]. Procedure of

histone octamer preparation is given in supplementary materials.

Table 1. Comparison of number of turns of nucleosomal DNA (nsDNA) obtained from two independent samples of native H4 and
biotinylated H4 (K12Cbio-H4) nucleosomes.

Native H4 ncp, #1 Native H4 ncp, #2 K12Cbio-H4, sample #1
K12Cbio-H4, sample
#2

Number of turns of nsDNA 1.6260.05 1.6160.04 1.8260.04 1.8160.06

doi:10.1371/journal.pone.0016299.t001

Table 2. Differences in the number of nucleosomal turns for DNA between nucleosomes assembled using native H4 and
biotinylated K12Cbio-H4.

The number of turns of nsDNA K12Cbio-H4 - native H4, sample set #1 K12Cbio-H4 - native H4, sample set #2

Based on the length of nsDNA 0.2360.09 0.2360.08

Based on the angle measurements 0.2060.09 0.2060.10

doi:10.1371/journal.pone.0016299.t002

AFM of Nucleosomes
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Octamers were separated from tetramer and dimer fractions with

size-exclusion chromatography (SEC) with Superdex 200 PC 3.2/

30 column (GE Healthcare) at 4uC. SEC fractions were analyzed

for purity and histone stoichiometry using SDS-PAGE. The gel

was stained using Coomassie Blue stain. Fractions containing

histones H2A, H2B, H3 and H4 in approximately equal ratios

were pooled and concentrated by centrifugation at 10,000 g. See

specifics in Materials and Methods S1, section I.

Nucleosome refolding
Nucleosomes were prepared as described [31]. Briefly, histone

octamers and DNA containing the nucleosome positioning

sequence were mixed in equimolar concentrations in 2 M NaCl

and kept for 30 min at RT. A dilution series was prepared using

10 mM Tris HCl to produce final concentrations of 1 M, 0.67 M,

and 0.5 M NaCl. Diluted samples were kept at 4uC for 1 h before

dialysis against one change of volume of 0.2 M NaCl overnight.

Nucleosomes were concentrated using Microcon centrifugal filter

device, MWCO 10,000 at 7,000 g for 10 min at 4uC and dialyzed

against one change of 200 ml of buffer containing 10 mM Hepes-

NaCl, pH 7.5, and 1 mM EDTA for 3 h at 4uC.

Atomic force microscopy
Freshly cleaved mica was modified with 167 mM solution of 1-

(3-aminopropyl)-silatrane (APS) for 30 min at room T to make

APS-mica as described previously in [32]. Other AFM works on

the chromatin in addition to APS functionalization used mica

coated with poly-lysine [8] or spermidine [33]. The nucleosome

stock solution was diluted into 10 mM Tris-HCl, pH 7.5, 4 mM,

MgCl2 buffer and 5 ml of the solution were deposited on APS-

treated mica for 3 minutes, washed with deionized water and dried

under argon flow. AFM images were collected on NanoScope IIId

system (Veeco/Digital Instruments, Santa Barbara, CA) as

described in [23] and [24].

Measurement of nucleosome parameters
The samples deposited on APS mica were analyzed with

Femtoscan software. The following 5 initial parameters were

measured: length of each DNA arm, angle between arms

(interarm angle), height of nucleosome core particle and diameter

as width of nucleosome core particle at half height. The length of

DNA was measured with FemtoScan software using parameter

‘‘curve’’. The length of wrapped DNA was measured by

subtracting sum of both DNA arms from length of uncomplexed

DNA. Importantly, the analysis of one set of native and

biotinylated nucleosomes was performed blindly without disclos-

ing whether the nucleosome contained biotinylated on non-

biotinylated H4. The errors of the calculated mean values are

standard errors of the mean (SEM).

Assumptions for estimation of the number of DNA turns
The calculations of DNA turns wrapped around histone

octamers were based on the following assumptions. (1) Based on

crystallographic data, 147 bp of DNA are wound around histone

octamer in 1.7 turns [34], i.e., 1 turn contains 86 bp of DNA. (2)

As long as in B form of DNA one base pair corresponds to

0.34 nm, the expected length value for 1 turn is 29 nm. How

specific number of turns was assigned is explained in detail in

Materials and Methods S1.

Supporting Information

Figure S1 Testing of different samples of K12C H4
histone for biotinylation state. K12C-H4 was purified after

overexpression in E.coli (lane1), depleted for fraction possibly

biotinylated in vivo at lysines (lane 2) and biotinylated in vitro at

cysteine 12 with Maleimide-PEG2-Biotin (lane 3). The level of

chemical biotinylation was assessed by Western blotting with

streptavidin conjugates (panel a) and anti-biotin antibodies (panel

b). Control western blot with anti-H4 antibodies (panel c)

demonstrates that all three samples in lanes 1-3 are histone H4.

M - marker.

(TIF)

Figure S2 Representative AFM scan of nucleosome core
particles reconstituted with K12C H4 mutant. Nucleo-

somes were made with K12C-H4 histone mutant. The sample was

prepared and imaged as described for Figure 2. The image

represents nucleosomes with different amount of DNA wrapped

around the core particle. K12Cbio-H4 nucleosome conformation

is similar to nucleosomes made with native histone H4. Scan size is

0.5 mm.

(TIF)

Figure S3 Length of uncomplexed DNA. Shown is distri-

bution of length of uncomplexed DNA used for reconstitution of

nucleosome core particles. The length of DNA was measured with

FemtoScan software using parameter ‘‘curve’’. The data were

plotted as statistical histogram and fitted with Gaussian distribu-

tion. The most probable value of 117.560.1 nm was taken as

length of full DNA molecule in subsequent calculations of length of

DNA wrapped around nucleosome.

(TIF)

Figure S4 Comparison of wrapped DNA length from
two independent samples of native and biotinylated H4
nucleosomes. Nucleosomes were reconstituted using native H4

histone (a) or biotinylated K12Cbio-H4 histone (b). Length of free

DNA was measured using Femtoscan software. The length of

wrapped DNA was calculated by subtracting the sum of both free

DNA hands from total length of DNA. Data from two

independent experiments are overlapped. It can be seen that in

nucleosomes made with K12Cbio-H4 wDNA is shifted towards

higher value compared to samples reconstituted using non-

biotinylated native H4. Mean values for native NCP wDNA were

49.861.5 and 47.561.3 nm, respectively. Mean values for wDNA

of biotinylated NCP (K12Cbio-H4) were 56.661.1 and

54.261.2 nm, respectively.

(TIF)

Figure 5. Model of the effect of biotinylation on conformation
of nucleosome. Both front and top views are shown. The segment of
the DNA arm that contributes to additional wrapping is shown in red.
doi:10.1371/journal.pone.0016299.g005
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