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Abstract

Microplastic fibers (MFs) pollute aquatic habitats globally via sewage release, stormwater

runoff, or atmospheric deposition. Of the synthetic MFs, polyester (PES) and polypropylene

(PP) are the most common. Field studies show that fish ingest large quantities of MFs. How-

ever, few laboratory studies have addressed host responses, particularly at the organ and

tissue levels. Adult Japanese medaka (Oryzias latipes), a laboratory model fish, were

exposed to aqueous concentrations of PES or PP MFs (10,000 MFs/L) for 21 days. Medaka

egested 1,367 ± 819 PES MFs (0.1 ± 0.04 mg) and 157 ± 105 PP MFs (1.4 ± 0.06 mg) per

24 hrs, with PP egestion increasing over time. Exposure did not result in changes in body

condition, gonadosomatic- or hepatosomatic indices. PES exposure resulted in no repro-

ductive changes, but females exposed to PP MFs produced more eggs over time. MF expo-

sure did not affect embryonic mortality, development, or hatching. Scanning electron

microscopy (SEM) of gills revealed denuding of epithelium on arches, fusion of primary

lamellae, and increased mucus. Histologic sections revealed aneurysms in secondary

lamellae, epithelial lifting, and swellings of inner opercular membrane that altered morphol-

ogy of rostral most gill lamellae. SEM and histochemical analyses showed increased

mucous cells and secretions on epithelium of foregut; however, overt abrasions with slough-

ing of cells were absent. For these reasons, increased focus at the tissue and cell levels

proved necessary to appreciate toxicity associated with MFs.

1. Introduction

Microplastic pollution is a global environmental threat [1]. Microplastic fibers (to be referred

to as microfibers; MFs) outnumber other types of microplastics, accounting for over 90% in

some areas [2]. Worldwide, 9 million tons of fibers were produced in 2016, 60% of which were

synthetics such as polyester, acrylic, polypropylene, and nylon [3]. The synthetic fibers used to

make textiles (e.g., clothing, upholstery, and rugs) shed MFs during washing and regular use; a

single garment can shed over 1,900 MFs per wash [4]. MFs enter the aquatic environment via

sewage release, stormwater runoff, or atmospheric deposition [3, 5–7] where they accumulate

and impact biota [8]. Polyester (PES) and polypropylene (PP) are the most commonly used
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and most frequently observed synthetic MFs in the aquatic environment [3, 9]; hence, their

selection for the present study.

Chemicals amended to textiles pose additional risks when released during laundering [10–

12]. Studies of plastic leachates as well as effluents from textile industries have shown that dyes,

surfactants, hydrocarbons, polymerizing monomers, and a variety of other compounds are

released and negatively affect fish [13, 14]. For example, guppies (Poecilia reticulata) placed in

textile dyeing effluent showed behavioral changes consistent with respiratory impairments

including rapid opercular movements, gasping at the surface, and mucus thickening [15]. Gill

histology revealed necrosis, hyperplasia, hypertrophy, lamellar fusion, increased mucus pro-

duction, and sloughing of epithelium [15].

Field studies have reported MF ingestion in various species from zooplankton to mammals

[16–19]. MFs have been detected in 60% of macroinvertebrates, 49% of shorebirds [16] and in

a variety of fishes [20–22]. For example, Halstead et al. [20] studied fish from an urbanized

estuary in the northern arm of Sydney Harbor, Australia and found PES MFs made up the

majority (83%) of microplastic contents in gut lumens.

Despite MFs making up the highest percentage of plastics in specimens collected from the

field, there are few laboratory studies describing effects, particularly in fish. Grigorakis et al.

[23] found that MFs (50–500 μm long) amended to goldfish (Carassius auratus) diet did not

remain in gut any longer than other dietary components. Goldfish fed food containing ethyl-

ene vinyl acetate (EVA) MFs (0.7–5.0 mm long) for 6 weeks exhibited damage to the buccal

cavity including abrasions to epithelium as well as damage to gill filaments and folds of the gut

[24].

Gill and gut are sensitive targets for pollutants due to their large surface area and intimate

interface with the external environment [25, 26]. Gill alterations can impact vital physiological

processes, including: ionic balance, acid-base equilibrium, gaseous exchange, excretion of

nitrogenous wastes, and osmoregulation [27]. Although it is a primary barrier to the external

environment, less is known about effects on fish intestinal mucosa [26]. And while MFs are

often reported in these sites upon necropsy, there are rare descriptions of tissue alterations.

Japanese medaka (Oryzias latipes) are a well-established aquarium model fish [28] that are

small in size, agastric, have daily oviposition, are easily cultured, have characteristic develop-

mental stages [29–32], and a well-defined anatomy [33, 34]. With these characteristics in

mind, we sought to determine chronic effects of MFs in this model using exposures with con-

trolled number, type, and characteristics of MFs that increased precision in determination of

host responses.

2. Materials and methods

2.1 Experimental animals

Our colony of orange-red (OR) medaka is maintained at Duke University under protocols

approved by the Duke University Institutional Animal Care and Use Committee (IACUC).

Adult, brood stock medaka were maintained at 24˚C with a pH of 7.4 in an AHAB recirculat-

ing system (Pentair Aquatic Eco-Systems, Apopka, FL) and a 14:10 light:dark cycle. Otohime

β1 commercial dry diet (200–360 μm, Pentair Aquatic Eco-Systems) was fed to fish three times

per day, and Artemia nauplii (90% Great Lakes Strain, Pentair Aquatic Eco-Systems) were fed

along with dry diet during the morning and afternoon feedings.

2.2 Microfibers

Commercially dyed green polyester thread (PES, 10–20 μm diameter) and transparent poly-

propylene fibers (PP, 50–60 μm diameter) were purchased from a supermarket (Shanghai
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Qinhe, China). Polymers were verified using a micro-Fourier Transformed Infrared spectros-

copy microscope (LUMOS μ-FT-IR, Bruker, Beijing, China) in attenuated total reflectance

(ATR) mode (Fig 1A1–1B1) [9]. Next, strands were cut crosswise with clean micro-scissors

Fig 1. Characteristics of PES and PP microfibers. Column A pertains to green PES MFs while column B is transparent

PP MFs. μ-FT-IR characterized and confirmed polymers in each MF type (A1 and B1). Brightfield images are shown in A2

and B2. Surface structure imaged with SEM is in A3 and B3. Size distributions show PES fibers averaged 350 μm in length

(A4) and PP averaged 380 μm long (B4).

https://doi.org/10.1371/journal.pone.0229962.g001
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(Ted Pella, Redding, CA) into MFs and stored in a clean glass bottle until use. Surface features

were imaged by scanning electron microscopy (FEI XL30 SEM-FEG, Thermo Fisher Scientific,

Waltham, MA) (Fig 1A3–1B3).

A standard curve was produced in order to determine number by mass (mg dry weight

(dw)) for each MF type (S1B and S1D Fig, S1 Table). In this way MFs could be weighed and

then added directly to tanks during water changes to yield selected concentrations, providing a

practical method for MF addition while avoiding loss of MFs that would occur during transfer

in a liquid medium. To make the regressions, five gradient masses of each MF type were

weighed (mg dw) and then soaked in 10 mL 70% ethanol (EtOH) to disperse (S1A and S1C

Fig). Each MF suspension was mixed using a glass Pasteur pipette and 1 mL was filtered

through a polycarbonate membrane filter (Millipore TMTP04700, 47 mm diameter and 5 μm

pore size) under vacuum and imaged using a Nikon SMZ 1500 stereomicroscope with a Nikon

DXM1200 camera and Nikon NIS-Elements 3.10 software (Nikon Instruments Inc., Melville,

NY). MFs were counted in three non-overlapping images, and the total number of MFs by

weight (mg dw) was calculated. The filtering, imaging, and counting procedures were repeated

in triplicate. A linear regression was used to establish mass vs. number of MFs (S1B and S1D

Fig).

MF size distribution was determined by measuring the length of approximately 1,000 indi-

vidual fibers using 50 randomly selected images and ImageJ 1.48 software [35]. 98.0% of PES

MFs were< 1000 μm in length and 78.8% were< 500 μm, with an average length of 350 μm

(Fig 1A4). 97.3% of PP MFs were< 1000 μm in length and 76.0% were < 500 μm (Fig 1B4),

with an average length of 380 μm.

2.3 Preliminary study

A preliminary study was conducted to determine 1) whether aqueous exposures to MFs would

result in uptake and 2) how and in what quantities MFs should be used. Adult, 8-month old

medaka were randomly selected from our colony. Eight breeding pairs (1 male, 1 female) were

placed in 3 L tanks containing 2 L of batch water (0.1% w/v artificial salt (Instant Ocean,

Blacksburg, VA) in MilliQ water (Millipore Sigma, Burlington, MA)) that had been mixed and

oxygenated with an air stone for at least 12 h prior to use. Tanks were maintained in a dedi-

cated room at 24˚C and under a 14:10 light:dark cycle. Fish were acclimated to these condi-

tions for three days. Then, air stones (Saim’s Store, Amazon.com; 14.5×25 mm) were added to

each tank and fish further acclimated for three days. In addition to oxygenation, air stones

kept MFs mixed and suspended upon addition to tanks. Fish were fed two times per day with

1% body weight Otohime β1 and an equal amount of Artemia nauplii culture. Along with a

control, the following concentrations of MFs were tested: 1,000 fibers/L PP, 1,000 fibers/L PES,

and 10,000 fibers/L PES. 10,000 fibers/L was chosen as an upper limit based on levels detected

in Arctic sea ice (12,000 ± 14,000 particles/L) [36], a laboratory study with zebrafish (Danio
rerio) [37], and projected increases in the environment [38]. Each treatment had 2 replicate

tanks (2 breeding pairs/treatment), with an exposure time of 21 days.

During feeding times, air stones were temporarily inactivated to ensure that dry food

remained on the water surface to allow fish to feed in their accustomed manner. Any MFs

stuck to tank walls during the static period were resuspended with a pipette, then food was

introduced. Fish were allowed to feed for 5 mins before aeration was resumed. We did not

observe preferential binding of MFs to food. Fish were routinely observed daily during feed-

ing- and non-feeding times for alterations in normal behavior (e.g., increased opercular move-

ments, erratic swimming, piping, cowering) that might indicate stress. Eggs were removed

from tanks daily by siphoning bottoms of tanks, cleaned and assessed as described below
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(section 2.5). No changes in fecundity were found among different groups. Every 2–3 days,

tanks were siphoned to remove feces and 25% (500 mL) water was removed and replaced with

clean batch water. Then, new dry MFs were added by mass to replace those removed using the

generated standard curve (S1 Fig). On days 6, 13, and 20, a complete (100%) water change was

done, and tanks and air stones were thoroughly cleaned.

Fecal material was collected 24 hrs after a complete water change using a 7.5 mL transfer

pipette (VWR) to minimize removal of MF-containing tank water. We did not observe prefer-

ential binding of suspended MFs to feces when observed using a stereomicroscope (Nikon

SMZ1500). Feces were placed into pre-weighed 1.7 mL Eppendorf tubes (1 tube/tank), centri-

fuged for 5 min at 5,000 rcf, and supernatant removed. Feces were then digested using hydro-

gen peroxide (H2O2; 30%, v/v, JT Baker, Avantor, Allentown, PA) at 65ºC for 6 h and then

filtered (Millipore TMTP04700) under vacuum, digitally imaged, and counted as described

above (section 2.2). The lower concentrations of MFs (1,000/L) had an average of 22.5 PP and

20.5 PES per fish per day, while fish exposed to 10,000 fibers/L had an average of 1002.9 items

per fish per day. Accordingly, the higher concentration was selected for use in the definitive

study.

After 24 hrs and after 21 d, a single male from each treatment group was euthanized by

immersion in an ice water bath (i.e., rapid cooling) until vital signs (e.g., opercular movement,

righting equilibrium, fin and muscle movement, and heartbeat) had ceased [39, 40]. Then gill,

gut and liver were removed. Excised organs were individually digested using H2O2 (30% v/v) at

65ºC for 24 hrs. Resultant digestates were filtered (Millipore TMTP04700) under vacuum and

then examined under a stereomicroscope. PP and PES MFs were restricted to gut digestates.

2.4 Experimental design

Thirty-three breeding pairs, randomly selected from our colony, were moved to the dedicated

room (section 2.3) and first evaluated for reproductive status and fecundity by observations

over 7 consecutive days; resultant embryos were counted and assessed for normal development

and viability. Twenty-seven pairs with the highest and most consistent productivity (e.g., same

number of eggs each day) were randomly assigned to treatment groups (control, PES, or PP),

with 9 replicate pairs per group. There were no significant differences in egg production and

fertilization rate for each group before exposure (Fig 2). Fish were placed in tanks with air

stones, acclimated, and fed as described above (section 2.3), followed by the addition of 10,000

fibers/L to each tank (S1 Fig, S1 Table). Exposure duration was 21 days, during which feeding,

water changes, and embryo collection followed methods used in the preliminary study. Based

on results of the preliminary study, an additional 1,000 MFs per fish per day were added dur-

ing water replacements to account for MFs bound and removed in fecal material. All individu-

als were weighed (mg wet weight (ww)) before exposure and once weekly during the

experiment. Tank water samples were taken immediately before complete water changes, fil-

tered (0.2μm) to remove MFs, and stored at -80ºC for future chemical analyses to determine

presence and concentrations of dyes and other additives.

2.5 Embryo and fecal collection and analyses

At 7, 14, and 21 days, feces were collected by siphoning bottoms of each tank, imaged under a

stereomicroscope and then transferred to pre-weighed 1.7 mL Eppendorf tubes (1 tube/tank).

Samples were processed with H2O2 and counted as described above (section 2.3), enabling cal-

culation of MF number and length.

Eggs were collected within 24 h after complete water changes. Before and after feedings,

and every 2–3 hrs, deposited eggs were collected with a 7.5 mL transfer pipette. Then, clutches
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were rolled on moistened paper towels to separate and clean individual eggs before they were

transferred to labeled Petri dishes (VWR, Corning) containing batch water [31]. Next, counts

were made of fertilized embryos, unfertilized eggs, and non-viable embryos. The latter two

were then discarded. Embryos were maintained on an orbital shaker at 60 rpm (Thermo Fisher

Fig 2. Egg production (A) and fertilization rate (B) for control (Cont.), polypropylene (PP), and polyester (PES) MFs

groups before and throughout the course of the exposure period. Bars represent means ±SD (n = 9 pairs). Different

letters indicate significant differences in fertilization rate (%) comparing time points between different treatment

groups, p< 0.05. Pound symbols (#) indicate significant differences (p< 0.05) between time points within a treatment

group.

https://doi.org/10.1371/journal.pone.0229962.g002
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Scientific) in an incubator at 26˚C with a 14:10 light:dark cycle. Embryo mortality, hatching,

and development were observed daily [31, 32]. At 14 d post fertilization (dpf), each larva was

anesthetized in 150 mg/L tricaine methanesulfonate (MS-222; Sigma-Aldrich, St. Louis, MO)

and total body length was measured.

2.6 Fish sample preparation

After 21 d of exposure, all fish were euthanized via rapid cooling, imaged (Panasonic,

HC-X920, Newark, NJ), and weighed (mg ww). Standard length (mm) and girth at pectoral

girdle (mm) were measured for each fish using ImageJ. Three breeding pairs (n = 6) from each

treatment group were allocated for histology and a ventral midline incision was made from

anus to near the pectoral girdle. Then, 10% neutral buffered formalin (10% NBF; VWR) was

flushed through the incision using a disposable transfer pipette with extended fine tip (VWR).

The pipette was also inserted into the buccal cavity to gently perfuse fixative into buccal cavity,

pharynx, branchial cavity and esophagus. This flushing facilitated fixation of deeper tissues.

These specimens were placed in 50-mL conical tubes (1 pair/tube) filled with 10% NBF and

fixed at room temperature overnight. Then these tubes were moved to 4ºC for storage until

time of processing for histology (section 2.7).

Fish of the remaining 6 breeding pairs (n = 12) were dissected, and gill, gut, gonads, and

liver excised and weighed (mg ww). For 3 of these pairs (n = 6), gills and gut were fixed for

SEM (section 2.8). For the remaining 3 pairs (n = 6), all excised organs were frozen and stored

at -80ºC for future chemical analyses of additives.

To evaluate condition of individual fish, the following indices were calculated: coefficient of

condition (K), gonadosomatic index (GSI), and hepatosomatic index (HSI) [41, 42] using the

following formulae:

K ¼
100; 000 Wbody

L3
ð1Þ

GSI ¼
Wgonad

Wbody
� 100 ð2Þ

HSI ¼
Wliver

Wbody
� 100 ð3Þ

where: Wbody = body weight (g ww); L = standard length (mm); Wgonad = gonad (ovaries or tes-

tes) weight (g ww); and Wliver = liver weight (g ww).

2.7 Light microscopic analysis

Fixed specimens were processed, sectioned and stained at the Histology Laboratory, Depart-

ment of Population, Health and Pathobiology, North Carolina State University College of Vet-

erinary Medicine, Raleigh, N.C. First, fixed specimens were decalcified in 10% formic acid for

48 h and washed with water. In an automated tissue processor (Thermo Shandon Path Centre,

Grand Island, NY), a graded series of EtOH solutions was used for dehydration and then

Clear-Rite 3 (Richard Allen Scientific, Kalamazoo, MI) used for clearing. Specimens were then

embedded in paraffin and oriented in left lateral recumbency, with one breeding pair in each

block. 5 μm thick, step sections were cut with a Leica 2135 rotary microtome (Leica Biosystems

Inc., Buffalo Grove, IL) and mounted on glass histological slides. Such orientation and

embedment assured an average of 8 sections per pair of fish, yielding repeated views of each

major organ in parasagittal planes. Hematoxylin and eosin (H&E) stained sections were used
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for general tissue survey. Alcian Blue and Periodic Acid Schiff (AB-PAS) stained one slide per

pair for mucus. All slides were examined and imaged with a compound light microscope

(Nikon E600, Nikon Instruments, Inc., Melville, NY). The Penn State Zebrafish Bio-Atlas [43]

was consulted and used for comparison.

Because fewer than expected MFs were observed during dissections or in histologic sections

of branchial chamber and gill structures, we conducted an additional exposure to determine

passage of MFs through branchial chambers. One new pair per treatment was placed in tanks

and acclimated as described above (section 2.3). Fish were exposed to 10,000 fibers/L for 48

hrs, euthanized via rapid cooling, and then the operculum was carefully removed to image

underlying gill filaments with a stereomicroscope. Next, approximately 2 mL fluid containing

10,000 fibers/L was gently flushed into the buccal cavity near the oral flaps and observations

made of their passage through or around gills. Finally, gills were removed and imaged under a

stereomicroscope (Fig 5A and 5B).

2.8 Scanning electron microscopic analysis

All SEM fixation and processing were adapted from published procedures [44]. Briefly, gills

(arches with rakers and filaments attached) and gut were fixed overnight at 4ºC in 2.5% glutar-

aldehyde (Electron Microscopy Sciences, Hatfield, PA) buffered with a cacodylate-sucrose

solution (0.1 mol L-1 sodium cacodylate and 0.1 mol L-1 sucrose, pH 7.6). Using a sterile, sin-

gle-edged razor blade, transverse sections (2–4 mm) were cut from the fore-, mid-, and hind-

gut of each fish in order to visualize mucosal surfaces of folds. Just prior to preparation for

SEM, samples were washed in 0.1 M phosphate buffered-sucrose solution for 20 min and

dehydrated using an EtOH series (30%, 50%, 70%, 90%, 100%, 100%; 15 min each). Organs

were then transferred through an amyl acetate (Electron Microscopy Sciences) series (amyl

acetate: EtOH::1:3, amyl acetate:EtOH:: 3:1 and then two changes of l00% amyl acetate; 15 min

each). Gills were critical point dried (LADD, Williston, VT) and gut samples were dried with

hexamethyldisilazane (HMDS, Electron Microscopy Sciences; three changes of l00% HMDS,

10 min each).

Processed samples were placed on carbon tape (Electron Microscopy Sciences) affixed to a

pin stub (12.7 × 8 mm, Ted Pella Redding, CA) and sputter-coated with gold using a Denton

Desk IV (Denton Vacuum, Moorestown, NJ). To reduce charging from settling of gold, gut

samples were sputter coated immediately prior to imaging. All samples were observed using a

SEM with a spot size of 3 and an accelerating voltage of 15–20 kV and imaged with Scandium

software (ResAlta, Golden, CO).

2.9 Statistical analyses

Statistical analyses were performed using SPSS 22.0 (IBM Armonk, NY) software and Origin

9.0 (OriginLab Corporation, Northampton, MA) software. Kolmogorov-Smirnov and Sha-

piro-Wilk tests were performed to test for normality, and a Levene test was used for homoge-

neity of variance. Data were not normally distributed and had unequal variance; therefore,

non-parametric tests were used. Data for quantities of MFs, number of embryos, adult body

weight, and larval body length had factors for time as well as treatment. Therefore, a Mann-

Whitney U-test was used to determine differences between time points within a treatment

group, and a Wilcoxon test was used to test differences between treatment groups within a

time point. The Wilcoxon test was also used to determine differences in K (n = 18), GSI (n = 6

females, 6 males), HSI (n = 6 females, 6 males), adult body weight before and after exposure,

embryo mortality, hatching, and developmental endpoints. A p < 0.05 was considered statisti-

cally significant.
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3. Results

3.1 Medaka condition

All fish survived the exposure period and no change in body weight of female fish occurred.

Body weight of males in all groups was significantly increased (S2B Fig, p = 0.011 for control

and PES-exposed males, p = 0.008 for PP-exposed males). There were no significant differ-

ences in fish condition assessment indices of either sex including K, HSI, or GSI among treat-

ment groups (S2 Table).

3.2 Fecundity and embryo development

Egg production and fertilization success following the first week of exposure did not differ

from results prior to exposure (Fig 2). During the second week of exposure, fertilization rate in

PES-exposed pairs was greater than other groups (Fig 2B). Females exposed to PP MFs pro-

duced more eggs over the course of the experiment, becoming significantly higher than before

exposure values by the last week (Fig 2A, p = 0.013). Their mates were able to successfully fer-

tilize this greater number of eggs (Fig 2B, p = 0.017). There were no statistical differences in

mortality, development, or hatching success for embryos collected at days 7, 14 or 21 com-

pared to controls (S3 and S4 Figs). Additionally, body lengths of larvae after hatch were the

same between control and treatment groups (S5 Fig). These results were consistent with- or

better than those observed in routine repeated assessments of our breeding colony.

3.3 Fecal MFs abundance

No MFs were found in feces of control fish. MF-laden feces in exposed fish provided quantita-

tive evidence of ingestion and egestion (Fig 3). The abundance of PP MFs ranged from 23 to

447 items per fish per day (average: 157 ± 105 items/fish/day). Interestingly, PP MF numerical

density was significantly higher at day 21 (p = 0.031 for day 7 vs. day 21, p = 0.042 for day 14

vs. day 21; Fig 3D). PES MF abundance ranged from 340 to 3097 items/fish/day (average:

1367 ± 819 items/fish/day, Fig 3D). Excretion of PES MFs was significantly greater than that of

all PP MFs (p<0.001, Fig 3D) but did not change over time.

3.4 Histological changes

Light micrographs of gills from individuals exposed to PES MFs for 48 hrs showed aneurysms

along lamellae (Fig 4B). We also observed that MFs were able to pass through branchial cham-

ber but did not become entangled in gill filaments (Fig 4C and S6G Fig). This finding was in

line with that observed in histological sections (Fig 4E) after 21 d of exposure. PES MFs were

present in buccal cavity, on pharyngeal mucosa near teeth, in branchial cavity, and on gut

folds (S6D–S6H Fig). Green dye facilitated recognition of PES MFs in sections, while PP MFs

were only identified in AB-PAS stained sections as negatively stained, clear spaces (S6I Fig)

identical in diameter to PP MFs observed in initial MF characterizations.

Medaka branchial cavity and gills showed alterations upon exposure to PES and PP MFs.

The wall of branchial cavity covering medial aspect of operculae presented as a rounded bal-

loon-shaped structure under low magnification (Fig 4F). This altered inner opercular mem-

brane appeared to push against gill filaments resulting in deformation of the most rostral

primary and secondary lamellae (Fig 4F). This swelling occurred in half of the fish in each MF

treatment. An additional site of swelling was beneath the epithelium of the caudal wall of the

branchial chamber (Fig 4F). While not as large, it also made contact with primary lamellae.

Other alterations were gill specific including aneurysms, epithelial lifting with separation from

underlying structures in inter-secondary lamellar spaces, partial and complete lamellar fusion,
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and erosion of epithelium from secondary lamellae (Fig 4E–4I). Petechiae (i.e., small spots of

hemorrhage) and epithelial lifting were found in gills of 50% of control fish, but were minor in

size and extent, with rare petechiae in different positions along the gill filament. Conversely,

aneurysms and epithelial lifting occurred in gills of 67% of PES-treated and 83% of PP-treated

Fig 3. Egestion of MFs. Images of feces from medaka exposed to control (A), transparent PP MFs (B), or green PES MFs (C). White arrows point to fibers. MF

abundances on day 7, 14, and 21 are represented in the histogram (D). MF abundances are expressed as mean ±SD (n = 9 pairs). Different letters indicate

significant differences in MF abundances between time points within a treatment group (Wilcoxon test, p< 0.05). Asterisks (���) indicate significant difference

between treatment groups (Mann-Whitney U-test, p< 0.001).

https://doi.org/10.1371/journal.pone.0229962.g003
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fish and were numerous and mainly concentrated along water outflow tracts (i.e., passages

between adjacent gill arches and their associated primary lamellae) (Fig 4E). Fusion of second-

ary lamellae did not occur in controls, but was observed in MF-treated fish, most frequently

(67%) after PP exposure and less so after PES exposure (33%) (Figs 4H and 5H).

H&E staining showed no alterations in internal organs (liver, kidney, thyroid, heart, spleen,

pancreas, and gonads) of exposed individuals. AB-PAS stained sections of control revealed

mucus in gut lumen and in goblet cells (S7A and S7B Fig). Both PES and PP groups revealed

large amounts of mucus in foregut lumen and numerous, enlarged goblet cells (S7C–S7F Fig).

Such alterations were absent in mid- and hindgut. No evidence was seen for abrasions, ero-

sion, or other alterations in any segment of gut.

Fig 4. Gill alterations following MF exposure. Light micrographs of gills from control (A) and PES-exposed (B) medaka after 2 days of exposure; white arrow

indicates aneurysms, black arrow indicates normal lamellar outgrowths, arrowheads indicate PES MFs in the branchial cavity (C). H&E stained histological

sections of gills from the adult medaka exposed to 0 (D), PES (E-G, I), or PP (H) MFs for 21 days. (E) Black arrows under low and high magnifications of the

filaments indicate aneurysms. (F) Arrowheads indicate swelling between deep layers of the operculum associated with the wall of the branchial chamber and

arrows show pushing of inner opercular epithelium against gill primary lamellae, visible in more detail in high magnification inset. (G) Arrow indicates

epithelial lifting in the secondary lamellae. (H) Arrows indicate fusion of secondary lamellae. (I) Arrow indicates epithelial alterations of the secondary lamellae.

ga, gill arch; gr, gill raker.

https://doi.org/10.1371/journal.pone.0229962.g004
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3.5 Surficial observations

SEM of control gills showed intact filaments with uniform inter-lamellar spaces (Fig 5A),

smooth and intact surfaces of gill arches and rakers (Fig 5B), and mucous cells with minimal

mucus production (Fig 5C). PES-exposed fish exhibited surface erosion of gill filaments and

arches (Fig 5D and 5E). Primary lamellar tips were fused and enhanced terminal outgrowths

of secondary lamellae were seen in one of three PP-exposed fish (Fig 5H). In both treatment

groups, increased mucous production was observed as strands and sheets over filaments (Fig

5D and 5G) and rakers (Fig 5E). Increased output from individual mucous cells (Fig 5F, 5I)

was also observed in both treatment groups.

SEM of control gut revealed regular, elongated enterocytes and pores for mucus secretion

in and on folds of fore-, mid-, and hindgut (Fig 6A and 6B). Increased mucus was observed in

foregut of PES exposed fish, but no other changes were seen (Fig 6C). Rarely, PES MFs were

found trapped in the folds (Fig 6D), but most MFs were oriented longitudinally and were

encased in food, mucus, and waste materials within the lumen (Fig 6E). Interestingly, grooves,

Fig 5. SEM of gills after 21 days of exposure. 0 (Control; A-C), PES (D-F), or PP (G-I) MFs. (A, D, G) gill filaments, only a portion of one gill raker may be

observed in control figure (A). (B) Gill arch. (E) Gill raker. (C, F, I) Magnification of gill arch showing mucous cells indicated by white arrows. (G) Double

white arrow indicates mucous secretion as a sheet; (H) Magnification of the filament tip with arrowhead to outgrowth and showing fusion of distal tips of

adjacent primary lamellae (double white arrow). ga, gill arch; gf, gill filament; gr, gill raker.

https://doi.org/10.1371/journal.pone.0229962.g005
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that were not observed in pristine fibers (Fig 1B3), were found on surfaces of PP MFs in the

hindgut (Fig 6F).

4. Discussion

This study addressed chronic effects of two types of MFs on adult medaka under controlled

laboratory conditions. A thorough assessment was made of MF entry, egress, and interaction

Fig 6. SEM of cross sections of gut. (A) Surface epithelium of foregut from a control fish with white arrows marking pores for

mucous secretion; (B) Transverse section of hindgut from control fish; (C) Surface epithelium of foregut from PES-exposed

fish, black arrowhead indicates apical tips of enterocyte, white arrow indicates mucus secretion; (D) Low magnification of

foregut from PES-exposed fish with fiber entangled in folds (white arrowhead); (E) Low magnification of hindgut from PES-

exposed fish with fibers (white arrowhead) encased in digesta; (F) High magnification of PP in hindgut showing elongated

grooves on their surfaces.

https://doi.org/10.1371/journal.pone.0229962.g006
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with tissues as they passed through head gut, branchial chamber, and digestive system. While

there are reports for several types of plastics associated with the above sites, there are little to

no detailed assessments with respect to MFs.

4.1 Body condition

MFs exposure did not affect medaka body condition or indices over the 21 d suggesting no

decreases in food intake or nutrition. Body weight of males in all groups, including control,

increased without corresponding increases in K, suggesting males grew larger overall. Because

breeding pairs were housed in relatively large tanks with ample diet, it is possible that males

were less active in that they did not have to compete for females. Growth and weight as end-

points of microplastics exposure vary, with some fish showing reductions [e.g., 24, 45, 46] and

others no changes [e.g., 37, 47]. As might be expected, this variation seems to be the result of

several factors including species, life stage, exposure duration, microplastic size and polymer.

4.2 Fecundity

The effects of microplastics on reproduction have been investigated in various invertebrate

species such as oysters, water fleas, and cnidarians [48–50]. Such studies typically report

decreased reproductive output (e.g., oocyte number, fertilization rate) [49, 50]. However, little

data exists on reproductive effects of microplastics in fish. In our study, medaka exposed to PP

MFs had a significant increase in egg production and associated fertilization rate over time.

Changes in egg number are a common biomarker of endocrine disruption in fish [51, 52].

Studies of single plasticizers have reported biological effects at ng/L or μg/L concentrations

[53], and even low doses can disrupt endocrine systems [54]. No increases were observed in

control fish and the MFs did not leave the digestive tract. Therefore, it is plausible that addi-

tives leached from MFs in the digestive tract and/or while in the water column. Turbulence

such as that created by the air stones for MF mixing in the present study may have increased

this additive leaching in water [55].

A hazardous substance that remains within plastic has a lower risk; it needs to be leached/

released/desorbed for toxicity to occur [56]. This can occur in all phases of a plastic’s life cycle,

in a variety of media, and can depend on the composition of non-polymeric substances [56].

However, determination of type and magnitude of leaching is complex as it depends on a mul-

titude of factors [56]. There is also a lack of data about the actual content of additives in textiles

in the common market, primarily due to difficulties in obtaining information from producers

on substances used during manufacturing [11].

Rochman et al. [57] exposed adult medaka to polyethylene (PE) microplastics and found

changes in estrogen receptor mediated gene expression and altered testicular histopathology,

suggesting endocrine system function was affected. In marine medaka (Oryzias melastigma),

the additive di-(2-ethylhexyl)-phthalate (DEHP) and its active metabolite mono(2-ethylhexyl)-

phthalate (MEHP) disrupted endocrine function and accelerated spawning start time and

decreased fecundity in a sex-specific manner [58]. In contrast, we observed an increase in

female fecundity upon exposure to PP MFs. Various additives (e.g., bisphenol A (BPA)) have

been shown to produce estrogenic effects, including the induction of vitellogenin and may be

an androgen receptor agonist [see review in 59]. Benzotriazoles (BTris), abundant in clothing

textiles, are persistent in the environment and are known to have bioaccumulative properties

[11]. Following aqueous exposure to BTris (0.01–1 mg/L) for 4 or 35 days, adult marine

medaka had induced vitellogenin (VTG) gene expression in liver, gills, and gut of both sexes,

down-regulated CYP1A1 gene expression levels in liver and gut, and induced CYP19a expres-

sion in ovaries [60]. Those results indicate BTris is an endocrine disruptor in that VTG
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production is estrogen dependent, many estrogenic chemicals have been reported to inhibit

CYP1A1, and CYP19a is involved the control of various physiological functions of estrogens

[60].The pristine MFs, stored tissues and tank water from our study are currently undergoing

chemical analysis to assess the extent to which leaching may have occurred. Only after this

analysis will we be able to directly link effects to specific chemicals.

It should be noted that most exposure studies have used pristine microspheres or frag-

ments. There are knowledge gaps as to how MFs behave in the environment [61]. Several dyes

and chemicals used in the manufacture of textiles have been shown to be acutely toxic [13, 15]

or carcinogenic [62]. The ability of plastics to interact with various compounds in the environ-

ment is appearing with increasing frequency in the literature. Adding to the complexity of MF

chemistry is predicting and interpreting sorption of metals, flame retardants, organic pollut-

ants, and other compounds in the environment [63–67]. Additionally, organic molecules sorb

to plastics with increasing lipophilicity [68, 69], a property with potentially large biological

implications. Once in the environment and following ingestion, additives can leach [55] and

any sorbed compounds can desorb [8, 70] during passage through the digestive tract. Under

this scenario, effects in addition to those of reproduction may be expected. Teasing apart

effects of sorbed contaminants in addition to mechanical damages caused by particles and

physiological changes from plastic additives is extremely complex. For this reason, we empha-

size the need to include pristine plastic controls in future studies investigating contaminants

sorbed in the environment.

4.3 MF accumulation

In both the preliminary and formal experiments, PES and PP MFs were evident and quantifi-

able in gut and feces. We expected MFs to become entangled in gill filaments, particularly in

the outgrowths of secondary lamellae unique to medaka [34]. However, in the absence of

behavioral changes and MFs in gills during dissection, their passage through the branchial

chamber was unclear. The subsequent flushing of MF solution into mouth cavity verified that

MFs indeed passed through the branchial chamber and over gills but did not become entwined

around them. Localizing MFs in histological sections supported these observations.

In the few laboratory studies of MFs in fish, only one type of MF polymer was studied. We

found interesting differences in egestion based on the type of MF. Fish excreted an overall

greater number of PES MFs than PP MFs. Amounts of PES egested did not change over time,

but while excreted PP MFs overall were less, number did increase over time. This lesser abun-

dance of PP relative to PES MFs might be explained by their density. Density of plastic parti-

cles determines location in the water column and affects bioavailability [71]. Although MFs

were mixed via air stones, some separated within the water column. Low-density PP floated at

the surface and stuck to tank walls while higher-density PES MFs settled on the tank bottoms.

It is possible that some MFs may have adhered to feces, increasing measured values. However,

preliminary observations did not show MFs in water collected with feces. Medaka have an

upturned mouth that allows for feeding at the water’s surface [32] and likely ingest floating PP

MFs along with their dry diet. When surface food has been exhausted, medaka will search the

bottom of tanks for sunken food particles, and this is probably when they ingested additional

PES MFs. Normal swimming behavior as well as foraging for Artemia nauplii occurs mid-

water column, where contact with suspended MFs occurred. It was also possible that MF phys-

ical characteristics were a critical determinant in ingestion. While similar in length, PP were

larger in diameter (50–60 μm) than PES MFs (10–20 μm). Such selectivity in size and/or shape

has been reported in goldfish found to chew then expel fragments but to ingest and retain

fibers [24].
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4.4 Gills and branchial chamber

Responses to MFs were most severe along outflow pathways over gills. The morphological

alterations we observed are common symptoms of toxic effects in fishes resulting from a vari-

ety of aquatic pollutants and are routinely secondary to toxic interaction with specific trans-

port steps or membrane-bound receptors [25, 72].

Typically overlooked are the margins of the branchial chamber. Within the branchial cham-

ber, we observed swollen spaces beneath the inner opercular epithelium, probably arising from

interactions with MFs as water followed the inner wall of the operculum before exiting the

chamber. Such an effect may disrupt or inhibit osmoregulation by the inner opercular mem-

brane, specifically ion transport and kinetics of its chloride cells [73, 74]. This is the first report

of such separation of the inner opercular epithelium from deeper wall structures. Such swell-

ings possibly reduced the volume of the branchial chamber and inhibited water flow. Addi-

tionally, we observed this lifting to deform primary and secondary lamellae, likely impairing

respiration, and resulting in damage.

Tissue and cellular effects resulting from microplastic exposure have also received very little

attention. Results of our SEM and histological investigations showed acute responses including

epithelial lifting, increased mucus production, and eroded epithelium as well as chronic

responses including erosions on surfaces of gill arches, lamellar aneurysms, and fusion of pri-

mary and secondary lamellae [75–77]. Separation of epithelium from the basal membrane is a

symptom of disorders of osmoregulation and can act as a protective mechanism to increase dis-

tance from toxicants [78], but increased distance also impairs oxygen uptake [72]. Likewise,

fusion of lamellae causes an overall reduction in surface area for gas exchange [79]. Increased

mucus production also functions as a barrier against foreign substances (chemical, physical, or

biological) [75, 76], forming an important part of the innate immune system [76]. While mucus

production is considered a defense mechanism, any change that decreases filament surface area

or increases distance for gaseous exchange between external environment and blood is regarded

as potentially harmful to host respiration [27]. We found rare petechiae in control fish but

treated individuals had pronounced and numerous aneurysms. Petechiae that are minor in size

and extent, as seen in controls, are reversible changes [72, 80]. Lamellar aneurysms and com-

plete lamellar fusions are severe pathologies [72, 81]. Lamellar aneurysms result in damage and

loss of pillar cells in these areas result in the fusion of capillaries within secondary lamellae,

which causes their dilation and congestion with blood [75]. Causative factors of gill aneurysms

include mechanical injuries or a long list of toxicants that impair respiration [75, 82, 83].

The changes we observed may have been from mechanical damage, responses to leached

additives, or a combination of the two. The textile industry employs numerous synthetic dyes

(>10,000), some of which are non-biodegradable and carcinogenic [84]. For example, ben-

zothiazoles (BTs), found in many textiles [11], induced gill alterations including epithelial lift-

ing, epithelial hypertrophy, and fusion of secondary lamellae sheepshead minnow

(Cyprinodon variegatus) larvae [85]. However, there are few studies of this nature that have

investigated physical effects of leached additives.

We considered the possibility of recovery from these phenotypic traits should fish be

moved to clean water. Recovery of aneurysms is somewhat controversial [81]. Severe changes

such as these are often irreversible even when water quality improves [72, 80]. That said, there

are some reports of recovery after transfer to clean water. For example, Hypostomus francisci
(a Brazillian catfish sp.) collected from a polluted river exhibited epithelial hypertrophy and

lifting, lamellar fusion, aneurysms, hyperemia, and vascular congestion [81]. While recovery

was slow after placement in clean water, full recovery of lamellar aneurysms occurred after 30

days and apoptosis was stimulated to promote gill structure recovery [81]. In a laboratory
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study, aneurysms developed on tips of primary lamellae of Prochilodus scrofa (a tropical teleost

fish) exposed to copper for 96 hrs, with additional damage in the form of epithelial lifting, cell

swelling, and proliferation of pavement, chloride, and mucous cells [86]. Again, recovery was

slow after transfer to clean water (30–45 days), but much of this damage was reversible [86].

Such recovery studies have not been conducted for microplastics.

4.5 Gut

Microfibers are pervasive in digestive tracts of various wild caught fish [21, 24, 87, 88]. In the labo-

ratory, Grigorakis et al. [23] determined retention times for MFs to be fairly low. Our study found

MFs were primarily oriented longitudinally within lumina of all gut regions likely favoring rapid

passage. Because medaka are agastric teleosts, our examinations were done in three intestinal seg-

ments following the description of medaka gut [33]. SEM and AB-PAS stained sections of exposed

individuals showed that mucous cells and mucus production increased, primarily in foregut. MFs

were encapsulated within luminal mucus and digesta throughout the gut. We hypothesize that

this lubricated the gut wall to reduce abrasion and was protective in that it reduced contact with

luminal epithelium, facilitating MF passage and excretion [89]. Correspondingly, H&E stained

sections showed no significant lesions in intestinal segments of exposed fish.

Interestingly, SEM showed grooves or scratches on the surface of PP fibers in the hindgut

lumen. We initially considered that these could be explained on the basis of tooth action during

mastication; however, MFs in foregut showed no surficial alterations. We regard contraction of

circular and longitudinal muscles of gut wall, as factors increasing contact between MFs and

adjacent material of smaller diameter, as the most likely explanation. The formation of such

grooves on MFs might release smaller particles from the increased surface area, both of which

could lead to enhanced release of fiber additives and subsequent toxicity. We do not believe a

significant amount of MF breakage occurred during ingestion and passage based on the finding

that MFs recovered from feces did not differ in length from those at initiation of exposure.

5 Conclusion

While several field studies report MFs to account for the majority of microplastics both in

environmental media and biota, there is a lack of laboratory studies. In adult medaka, we

examined multiple levels of biological organization following chronic, aqueous exposure to

two types of MFs. Large numbers of MFs were shown to pass through both branchial chamber

and gut. Responses in cells and tissues led us to conclude that MFs are potentially harmful to

fish and that MF type is an important consideration in toxicity. The branchial chamber, in par-

ticular, was the site of both acute and chronic responses. Structural alterations of inner opercu-

lar membrane, rakers, and primary- and secondary lamellae were evidence of damage. If

presented with other challenges (e.g., predators, hypoxia, competition with other males for

spawning), these changes would likely impact survival. Effects observed in other organs (e.g.,

fecundity) suggest a possible interaction with substances leaching from MFs in gut. Use of a

small laboratory model fish has enabled detailed, high resolution investigations of various

organs and tissues. We are currently analyzing water and tissue samples generated from this

study to answer questions of chemical contributions to toxicity.
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