
ARTICLE

Bulk valley transport and Berry curvature spreading
at the edge of flat bands
Subhajit Sinha 1,4, Pratap Chandra Adak 1,4✉, R. S. Surya Kanthi1, Bheema Lingam Chittari2,

L. D. Varma Sangani1, Kenji Watanabe 3, Takashi Taniguchi 3, Jeil Jung2 & Mandar M. Deshmukh 1✉

2D materials based superlattices have emerged as a promising platform to modulate band

structure and its symmetries. In particular, moiré periodicity in twisted graphene systems

produces flat Chern bands. The recent observation of anomalous Hall effect (AHE) and

orbital magnetism in twisted bilayer graphene has been associated with spontaneous sym-

metry breaking of such Chern bands. However, the valley Hall state as a precursor of AHE

state, when time-reversal symmetry is still protected, has not been observed. Our work

probes this precursor state using the valley Hall effect. We show that broken inversion

symmetry in twisted double bilayer graphene (TDBG) facilitates the generation of bulk valley

current by reporting experimental evidence of nonlocal transport in a nearly flat band system.

Despite the spread of Berry curvature hotspots and reduced quasiparticle velocities of the

carriers in these flat bands, we observe large nonlocal voltage several micrometers away from

the charge current path — this persists when the Fermi energy lies inside a gap with large

Berry curvature. The high sensitivity of the nonlocal voltage to gate tunable carrier density

and gap modulating perpendicular electric field makes TDBG an attractive platform for valley-

twistronics based on flat bands.
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The advancement in twistronics has opened up new
avenues to study electron correlations physics, such as
Mott insulator states1–3, superconductivity3,4, and orbital

ferromagnetism5,6 in twisted bilayer graphene (TBG). Recent
experiments in twisted double bilayer graphene (TDBG)7–11 and
trilayer graphene aligned to hexagonal boron nitride (hBN)12–14

also reveal correlation effects. While low-energy flat bands
enhance electronic correlations15–17, such moiré systems support
topological bands with nonzero valley Chern number5,6,14,18,19.
In fact, the observation of anomalous Hall state in TBG5,6 has
been explained by spontaneous symmetry breaking of degenerate
Chern bands20,21. Such observations point to rich topology in
twisted systems governed by nonzero Berry curvature and
understanding these topological aspects is currently at the fron-
tier22–24. We present direct experimental evidence that the
degenerate Chern bands at K and K0 support bulk valley transport
due to Berry curvature hotspots in these flat bands, an aspect that
has been little explored. Valleytronics-based devices have shown
immense potential25 and twistronics-based valleytronics devices
could have additional functionality.

When inversion symmetry is broken, two-dimensional hon-
eycomb lattices with time-reversal symmetry can have nonzero
Berry curvature of same magnitude, but opposite sign in two
degenerate valleys, K and K0. The nonzero Berry curvature can
manifest itself in bulk valley transport via valley Hall effect
(VHE), as electrons from two valleys are deflected to two opposite
directions perpendicular to the in-plane electric field26,27. In
systems such as graphene with small intervalley scattering, the
valley current can be detected by an inverse VHE at probes away
from the charge current path in the form of a nonlocal resis-
tance28–30. Pure bulk valley current has been generated and
detected in moiré system of monolayer graphene aligned to
hBN28. Similar nonlocal response has been observed in insulating
systems like gapped bilayer graphene29,30 with the insensitivity to
device edge details, suggesting bulk transport. In both the sys-
tems, nonlocal resistance has been observed near the Berry cur-
vature hotspots. In a recent study, the nonlocal resistance
reported in TBG has been attributed to high-dimensional topol-
ogy, as the symmetry enforces Berry curvature to be zero31.
However, the Berry curvature mediated bulk valley transport
remains to be explored in a flat band system.

In this work, we investigate TDBG where two copies of Bernal-
stacked bilayer graphene are put on top of each other with a small
twist angle. TDBG is a unique flat band system having electric
field tuned isolated valley Chern bands19,32–36. While TDBG
inherits electric field tunability form bilayer graphene, the moiré
periodicity opens up secondary gaps, thus isolating the moiré
bands and decoupling the two K and K0 valleys18. Together with
the flatness and the electric field tunability, the finite Berry cur-
vature associated with the Chern bands makes this system an
interesting platform for hosting the valley current. In particular,
TDBG enables realizing two functionalities in a single system—
hosting valley current by isolated topological bands, and the
control over valley current by the electric field. We measure
multiple TDBG devices and observe large nonlocal resistance
whenever the Fermi energy lies in the gap—the charge neutrality
point (CNP) gap or the moiré gaps. We explore the dependence
of the nonlocal resistance on electric field, charge density, and
temperature in detailed measurements. Our analysis finds evi-
dence that the nonlocal resistance originates from bulk valley
transport, while at low temperature edge transport starts playing a
role. Twistronic system, like the one we present, offers two key
knobs for bulk valleytronics—firstly, the magnitude of Berry
curvature is inversely related to the gap, and secondly, the tun-
ability of Fermi velocity tunes the sharpness of the Berry curva-
ture hotspot.

Results
Nonlocal transport measurement scheme and the band struc-
ture. For detecting bulk valley current, we follow a measurement
scheme similar to that used for detecting spin current in spin-
tronics devices37,38, as shown in Fig. 1a. A finite charge current I
is passed using two local probes at two opposite sides of the
device channel. VHE drives a valley current along the channel
and a voltage, VNL is generated in the nonlocal probes by inverse
VHE. We quantify this as nonlocal resistance RNL= VNL/I. We
independently control both the charge density n and the per-
pendicular electric displacement field D aided by the dual-gated
structure of our devices, using a metal top gate and highly doped
silicon back gate (see “Methods”).

The perpendicular electric field has a profound effect on the
band structure of TDBG7–11. As depicted in Fig. 1b, at zero
electric field, the system has low-energy flat bands separated from
higher energy dispersing bands by two moiré gaps. As the electric
field is increased, a gap opens up at the CNP separating two flat
bands. The moiré gaps close sequentially upon further increase of
the electric field. In Fig. 1c, we present a schematic of the band
structure at finite electric field and show the existence of Berry
curvature hotspots in the flat bands. The color scale plot of
calculated Berry curvature in Fig. 1d depicts the locations of
hotspots in the k-space of the conduction band for K valley.
Details of band structure and Berry curvature map is provided in
Supplementary Note 1 (see Supplementary Figs. 1–3).

Local and nonlocal transport at low temperature. We now
present the experimental results for a TDBG device with twist
angle 1.18°. This device shows a high degree of twist angle
homogeneity δθ ~ 0.05° over eight microns; this is crucial for
observing nonlocal resistance (see Supplementary Fig. 5 and
Supplementary Note 3). In Fig. 2a, we show a color scale plot of
four-probe local resistance as a function of perpendicular electric
field and charge density. We see large resistance at n= 0 at high
electric field due to gap opening at CNP, and at n= ±nS= ±3.2 ×
1012 cm−2 corresponding to the moiré gaps. Here nS is the
number of electrons required to fill one flat band. In Fig. 2b, we
plot the measured nonlocal resistance which is large only at the
gaps. Apart from the resistance peak at the gaps, there are other
high-resistance regions in the local resistance, characteristics to
small-angle TDBG7–11. Such examples are the cross-like feature
originating at D= 0 in the hole side and the ring-like regions in
the electron side for ∣D∣/ϵ0 ~0.3 V nm−1. The absence of these
features in the nonlocal signal provides evidence that the nonlocal
signal is distinct from the local resistance and is only appreciable
when the Fermi energy crosses the gaps that possess large Berry
curvature.

In Fig. 2c–e, we plot line slices from the color plots to show
both the local and nonlocal resistances as a function of charge
density. This clearly shows a large nonlocal signal at n= ±nS,
corresponding to the moiré gaps at D/ϵ0= 0 (Fig. 2c for n=−nS
and Fig. 2e for n= nS). In Fig. 2d, we plot the resistance at CNP
for D/ϵ0=−0.3 V nm−1. We additionally plot the ohmic
contribution to the nonlocal resistance due to stray current39 in
Fig. 2c–e. The calculated ohmic contribution (in “Methods”),
being at least two orders of magnitude lower, cannot account for
the large nonlocal resistance we observe at the gaps.

Berry curvature spreading. Now, we discuss an interesting
difference in nonlocal resistance of TDBG compared to hBN-
aligned MLG28 or gapped BLG29,30. In a flat band system, the
kinetic energy of the electrons is quenched. As the electrons
slow down, with reduced Fermi velocity vF, they start to see
an enhanced effect of the other energy scales in the system,
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for example, the e–e interaction. In a similar way, smaller vF
renormalizes the gap. The enhancement of the effective band gap
results in the spreading of the Berry curvature hotspots. To
quantitatively understand this effect, we consider the Berry cur-
vature of a gapped (2Δg) MLG with renormalized vF to incor-

porate the effect of band flatness, ΩðkÞ ¼ ð_vFÞ2Δg

2½ðvF_kÞ2þΔ2
g �
3=2. We find

that the Berry curvature hotspot extends more in the k-space as vF
is decreased (Supplementary Fig. 10 and Supplementary Note 8).
As a result, RNL is appreciable over a large range of charge density
around the gaps in TDBG. This is evident in Fig. 2c–e, as the
nonlocal resistance peaks are broad in the charge density axis. On
the other hand, in the earlier reported systems28–30, nonlocal
resistance falls more rapidly than the local resistance, as the charge
density is tuned away from the gaps (comparison in Supplemen-
tary Fig. 11 and Supplementary Note 9). The spreading of Berry
curvature is further supported by our finding that nonlocal resis-
tance peaks have smaller normalized width for higher electric fields
(see Supplementary Fig. 12 and Supplementary Note 10). This is
because the bandwidth of the flat bands increases with the electric
field, resulting in increase of vF (ref. 9).

Evidence of bulk valley transport. We now proceed to under-
stand the microscopic origin of the nonlocal signal. For diffusive
transport of valley polarized electrons through the bulk, the
nonlocal resistance RNL generated via VHE is given by28:

RNL ¼
1
2

σVHxy
σxx

 !2
W
σxxlv

exp � L
lv

� �
: ð1Þ

Here, σVHxy is the valley Hall conductivity, lv indicates the valley
diffusion length, with L and W being the length and the width of
the Hall bar channel, respectively. This equation holds good when
σVHxy =σxx � 1, and results in a scaling relation between the local
and the nonlocal resistance, RNL / R3

L with RL= 1/σxx.
To examine the scaling relation, we measure temperature

dependence of the local and the nonlocal resistance for different
D, as plotted in Fig. 3a, b, respectively, for the case of CNP (see
Supplementary Fig. 13 for the case of n=−nS). The local
resistance shows Arrhenius activation behavior due to gaps in the
system. The nonlocal resistance also follows activation behavior,
but with higher gaps than the local resistance. In Fig. 3c, d, we
plot the ratio of the nonlocal to the local gap as a function of
electric field for n= 0 and n=−nS, respectively. The inset
of Fig. 3c, d shows the values of the activation gaps as a function
of electric field. Although the individual gaps are tuned by the
electric field, the ratio varies within 2.3–3.5. The ratio being
close to 3 establishes RNL / R3

L, and hence supports bulk valley
transport through Eq. (1). Also, this measurement reinforces our
understanding that the contribution of RL in RNL is minimal.

Now, we closely examine the cubic scaling relation as a
function of temperature (for scaling as a function of electric field,
see Supplementary Fig. 7 and Supplementary Note 5). In Fig. 3e, f,
we plot the nonlocal resistance against the local resistance in
logarithmic scale, with temperature as a parameter. Figure 3e
shows the case for n=−nS, where the temperature varies from 10
to 75 K. The scaling remains cubic, with deviation at low T. This
low temperature deviation from cubic scaling to being nearly
independent of local resistance is consistent with the
literature29,30. At low temperature, the system enters into a large
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for K0 valley has same magnitude but opposite sign.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19284-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5548 | https://doi.org/10.1038/s41467-020-19284-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


valley Hall angle regime, where the assumption σVHxy =σxx << 1 is
no longer valid40.

The case where the system is at the charge neutrality is shown
in Fig. 3f (the chosen range of temperature for showing scaling is
shaded by blue in Fig. 3a, b). The scaling is cubic in intermediate
temperature range, consistent with bulk valley transport, with
departures at both ends. We note that σVHxy in Eq. (1) can have
temperature dependence and decrease from its quantized value at
elevated temperatures compared to the gap29. Such a phenom-
enon can explain the departure from cubic scaling at the high
temperature end. The low temperature deviation at CNP is
different from that in the case of −nS, as a transition to higher
power laws occurs. We note that for the case of nonlocal signal at
CNP, the Fermi energy lies between two flat bands. Thus, at low
temperatures, strong electron–electron correlations may give rise
to edge states41.

Discussion
TDBG offers a unique platform since it provides electrical control
over the flatness of Chern bands through vF and the band gap it
hosts. Our study shows that one can further use this electrical
control to induce bulk valley current and offers new opportunities

in valleytronics—via manipulating valley current by the tunable
band gaps and the band flatness in twistronics. In particular, we
show that the renormalized velocity in a flat band causes elec-
trically controllable momentum spreading out of the Berry cur-
vature hotspots. While we observe bulk valley current at elevated
temperature, we cannot exclude the possibility that at low tem-
peratures, the nonlocal response is additionally mediated by the
edge modes associated with the VHE or other spontaneous
quantum Hall effect41,42 resulting from flat Chern bands19.

The recent observation of anomalous Hall effect (AHE) and
orbital magnetism in hBN-aligned TBG has been associated with
the occupation of an excess valley- and spin-polarized Chern
band by spontaneously breaking time-reversal symmetry5,6. The
underlying topological structure of the bands plays an important
role as opposite Chern numbers for two valleys preclude inter-
valley coherence20,21. Our demonstration of valley current using
nonlocal transport in TDBG as a result of opposite Berry cur-
vature from two valleys complements this understanding. Our
work provides strong evidence that VHE state, when the valley
degeneracy is preserved, is indeed the parent state of the AHE
state. We expect AHE state in TDBG as well, when the valley
symmetry is broken. In addition, our work opens up new possi-
bilities to explore chargeless valley transport in other moiré
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systems like trilayer graphene aligned with hBN, twisted trilayer
graphene, and other twisted transition metal dichalcogenides
having topological Chern bands.

Methods
Device fabrication. Our dual-gated devices are made of hBN/TDBG/hBN stacks
on SiO2 (~280 nm)/Si++ substrate. To make the stacks, we exfoliate graphene and
choose suitable bilayer graphene flakes based on optical contrast, and then confirm
the layer number by Raman spectroscopy. The suitable hBN flakes are selected
based on color, and we confirm the thickness by AFM after the stack is completed.
Bilayer graphene flakes are sliced into two halves, using a tapered optical fiber
scalpel prepared with an optical fiber splicer43. Subsequently, the flakes are
assembled using the standard poly(propylene) carbonate-based dry transfer
method44. The twist angle is introduced by rotating the bottom stage during the
pick up of the second half of the graphene. Subsequently, we define the geometry of
the devices by e-beam lithography, followed by CHF3+O2 plasma etching. One-
dimensional edge contacts to the graphene are made by etching the stack and
depositing Cr/Pd/Au. The top gate is made by depositing Cr/Au.

Measurements. We fabricate and measure nonlocal transport in multiple devices.
The dual-gated structure using a metal top gate and highly doped silicon back gate
enables us to have independent control of both the charge density (n), and the
perpendicular electric displacement field (D) given by n= (CTGVTG+ CBGVBG)/e
and D= (CTGVTG− CBGVBG)/2, where CTG and CBG are the capacitance per unit
area of the top and the back gate, respectively, and e is the charge of an electron. All
the data reported in the main manuscript are measured using device 1 with twist
angle 1.18°. We present data from another device with twist angle 1.24° in the
Supplementary Information (see Supplementary Fig. 8 and Supplementary Note 6).

The transport measurements reported in the main manuscript and the
Supplementary Information are conducted using a low frequency (~17 Hz) lock-in
technique by sending a current ~10 nA and measuring the voltage after
amplifying, using SR560 preamplifier or preamplifier model 1021 by DL
instruments, Ithaca. In addition, we perform dc measurements to verify that the
measured nonlocal signal is repeatable and independent of the measurement
scheme (Supplementary Fig. 4 and Supplementary Note 2). We further checked
that the nonlocal signal is consistent with reciprocity (Supplementary Fig. 6 and
Supplementary Note 4). The ohmic contribution to the nonlocal resistance due to
stray current, as plotted in Fig. 2c, has been calculated by using the van der Pauw
formula, Rohm

NL ¼ ðρxx=πÞ ´ expð�πL=WÞ29. Here, L and W are the length and
width of the conduction channel, respectively. For the device presented in the main
text, we choose L= 4 μm and W= 2 μm for performing the nonlocal
measurements. This contribution decays exponentially along the length of the
conduction channel. For the local measurements, we use the four-probe method
and choose both L and W to be 2 μm from the same device, allowing us to use the
relation RL= 1/σxx in the main text.

Determining the twist angle. For determining the twist angle, we first determine nS,
the charge density to fill one moiré flat band. On the plot of resistance as a function of
charge density (n) and the perpendicular electric field (D/ϵ0), the difference in the
location of the two resistance peaks in the charge density axis (the resistance peaks
corresponds to two moiré gaps at ±nS at D= 0), gives 2nS. The twist angle θ is then
calculated from nS using the relation nS ¼ 8θ2=ð ffiffiffi

3
p

a2Þ, where a= 0.246 nm is the
lattice constant of graphene. From Fig. 2a, we find nS= 3.2 × 1012 cm−2, giving a twist
angle of 1.18° for device 1 in the main manuscript.

Data availability
The data used to produce Figs. 2 and 3 in the main text are available in Zenodo with the
identifier https://doi.org/10.5281/zenodo.3960483 (ref. 45). Additional data related to this
study are available from the corresponding authors upon reasonable request.
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