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HLA class I incompatibilities still remain one of the main barriers for unrelated bone marrow transplantation (BMT); hence the
molecular understanding of how to mismatch patients and donors and still have successful clinical outcomes will guide towards
the future of unrelated BMT. One way to estimate the magnitude of polymorphisms within the PBR is to determine which peptides
can be selected by individual HLA alleles and subsequently presented for recognition by T cells. The features (structure, length,
and sequence) of different peptides each confer an individual pHLA landscape and thus directly shape the individual immune
response. The elution and sequencing of peptides by mass spectrometric analysis enable determining the bona fide repertoire of
presented peptides for a given allele. This is an effective and simple way to compare the functions of allelic variants and make a
first assessment of their degree of permissivity. We describe the methodology used for peptide sequencing and the limitations of
peptide prediction tools compared to experimental methods. We highlight the altered peptide features that are observed between
allelic variants and the need to discover the altered peptide repertoire in situations of “artificial” graft versus host disease (GvHD)
that occur in HLA-specific hypersensitive immune responses to drugs.

1. Introduction

Human leucocyte antigen (HLA) class I incompatibili-
ties represent the major barrier for successful outcome in
haematopoietic stem cell transplantation (HSCT), a thera-
peutic strategy for the treatment of hematologic malignan-
cies. The best clinical outcomes for unrelated HSCT can be
achieved by an 8/8 match, meaning high resolutionmatching
on HLA-A, -B, -C, and -DRB1 levels [1]. Certain HLA class
II mismatches have also gained considerable attention in the
selection of unrelated donors; most notably several studies
on HLA-DP permissivity have been performed [2–5]. Such
a perfect HLA match of a given donor: recipient pair is
in most cases impossible to find; therefore, mobilized stem
cells from well-matched but unrelated donors are used for
transplantation [6]. Despite great care being taken to select
the best possible match these transplants may be associated
with significant risks of graft versus host disease (GvHD),
graft failure, or transplant related mortality [7]. Clinical data
have demonstrated that the risk of GvHD correlates with

the number of mismatches within the HLA molecule, where
both the type of amino acid (AA) substitution and its location
can directly influence the degree of histocompatibility [8].
For these reasons, a priority for certain unrelatedmismatched
donors is also given to those whose polymorphisms do not
affect peptide binding. If there are differences between two
allelicHLA subtypes, then this is likely to alter their presented
peptide binding features; thus alloreactivity is expected [9]. If
the peptide binding features are not altered, then alloreactive
immune reactions aremore unlikely; however, they cannot be
fully excluded since the genetic variability in the population
may give rise to certain minor histocompatibility antigens.
The impact of polymorphisms located within the peptide
binding region and the risk of severe acute GvHD is well
known [10]; furthermore the residues described to impact the
risk of GvHD when mismatched (AA 9, 99, 116, 156) have
been directly associated with the peptide anchor p2 or pΩ
[11] or indirectly with peptide binding through differential
interaction with the peptide loading complex and peptide
selection [12, 13].
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The feasibility to find the best acceptable mismatch and
have successful clinical outcomes depends on our under-
standing of the impact of a certain HLA polymorphism. It
would be beneficial to have a fast and reliable method that
would allow a prediction of individual mismatch magnitudes
to help clinicians in deciding which donor: recipient pair has
the best chance of successful transplantation. However, the
impact of a given mismatch might differ for every single
allelic variant and is furthermore affected by the proteomic
content that is available for presentation in anHLAmolecule,
since peptides undergo several selection criteria before being
presented in an HLA molecule on the cell surface (Figure 1).
Alongside the functional allelic differences conferred by AA
exchanges that influence the interaction of the HLA heavy
chain with the peptide loading complex, the peptide cargo
itself has to fulfill certain criteria. Proteasomally digested
peptides are transported into the endoplasmic reticulum via
the transporter associated with antigen processing (TAP)
and loaded onto immature HLA class I molecules with the
assistance of the peptide loading complex (PLC) [14]. Here,
it has to be considered that certain HLA alleles select and
present their peptides through an alternative pathway, since
particular polymorphism can influence which allogenic pep-
tides are selectively bound through conformational alteration
of the HLA heavy chain [12]. Peptide selection that did not
undergo selection and optimization of the PLC might lead
to immunological reactions since it enables the presentation
of poorly tolerated peptides. This might therefore mimic
foreign proteomic content to immune effector cells and lead
to rejection episodes when transplanted.

HLA molecules are highly variable; accepting a mis-
matched donor means that a comprehensive knowledge
should be allocatable. An HLA molecule that is displayed
to the immune system consists of three modules, the heavy
chain, beta 2 microglobulin (𝛽2m), and the individual pep-
tide. While 𝛽2m is invariant, the heavy chain as well as
the peptide is variable, and there are thousands of possible
peptide/HLA (pHLA) molecules that can be displayed to
immune effector cells. Variations within the AA sequence of
the heavy chain may therefore alter substantially the whole
pHLA landscape, for that reason the knowledge about the
magnitude of a distinct mismatch within the heavy chain
is important to understand and/or predict the molecules
function. These polymorphisms can affect (i) the individual
peptide binding motif [15–18], (ii) peptide selection [12],
and/or (iii) the individual pHLA landscape [19, 20] that will
be scanned by immune effector cells. Due to the enormous
degree of HLA class I polymorphisms (𝑛) and the quantity
of possible mismatches [magnitude = 1/2 ⋅ 𝑛 ⋅ (𝑛 − 1)] that
can occur there is still no strategy available for the selection
of the less permissive class I mismatch when no identical
donor but multiple mismatched donors are available. Amean
for a comprehensive measure of histocompatibility can in the
context of the extensive polymorphism only take place as a
systematic study of key alleles with distinct polymorphism.
Certain mismatches as, for example, position 156 in the B∗44
allelic group have been studied extensively; clinical data [21]
as well as in vitro data [12, 22–24] are available. However, for
most allelic groups, there is a lack of clinical data or in vitro
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Figure 1: Assessment of targetable allogeneic epitopes. Every ligand
has to pass several filters, before being presented in an HLA
molecule. The first is the individual expression profile. Proteins
then undergo further proteasomal processing, where the individual
cleavage profile determines the sequence of possible HLA ligands.
The last filter is the individualHLAprofile that differs between allelic
variants.

data that could be translated to histocompatibility. To enable a
comprehensive and intelligent mismatching strategy, the fast
and reproducible analysis of the peptide repertoire is required
since it represents the most variable part of a HLA molecule.

2. Determination of Mismatch Impact
Based on Peptide Sequences

HLA class I allelic peptide motifs have been described for
the most frequent variants [26–29], but few studies have
addressed the question to which extent variants of the same
allelic HLA group differ in their peptide motifs and/or
peptide repertoires [30–33].

HLA-B∗44:02Asp156 and B∗44:03Leu156 differ by a single
AA exchange located in the PBR and are well-studied
examples for strong alloreactive immunological episodes.
Fleischhauer et al. described in 1990 a strong alloreactive
response mediated by T cells that resulted in transplant
rejection [21]. To explain this unexpected occurrence, peptide
profiles of the mismatched variants have been analysed by
the same author in 1994 [22]. Since no differences in peptide
profiles could be detected, the unexpected alloreactivity could
only be explained in 2003,whereMacdonald et al. solved their
structures [23] and found subtle alterations in the peptide
binding.This example shows the distinct connection between
peptide binding profiles and immunogenicity and started a
new era of histocompatibility rating.

The nature of a given AA mismatch plays a significant
role in deciding for histocompatibility; in that regard, it is
thought that AA exchanges from the same chemical group
are more permissive than those AAs from different chemical
groups. The allelic variants B∗44:02Asp156 and B∗44:35Glu156
differ at a single mismatch; both of the AAs exchanged are
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polar acidic and thus not expected to confer alteration of
the PBR feature. However, the comparison of the peptides
from B∗44:02Asp156 and B∗44:35Glu156 showed an unexpected
alteration in the binding motif of the peptide’s pΩ [34].
B∗44:35Glu156 was found to bind and present a significantly
high number of peptides of extraordinary length and to
disfavour the binding and presentation of canonical peptides.
The peptide data derived from B∗44:35Glu156 highlighted
a strong shift in the binding preference for Lys at the
C-terminus, while this residue was completely absent in
peptides eluted from B∗44:02Asp156. The observation of such
a change in the peptide anchor in B∗44:35Glu156 as a result of a
highly conserved substitution at position 156was unexpected.
Based on the structure of B∗44:02Asp156 (PDB 1M6O) [23]
we were able to model B∗44:35Glu156 bound to a peptide
with the distinct binding motif and therefore explain the
structural alteration. Cellular studies using alloreactive T cells
supported the findings of the peptide diversities. In this case,
the preliminary peptide data were essential to explain the
strong T-cell mediated alloreactivity.

Further studies defined the differential impact of single
mismatches on peptide binding and the paradox that an
accumulation of multiple polymorphism located in the PBR
does not alter the designated peptide binding motif.

Most class I alleles show the highest sequence polymor-
phism in the 𝛼1 and/or 𝛼2 domain that form the PBR and
are encoded by exons 2 and 3, which therefore constitute the
region of interest for histocompatibility matching. Currently,
allelic variants with mismatches outside of the 𝛼1 or 𝛼2
domains are thought to have the same immune function
and thus would represent a permissive mismatch in HSCT.
HLA-B∗44:02:01:01 and B∗44:27 are considered to be func-
tionally identical since they differ by themicropolymorphism
Val199Ala, located in the 𝛼3 domain. To validate the theory
that B∗44:02199Val and B∗44:27199Ala represent functionally
identical alleles, we compared peptides and their features
derived from both B∗44:02199Val and B∗44:27199Ala. The mis-
match at residue 199 did not alter significantly the peptide
motif, the peptide features, nor the peptide repertoire [35];
for that reason a single 199 mismatch for B∗44 variants
might be considered as a permissive mismatch, but must
be certainly validated by cellular assays. According to our
finding Bettens et al. investigated in 2013 the alloreactivity
of CD8+/CD137+ T cells in a mixed lymphocyte culture
reaction and could demonstrate a complete lack of allorecog-
nition between the Val199Ala mismatched variants [36].
These findings supported our conclusion that in the case
of B∗44:02:01:01/B∗44:27 incompatibility, we could define
histocompatibility in terms of the features of the bound
peptides.

The knowledge of allele specific peptide binding data
enables an isolated and individual assessment of every AA
mismatch. Through comparative analysis of the peptides
derived fromHLA-B∗44:02 and B∗44:08, differing at residues
41, 45, and 46, we were able to exclusively assign position 45
of the heavy chain to significantly affect the peptide binding
motif while residues 41 and 46 had no influence on the bound
peptides [16].WhileHLA-B∗44:02 has a peptide anchormotif

of Glu at p2, B∗44:08 binds at p2 Gln and Leu. The peptide
data provide evidence that mismatches at position 45 for
B∗44 variants should be avoided, since it could be assumed
that an alteration of the peptide features would most likely
lead to a conversion of the accessible pHLA surface and
consequently affect T-cell recognition. The comparison of
peptide data for, HLA-B∗44:02 and B∗44:06, both of these
subtypes are being distinguished by 7 residues polymorphic
(24, 32, 41, 45, 63, 67, and 80), showed a differential impact
on peptide binding and allowed for assignment of each
residue within the heavy chain to a certain residue within the
peptide [11]. Residues 45, 63, and 67 are highly polymorphic
and show in all pHLA structures analysed abundant contact
frequencies to the anchoring p1 and p2 position of peptides
[11], highlighting their role in peptide specificity. By soluble
HLA technology we could demonstrate the differences in
peptide anchoring. While B∗44:02 is not anchored by p1, but
by Glu at p2 and Phe, Tyr, and Trp at the C-term, B∗44:06 is
anchored by Asp and Glu at p1, Pro and Ala at p2, and Tyr
and Trp at the C-term. Moreover, MALDI-TOF analysis (a
tool for the mass analysis of peptides) of low or high affinity
peptide pools (Figure 2) suggest that in contrast to B∗44:02,
B∗44:06 preferably selects high affinity peptides and binds
peptides tightly. Additionally, B∗44:02 had a tendency to
bind extraordinary long peptides whereas peptides bound to
B∗44:06 were restricted to the canonical length of 8–10 AAs.
The knowledge of peptide data for B∗44:06 allowed detailed
structural investigation of the mismatch impact. Therefore
we could demonstrate that in both alleles Ser167 allows the
nonpolymorphic Arg170 to hydrogen bond with the peptide
p1 residue. For B∗44:06,molecularmodeling suggests that the
Glu63 >Asn63 polymorphism enhances the preference of the
P1 pocket for acidic AAs [11]. Translating these observations
into histocompatibility, residue 63 should be considered as
a nonpermissive mismatch. This is further supported by the
observation that its frequency in contacting the peptide at
main positions (p1, p2) could be observed in >95% of pHLA
structures reflecting a distinct constraint of peptidemotifs for
B44 variants [11].This data allowed “alloreactivity ranking” of
the mismatched residues within the B∗44:06 heavy chain.

Peptide data from HLA-B∗44:09 showed how the 5
polymorphic residues (77, 80, 81, 82, and 83) distinguishing
B∗44:09 from B∗44:02 affected the peptide binding motif.
Both alleles illustrate an E at p2. In contrast to the C-terminal
peptide binding motif of B∗44:02, Trp, Phe, Tyr, or Leu,
B∗44:09 derived peptides are restricted predominantly to Leu
or Phe. A small percentage of peptides were shared between
the allotypes, those peptides contained the restricted B∗44:09
anchor motif of Phe or 10 Leu at the pΩ position [17]. The
modeled structure of B∗44:09 reveals that residues 77 and 80
contact the peptide main chain at the peptide’s pΩ; however,
residue 81 contacts the peptide’s pΩ side chain and appears
to be the main cause of sequence specificity at the peptide’s
C-term. Similarly as described for B∗44:06, residue 81 in
B∗44:09 could be demonstrated to have a high impact on
peptide specificity.

It could also be demonstrated that certain alleles sharing
the same peptide motif with their mismatched allelic variant
show a higher affinity for peptides of an extraordinary length,
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Figure 2: Generation of peptide sequences from sHLAmolecules.This figure gives a schematic overview of the steps towards the generation of
peptide sequences obtained from sHLA molecules. The HLA heavy chain is given in blue; 𝛽2m is shown in yellow; and the peptide is shown
in red. Cell culture supernatants containing sHLA molecules are passed over an N-hydroxysuccimide- (NHS-) activated HiTrap column
coupled to mAb w6/32. Trimeric complexes (class I heavy chain, 𝛽2m and peptide) are eluted using a pH 2.7 elution buffer. Here, peptides
from sHLA complexes can be differentiated into low and high binding peptides. The trimeric elution fractions are filtered through a 10 kDa
cut-off membrane and the peptides detected in the flow through are considered to be of low affinity. The retentate containing dimeric (heavy
chain and 𝛽2m) as well as trimeric complexes is then treated with 0.1% trifluoroacetic acid (TFA) to elute high binding peptides that can
finally be separated by filtration through an additional 10 kDa cut-off membrane. Flow through fractions containing the low or high affinity
peptides are subjected to mass spectrometric analysis using an Eksigent NanoLC Ultra 2D HPLC coupled to an orbitrap ion trap. Database
queries can finally be carried out using Mascot software [25] incorporating the IPI human and the respective decoy databases.

an observation that is only possible through extended peptide
sequencing. This phenomenon could be demonstrated for
peptides bound to subtypes of the HLA-B∗41 group, HLA-
B∗41:03, andB∗41:04 [20]. Further examination of these vari-
ants bound to previous sequenced peptides by high resolution
X-ray crystallography demonstrated that polymorphism at
positions 97 and 114 in B∗41 variants have a strong impact
on the steric and electrostatic properties of the PBR and
explained their divergent peptide confirmations.

3. Individual Peptide Repertoires Explain
the Basis of GvHD-Like Drug-Mediated
Hypersensitivity Reactions

Another example how a single mismatch within the HLA
heavy chain influences the immunological self and guides
towards biased T-cell responses is the alteration of presented
peptides through the interference of small drug molecules,
resulting in the phenomena of HLA-associated drug hyper-
sensitivity. Here, a single AAmismatch within the PBRmight
change the susceptibility of an allele to allow a small drug
molecule to bind and modulate the PBR as it could be
demonstrated for the abacavir sensitive allele HLA-B∗57:01
[37]. Here, abacavir is able to occupy part of the PBR and
modifies the selected peptide repertoire thereby causing a
strong T-cell-mediated immune response that is resolved
upon withdrawal of medication.

For the carbamazepine sensitive allelic variants HLA-
A∗31:01 and -B∗15:02we could recently demonstrate distinct
functional differences through sequencing of their bound
peptides (Kunze-Schumacher et al., 2014, manuscript in
preparation).

Understanding the mechanistic basis of drug-mediated
hypersensitivity reactions can only take place as a measure-
ment of the allele specific individual peptide repertoire.

4. Soluble HLA Technology

Peptide sequencing by the use of soluble HLA (sHLA)
technology is a powerful and convenient tool towards the
understanding of histocompatibility and high throughput
screening of the individual allele specific immunopeptidome.
Another possibility to obtain peptides is the classical way
of isolating membrane bound HLA molecules from cells;
however, this method necessitates high numbers of cellular
material. Besides, treatment of cells using lysis buffers might
lead to failure of obtaining low affinity peptides, a problem
that is not of any concern when using sHLA technology.
It could be demonstrated that peptides obtained by soluble
technology show the same repertoire as peptides obtained
from membrane bound molecules [38]. Furthermore sHLA
molecules select their peptides through the same loading
pathway and are associated with the peptide loading complex
in the same way than membrane bound molecules [12].
Soluble HLA technology thus represents a simple and easy
instrument for the determination of mismatch magnitude.
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For the use of sHLA molecules exon 1 through 4 from a
given HLA variant is cloned into an appropriate expression
vector and transferred preferentially into an HLA class I
negative cell line, for example, LCL 721.221 cells. When the
question has to be answered is what peptides are presented
during a viral infection or in certain tumor cell, it is as
well possible to clone a recombinant C-terminal tag (e.g.,
V5, c-Myc) for further purification, which would enable
the exclusive purification of the desired recombinant HLA
molecule without contaminations of native HLA molecules.
The highest rate of sHLA expressing cells is achieved through
lentiviral transduction of the desired HLA subtype in target
cells as described previously [12]. For large scale sHLA
production cells are transferred into bioreactors and sHLA
molecules can be directly purified from the cell culture
supernatant using an appropriate antibody, for example,
W6/32 (Figure 2) bound to an affinity column. Peptides
can be directly isolated from trimeric sHLA complexes and
differentiated into low or high affinity peptides.

Soluble HLA technology offers the flexibility to achieve
high amounts of proteins that are secreted in the cell cul-
ture supernatant without the need of high cell numbers.
To quantify the protein concentration a sandwich enzyme-
linked immunosorbent assay (ELISA) can be used as a simple
and easy method for high throughput screening. Here, the
anti-HLA-A-B-C W6/32 [39, 40] monoclonal antibody is
employed as capture antibody; HRP-conjugated anti-𝛽2m
mAb serves as the detection antibody [12].

5. Peptide Data Are the Basis for
Bioinformatic Prediction Tools

Numerous peptide binding prediction algorithms are avail-
able; they can be categorised into three major groups: motif
and scoring matrix based methods, hidden Markov models,
and artificial neural networks [41–45]. However, all those
prediction algorithms are based on the limited knowledge of
available peptide binding data that means prediction is only
possible for a small fraction of known MHC proteins. The
growing number of HLA alleles makes it impossible to pro-
vide prediction tools for variants or certain polymorphism
where no experimental data exist. Structure based methods
for predicting the allogenicity of a certain mismatch can
only take place for alleles with known peptide sequences.
Experimental peptide binding data and allele specific peptide
motifs allow for the prediction and ranking of T-cell epitopes
by certain prediction algorithms such as SYFPETHI [46,
47], NetMHC [48], RANKPEP [49], PeptideCheck, [50] or
BIMAS [51]. Here it has to be taken into account that in silico
peptide binding prediction such as for vaccine development
can only take place when peptide sequences and binding
specificities for an allele of interest have been identified
previously. If the allele specific peptide binding features,
the motif, or the preferred length is known, it is possible
to predict peptides and peptide binding data from desired
proteins such as virus epitopes, which might be tested by in
vitro systems [52–54]. However, all these programs are not
able to address the binding and presentation of noncanonical

peptides (>8–10AAs) [55] thatmight elicit strong alloreactive
T-cell responses [56, 57] and it is well known to date that
certain HLA variants bind peptides of unusual length [20,
58, 59]. Several long peptides for HLA class I molecules
have been predicted by extending known shorter epitopes or
by screening peptide libraries, including overlapping 16-mer
[60] or 15-mer peptides [61, 62]. Even the binding of peptides
with a length up to 25 AAs could be observed [58], suggesting
that the length limitation of naturally processed HLA bound
peptides is primarily controlled by their availability following
antigen processing. The knowledge of the allele specific self
peptidome will help to update current programs and bypass
these limitations.

The prerequisite for comprehensive prediction tools is the
knowledge about functional differences of HLA key alleles.
Two of these tools, namely, histocheck [63] and pocketcheck
[11], will be explained in the following. Histocheck is a tool
to support an estimation of the allogenic potential between
mismatched HLA variants. The rating score between two
mismatched variants is based on the dissimilarity of the
mismatched AAs. Furthermore, Histocheck designates and
visualizes TCR and/or peptide binding AAs and directs
towards estimation of histocompatibility. These data are
based on available structures of pHLA complexes adapted
from the classical pocket definitions, specified in 1991 by
Saper et al. [64] and updated in 1996 by Chelvanayagam [65].
There have been several attempts to define which positions
in the HLA binding groove influence the specificity of bound
AAs at each position in the peptide based onX-ray crystallog-
raphy. Structure databases (e.g., RCSB protein data bank) are
the basis for molecular modeling of alleles whose structures
have not been solved by X-ray crystallography, yet [16, 17],
but have been investigated on the basis of their presented
peptides. The generation of these structural data is only
possible in the context of known allele specific peptides. Over
the years more than 100 crystal structures became available
that facilitated a broader definition of pockets, pocketcheck
[11]. X-ray crystallographic determination of pHLA class I
complexes provided valuable information for understanding
how peptides bind to individual HLA class I molecules.
Precisely, the allogenicity of a given mismatch is based on
the information which residues within the HLA PBR would
contact which peptide residue.

Several attempts have been taken to predict peptide
binding toMHCmolecules [49, 51, 66–71] for the assessment
of permissivity or for vaccine development. For cellular ther-
apeutics, CTLs that target infected cells require the identifi-
cation of epitopes that distinguish healthy and infected cells.
The knowledge about the self-proteomic content is therefore
imperative for comprehensive and updated prediction tools.

If predicted epitopes of pathogenic origin would ever be
presented in vivo remains questionable, before they have not
been isolated anddetermined.Therefore “native” peptide data
represent the prerequisite for all further prediction tools.

Successful prediction programs may significantly enlarge
the donor pool for cellular, peptide based vaccination ther-
apies and for certain patients by enabling a ranking of mis-
matches, building a bridge towards intelligent mismatching
for better clinical outcomes.
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6. Conclusion

The knowledge about the impact of distinct HLA class I
mismatches in the context of experimental data such as
peptide data and functional T-cell studies along with clinical
data, if available, is appreciated by the feasibility to mismatch
patients and still have successful clinical outcomes. Our
approach in dividing peptides generated by sHLA technology
into low or high affinity also allows a prediction of the relative
half-life time and thus relative immunogenicity of a given
pHLA complex.

Given the fact that every HLA allele has an individual
peptide repertoire, it becomes obvious how many single
pHLA molecules are available for an antigenic T cell. For
that reason it has been proposed that it should be assessed
whether GvHD and GvL can be related to the recipient
specific peptide repertoire and its set of shared peptides by
the donorHLAmolecule [72].While the risks associatedwith
HLA-mismatches for unrelated bonemarrow transplantation
are clear, it becomes important to understand how certain
peptides are selected by distinct alleles and thus how a
given mismatch can influence the peptide selection and
presentation process.

Towards that line, soluble HLA technology is a simple
and powerful instrument for the detection of peptide bind-
ing motifs from allelic HLA variants. As a tool for high
throughput analysis of polymorphism on HLA function,
peptide sequencing enables evaluation of the best match and
to highlight the potential risks of unmatched transplantation.
Furthermore, peptide data represent the prerequisites for
successful antitumor therapies. However, the high cost of
peptide sequencing limits the acquisition of binding data. For
that reason, it is imperative to select key alleles that enable the
prediction of different allelic subtypes. Peptide motif based
ranking of allelic mismatches can contribute to the donor
selection process when no HLA-identical donor is available
to prevent mismatching from being a matter of chance.
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