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Abstract: Acute pneumonia is an inflammatory disease caused by several pathogens, with symptoms
such as fever and chest pain, to which children are particularly vulnerable. Gancaonin N is a
prenylated isoflavone of Glycyrrhiza uralensis that has been used in the treatment of various diseases
in oriental medicine. There are little data on the anti-inflammatory efficacy of Gancaonin N, and its
effects and mechanisms on acute pneumonia are unknown. Therefore, this study was conducted as
a preliminary analysis of the anti-inflammatory effect of Gancaonin N in lipopolysaccharide (LPS)-
induced RAW264.7 cells, and to identify its preventive effect on the lung inflammatory response and
the molecular mechanisms underlying it. In this study, Gancaonin N inhibited the production of
NO and PGE2 in LPS-induced RAW264.7 cells and significantly reduced the expression of iNOS and
COX-2 proteins at non-cytotoxic concentrations. In addition, in LPS-induced A549 cells, Gancaonin N
significantly reduced the expression of COX-2 and pro-inflammatory cytokines, such as TNF-α, IL-1β,
and IL-6. Moreover, Gancaonin N reduced MAPK signaling pathway phosphorylation and NF-κB
nuclear translocation. Therefore, Gancaonin N relieved the inflammatory response by inactivating
the MAPK and NF-κB signaling pathways; thus, it is a potential natural anti-inflammatory agent that
can be used in the treatment of acute pneumonia.

Keywords: Gancaonin N; Glycyrrhiza uralensis; acute pneumonia; A549 cell; anti-inflammation;
pro-inflammatory cytokines

1. Introduction

Pneumonia, a lower respiratory tract infection disease, is an inflammatory disease caused
by pathogens, such as various bacteria, viruses, fungi, and other factors [1–3]. Clinical symp-
toms include fever, cough, phlegm, drowsiness, chest pain, and shortness of breath [4,5].
Despite the advances in antibacterial therapy and improvement in supportive therapy, it is a
major infectious disease that is common in all age groups [6]. It is one of the main causes of
death in the United States and also has a fatal effect on children in developing countries [7].
In particular, acute pneumonia is a major cause of mortality and disease rates in children
under the age of 5, and it has been reported that 1.1 million to 1.4 million children are diag-
nosed with pneumonia every year [8–10]. Children’s acute pneumonia includes aspiration
pneumonia and infectious pneumonia, and a recent study showed that the highest incidence
and severity occurs at 6 months after birth [11]. Currently, when pneumonia is suspected or
confirmed, antibiotics are commonly used, but sometimes symptoms are not relieved, and
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one of the most important factors is the specific inflammatory response of the host [12–14].
Lipopolysaccharide (LPS) present in Gram-negative bacteria is a factor characterized by an
extreme inflammatory reaction, leading to inflammatory diseases in various organs [15].
The mechanism by which LPS affects pneumonia is not fully understood, but there is a
lot of evidence that it causes inflammation in the lungs, contributing to the development
of acute pneumonia [16,17]. In addition, A549 cells, a human type II lung cell line, along
with the human bronchial epithelial cell line (BEAS-2B), is the most commonly used cell line
for various studies related to respiratory diseases, including pneumonia. Several studies
have shown that LPS-treated A549 cells can promote and amplify the expression of inflam-
matory mediators by activating the nuclear factor kappa light chain enhancer of activated
B cells/mitogen-activated protein kinase (NF-κB/MAPK) signaling pathways [18–20]. In
addition, by LPS induction, the phosphoinositide-3-kinase/protein kinase B/mammalian
target of rapamycin (PI3K/Akt/mTOR) signaling pathways are activated to promote cell
cycles and inhibit apoptosis, which affects inflammatory reactions [17,21]. Transcription
factors such as AP-1 and STAT-3 are also activated to facilitate the production of inflammatory
mediator cyclooxygenase-2 (COX-2) [22]. Therefore, modulation of these signaling pathways
may help in the treatment of acute pneumonia by suppressing the inflammatory response.
Accordingly, natural products that have few side effects and are inexpensive are receiving
more attention as potential anti-inflammatory drugs that can improve the inflammatory state
of the lungs and many natural products that can alleviate the inflammatory state of the lungs
are continuously being discovered [23]. As an example, Labib et al. reported that the essential
oil of Pinus roxburghii bark containing palmitic acid as the main component could improve the
inflammatory state of the lungs [24], and Gao et al. reported that neochlorogenic acid isolated
from Morus alba L. relieved oxidative stress and inflammatory response in inflamed lungs [18].
In addition, terpenoids, phenylpropanoid glycosides, and polyphenols, which are naturally
derived components isolated from plant extracts, showed the ability to alleviate oxidative
control damage and inflammatory responses in the lungs [25–27].

The roots and rhizomes of Glycyrrhiza uralensis are the oldest medicinal herbs in orien-
tal medicine and are mainly prescribed as herbal plants to treat cough, bronchitis, peptic
ulcer, and dermatitis [28]. In addition, according to recently published research results,
Glycyrrhiza uralensis protects the liver from alcoholic fatty liver disease [29], and relieves
airway hypersensitivity reactions and oxidative stress, thereby preventing asthma symp-
toms [30]. In addition, it has been proven to be effective in immunomodulation [31] and
has anti-inflammatory [32], anti-obesity [33], anti-viral [34], and antibacterial effects [35].
Therefore, based on the efficacy of Glycyrrhiza uralensis, various pharmacological activities
have been reported for various compounds (triterpenoids, flavones, isoflavones, among
others) derived from Glycyrrhiza uralensis [36,37].

Gancaonin N is a prenylated isoflavone-based organic compound extracted from the
roots of Glycyrrhiza uralensis [38]. In a recent study, Gancaonin N was shown to have
antiproliferative activity in human-derived tumor cell lines and an inhibitory effect on the
production of nitric oxide (NO) in LPS-induced RAW264.7 cell lines [39]. However, no
clear study of the therapeutic mechanism of Gancaonin N in lung inflammation has been
revealed. Therefore, in this study, before verifying the effect of Gancaonin N in inflamma-
tory conditions in the lungs, it was confirmed that Gancaonin N inhibits the production of
inflammatory mediators, NO and prostglandin E2 (PGE2), and their biosynthetic enzymes,
inducible nitric oxide synthase (iNOS) and COX-2, in RAW264.7 cells exposed to LPS. Later,
it was confirmed that Gancaonin N has an anti-inflammatory effect in alveolar epithelial
A549 cells in the LPS-induced inflammatory state, and further we analyzed its effect on the
intracellular inflammatory signal transduction pathway, to suggest the possibility of an
acute pneumonia treatment.
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2. Materials and Methods
2.1. Reagents

Gancaonin N was purchased from Chemfaces (Wuhan Chemfaces Biochemical Co.,
Ltd., Wuhan, China). LPS (Escherichia coli 055:B5) was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Primary antibodies for COX-2, NF-κB p65, extracellular signal-
regulated kinase (ERK), p-ERK, p38, p-p38, and Lamin B1 were purchased from Cell
Signaling Technology (Beverly, MA, USA), interleukin (IL)-6, IL-1β, and tumor necrosis
factor-α (TNF-α) were purchased from Proteintech (Rosemont, IL, USA), PGE2 was pur-
chased from Bioss (Woburn, MA, USA), and iNOS was purchased from R&D Systems Inc.
(Minneapolis, MN, USA). β-Actin and secondary antibodies were purchased from Santa
Cruz Biotechnology (Dallas, TX, USA).

2.2. Cell Culture

The RAW264.7 cell line was purchased from the Korean Cell Line Bank (Seoul, Korea), while
the A549 cell line was purchased from American Type Culture Collection (ATCC, MD, USA).
Each cell line was cultured using DMEM containing 10% FBS (Gibco, NY, USA) and 1% antibiotics
(Corning Inc., New York, NY, USA) at a temperature of 37◦C, 5% CO2 environment [40].

2.3. Cytotoxicity Assay

To measure the cytotoxicity of Gancaonin N in RAW264.7 and A549 cells, the 3-
(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed
according to Ko et al.’s paper method described previously [41]. Briefly, cells were seeded
in a 96-well plate (1 × 104 cells/well), followed by treatment with Gancaonin N (0–40 µM)
for 24 h. The absorbance of formazan produced by the MTT solution was quantified at
540 nm using a 96-well microplate reader (Bio-Rad, Hercules, CA, USA).

2.4. NO Assay

NO assay was performed according to our method previously described [42]. Briefly,
RAW264.7 cells were seeded in a 6-well plate (6 × 105 cells/well). The cultured medium
was exchanged for each Gancaonin N dose 2 h prior to treatment with 1 µg/mL LPS. The
cells were then incubated for 24 h. Thereafter, the cultured medium of each well and Griess
reagent were mixed and reacted for 10 min, and absorbance was measured at 540 nm.

2.5. Immunoblotting

The preparation of whole cell lysates and nuclear fractions and the whole immunoblot-
ting process were performed based on the previously detailed description of Ko et al. [41]. To
identify a specific protein band, ImageQuant LAS 500 (GE Healthcare Life Sciences, Sydney,
NSW, Australia) was used by treating the EZ-Western Lumi Femto kit (DoGen, Seoul, Korea)
and Image J software (NIH, Bethesda, MD, USA) was used to quantify the band [43].

2.6. Immunofluorescence Assay

A549 cells were seeded in 4-well culture slides. Cells were pretreated with Gancaonin
N at 40 µM 2 h before stimulation with LPS and incubated for 6 h. After that, to confirm that
NF-κB p65 was translocated to the nucleus, it was performed according to our previously
described method [44,45]. Fluorescence images of each slide were obtained using an
EVOSR Cell Imaging system (Thermo Fisher Scientific, Waltham, MA, USA).

2.7. Isolation of the Total RNA and Real-Time PCR

The methods of RNA acquisition, cDNA synthesis, and real-time PCR were previously
described in detail [41,42,44]. The relative mRNA expression level of each target gene was
normalized with GAPDH [46]. The primer sequences used for real-time PCR analysis are
as below.

TNF-α: (F) 5′-GCAGGTCTACTTTGGGTCATTG-3′ and (R) 5′-GCGTTTGGGAAGGTT
GGA-3′.
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IL-1β: (F) 5′-TCAGCCAATCTTCATTGCTCAA-3′ and (R) 5′- TGGCGAGCTCAGGTA
CTTCTG -3′.

IL-6: (F) 5′-AGGGCTCTTCGGCAAATGTA-3′ and (R) 5′- GAAGGAATGCCCATTAA
CAACAA-3′.

GAPDH (F) 5′-GCCACATCGCTCAGACACC-3′ and (R) 5′-CCCAATACGACCAAA
TCCGT-3′.

2.8. Statistical Analysis

All data were expressed as mean ± SEM through repeated experiments. An unpaired
t-test (one-tailed) was used to analyze the statistical significance between each group.

3. Results
3.1. Effects of Gancaonin N on RAW264.7 and A549 Cell Viability

Before analyzing the anti-inflammatory effects of Gancaonin N, the researchers used
an MTT assay for evaluating the cytotoxicity of Gancaonin N in RAW264.7 and A549 cells.
As shown in Figure 1B,C, when Gancaonin N was used for treatment at a concentration
of 5 to 40 µM for 24 h in each cell, it was confirmed that no cytotoxicity was observed.
Therefore, we set the concentration of Gancaonin N to up to 40 µM for the subsequent
experiments under conditions that did not affect the cells (Figure 1B,C).
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Figure 1. Chemical structure of Gancaonin N (A) and its effects on RAW264.7 (B) and A549 (C) cell viability. Cells were
seeded in 96-well plate and treated with Gancaonin N (5–40 µM) for 24 h. The cytotoxicity was confirmed by MTT assay.
Values are represented as means ± SEM.

3.2. Effect of Gancaonin N on Pro-Inflammatory Mediators in RAW264.7 Cells

Before confirming the acute pneumonia prophylactic effect of Gancaonin N, we evalu-
ated the inhibitory effect of the inflammatory response in LPS-stimulated RAW264.7 cells.
NO is an inflammatory mediator and is expressed only when cells are exposed to pro-
inflammatory conditions. Therefore, in RAW264.7 cells stimulated with LPS, the amount
of NO production was excessively increased compared to that in the untreated group.
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However, in the group pretreated with Gancaonin N before LPS treatment, NO production
significantly decreased, depending on the concentration of Gancaonin N (Figure 2A). The
expression of PGE2, a major mediator of chronic inflammatory diseases, was confirmed
at the protein level using immunoblotting. As shown in Figure 2B, the level of PGE2 was
significantly increased by LPS induction, and it was confirmed that Gancaonin N at a
concentration of 10–40 µM significantly suppressed the level of PGE2. Additionally, the
effect of Gancaonin N on the expression of pro-inflammatory proteins was analyzed. iNOS
is frequently produced in mononuclear phagocytes and among the three types of nitric
oxide synthase (NOS)-related enzymes it produces the largest amount of NO, causing
severe inflammation. COX-2 is an enzyme that stimulates the synthesis and secretion of
prostaglandin E2 (PGE2) by inducing an inflammatory mediator. Therefore, we analyzed
the protein expression levels of iNOS and COX-2 (Figure 2C,D). Consequently, Gancaonin
N inhibited the expression of iNOS and COX-2 in a treatment concentration-dependent
manner in LPS-induced RAW264.7 cells. In particular, the expression level of iNOS was
significantly decreased at a Gancaonin N concentration of 5–40 µM, and the expression
level of COX-2 was significantly decreased at a concentration of 20–40 µM.

Pharmaceutics 2021, 13, x 5 of 14 

 

amount of NO production was excessively increased compared to that in the untreated 
group. However, in the group pretreated with Gancaonin N before LPS treatment, NO 
production significantly decreased, depending on the concentration of Gancaonin N (Fig-
ure 2A). The expression of PGE2, a major mediator of chronic inflammatory diseases, was 
confirmed at the protein level using immunoblotting. As shown in Figure 2B, the level of 
PGE2 was significantly increased by LPS induction, and it was confirmed that Gancaonin 
N at a concentration of 10–40 μM significantly suppressed the level of PGE2. Additionally, 
the effect of Gancaonin N on the expression of pro-inflammatory proteins was analyzed. 
iNOS is frequently produced in mononuclear phagocytes and among the three types of 
nitric oxide synthase (NOS)-related enzymes it produces the largest amount of NO, caus-
ing severe inflammation. COX-2 is an enzyme that stimulates the synthesis and secretion 
of prostaglandin E2 (PGE2) by inducing an inflammatory mediator. Therefore, we ana-
lyzed the protein expression levels of iNOS and COX-2 (Figure 2C,D). Consequently, 
Gancaonin N inhibited the expression of iNOS and COX-2 in a treatment concentration-
dependent manner in LPS-induced RAW264.7 cells. In particular, the expression level of 
iNOS was significantly decreased at a Gancaonin N concentration of 5–40 μM, and the 
expression level of COX-2 was significantly decreased at a concentration of 20–40 μM. 

 
Figure 2. Effects of Gancaonin N on nitric oxide production (A) and protein levels of PGE2 (B), iNOS 
(C) and COX-2 (D) in LPS-induced RAW264.7 cells. Gancaonin N (5–40 μM) was pretreated 2 h 
prior to LPS-induced inflammation in RAW264.7 cells, incubated for 24 h with LPS (1 μg/mL). The 
protein levels of PGE2, iNOS and COX-2 were investigated by immunoblotting assay. Ratio of each 
protein was determined by ImageJ. Values are represented as means ± SEM. ### p < 0.001 is signifi-
cantly different from non-treated group; * p < 0.05, ** p < 0.01, *** p < 0.001 are significantly different 
from only LPS-treated group. 

  

Figure 2. Effects of Gancaonin N on nitric oxide production (A) and protein levels of PGE2 (B), iNOS (C) and COX-2
(D) in LPS-induced RAW264.7 cells. Gancaonin N (5–40 µM) was pretreated 2 h prior to LPS-induced inflammation in
RAW264.7 cells, incubated for 24 h with LPS (1 µg/mL). The protein levels of PGE2, iNOS and COX-2 were investigated
by immunoblotting assay. Ratio of each protein was determined by ImageJ. Values are represented as means ± SEM.
### p < 0.001 is significantly different from non-treated group; * p < 0.05, ** p < 0.01, *** p < 0.001 are significantly different
from only LPS-treated group.
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3.3. Effects of Gancaonin N on Pro-Inflammatory Cytokine and COX-2 Expression in LPS-Induced
A549 Cells

Based on the mechanism of lung inflammation, several studies are being conducted
with the purpose of developing therapeutic agents for respiratory diseases, such as pneu-
monia. Therefore, we confirmed the anti-inflammatory effect of Gancaonin N in LPS
induced-A549 cells and evaluated its potential as a therapeutic agent for lung disease
prevention. First, we measured the expression levels of pro-inflammatory cytokines using
real-time PCR (Figure 3A–C). As a result, it was confirmed that in LPS-induced A549 cells,
Gancaonin N significantly reduced the mRNA expression level of each pro-inflammatory
cytokine. Moreover, to further confirm the anti-inflammatory effect of Gancaonin N at
the protein level, immunoblotting analysis was performed to confirm the effect on the
expression of each pro-inflammatory cytokine and COX-2. As shown in Figure 4A–D, it
was confirmed that pretreatment with Gancaonin N clearly decreased the protein levels of
TNF-α, IL-1β, IL-6, and COX-2, which were increased by LPS induction.

Pharmaceutics 2021, 13, x 6 of 14 

 

3.3. Effects of Gancaonin N on Pro-Inflammatory Cytokine and COX-2 Expression in LPS-
Induced A549 Cells 

Based on the mechanism of lung inflammation, several studies are being conducted 
with the purpose of developing therapeutic agents for respiratory diseases, such as pneu-
monia. Therefore, we confirmed the anti-inflammatory effect of Gancaonin N in LPS in-
duced-A549 cells and evaluated its potential as a therapeutic agent for lung disease pre-
vention. First, we measured the expression levels of pro-inflammatory cytokines using 
real-time PCR (Figure 3A–C). As a result, it was confirmed that in LPS-induced A549 cells, 
Gancaonin N significantly reduced the mRNA expression level of each pro-inflammatory 
cytokine. Moreover, to further confirm the anti-inflammatory effect of Gancaonin N at the 
protein level, immunoblotting analysis was performed to confirm the effect on the expres-
sion of each pro-inflammatory cytokine and COX-2. As shown in Figure 4A–D, it was 
confirmed that pretreatment with Gancaonin N clearly decreased the protein levels of 
TNF-α, IL-1β, IL-6, and COX-2, which were increased by LPS induction. 

 
Figure 3. (A–C) Effects of Gancaonin N on pro-inflammatory cytokine mRNA expression in LPS-
induced A549 cells. Gancaonin N (5–40 μM) was pretreated 2 h prior to LPS-induced inflammation 
in A549 cells, incubated for 24 h with LPS (5 μg/mL). The mRNA expressions of cytokine were in-
vestigated by real-time PCR analysis. Values are represented as means ± SEM. ## p < 0.01, ### p < 0.001 
are significantly different from non-treated group; * p < 0.05, ** p < 0.01 are significantly different 
from only LPS-treated group. 

Figure 3. (A–C) Effects of Gancaonin N on pro-inflammatory cytokine mRNA expression in LPS-induced A549 cells.
Gancaonin N (5–40 µM) was pretreated 2 h prior to LPS-induced inflammation in A549 cells, incubated for 24 h with
LPS (5 µg/mL). The mRNA expressions of cytokine were investigated by real-time PCR analysis. Values are represented
as means ± SEM. ## p < 0.01, ### p < 0.001 are significantly different from non-treated group; * p < 0.05, ** p < 0.01 are
significantly different from only LPS-treated group.
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Figure 4. Effects of Gancaonin N on protein levels of pro-inflammatory cytokines (A–C) and COX-2 (D) in LPS-induced
A549 cells. Gancaonin N (5–40 µM) was pretreated 2 h prior to LPS-induced inflammation in A549 cells, incubated for
24 h with LPS (5 µg/mL). The protein level of inflammatory biomarkers was investigated by immunoblotting assay. Ratio
of each protein was determined by ImageJ. Values are represented as means ± SEM. # p < 0.05, ## p < 0.01, ### p < 0.001
are significantly different from non-treated group; * p < 0.05, ** p < 0.01, *** p < 0.001 are significantly different from only
LPS-treated group.

3.4. Effect of Gancaonin N on MAPK/NF-κB Signaling Pathway in LPS-Induced A549 Cells

Based on the inhibitory effect of Gancaonin N on the expression of pro-inflammatory
cytokines and COX-2, to further analyze the mechanism of anti-inflammatory effects, the
protein expression level of the MAPK/NF-κB signaling pathway associated with inflamma-
tion was evaluated using immunoblotting. As a result, the phosphorylation of ERK and p38
was increased in A549 cells induced by LPS alone, but the phosphorylation of ERK and p38
was effectively suppressed in the 10–40 µM Gancaonin N pretreatment group (Figure 5A,B).
In the nuclear fraction, it was confirmed that the nuclear translocation of NF-κB p65 was
inhibited by Gancaonin N in LPS-induced A549 cells (Figure 5C). To further demonstrate
the following procedure, we measured the expression of NF-κB p65 in the nucleus using im-
munofluorescence analysis and we found that 40 µM Gancaonin N significantly inhibited
the nuclear translocation of NF-κB p65 via LPS stimulation (Figure 5D). Thus, Gancaonin
N regulates the expression of pro-inflammatory cytokines and inflammatory mediators,
such as COX-2, through inhibition of the MAPK and NF-κB signaling pathways.
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levels of ERK (A), p38 (B), and NF-κB p65 (C) were investigated by immunoblotting assay. Ratio of each protein was
determined by ImageJ. The expression of NF-κB p65 (D) in the nucleus was confirmed using immunofluorescence assay
(magnification: 400×, scale bar:75 µm). Values are represented as means ± SEM. ### p < 0.001 is significantly different from
non-treated group; * p < 0.05, ** p < 0.01, *** p < 0.001 are significantly different from only LPS-treated group.

4. Discussion

Acute pneumonia, a major respiratory disease, is an inflammatory disease of the
lungs caused by various pathogen infections and is a major infectious disease, to which
infants are particularly susceptible [47]. Since this disease has a high mortality rate and a
high incidence rate, various treatment methods are being developed, along with antibiotic
treatment [48]. Among them, compounds derived from natural products that can improve
the inflammatory response of the lungs and have relatively few side effects have been
attracting much attention for the development of therapeutic agents. Previously, many
studies suggested that secondary metabolites such as polyphenols, flavonoids, alkaloids,
and terpenoids have the ability to prevent and treat inflammatory responses induced in
the lungs [18,24,27,49].

Gancaonin N, a prenylated isoflavone isolated from Glycyrrhiza uralensis, has been
reported to have anti-inflammatory activity in previous studies [38,39]. However, there
are little data on its anti-inflammatory activity and anti-inflammatory mechanisms in
pulmonary inflammatory conditions. Therefore, in this study, to evaluate the possibility
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of preventing and treating pneumonia, the anti-inflammatory effect of Gancaonin N was
investigated through experiments using LPS-stimulated RAW264.7 and A549 cells.

Macrophages are the most widely distributed cell type in all tissues in the animal
body and are immune cells that play an essential role in innate immune responses, includ-
ing inflammation in the human body [50]. When macrophages are activated by external
stimuli, such as pathogens, they produce various types of inflammatory mediators, such
as arachidonic acid metabolites, NO, and pro-inflammatory cytokines [51]. An exces-
sive production of these inflammatory mediators accelerates the development of chronic
inflammatory diseases [52]. LPS is a major component of the outer membrane of Gram-
negative bacteria and plays a pivotal role in inducing the inflammatory response associated
with pneumonia [15,17]. Therefore, many studies have been conducted to analyze the
anti-inflammatory effect of drugs by evaluating the inhibitory activity of inflammatory
mediators secreted from macrophages activated by LPS stimulation. First, in order to
explore the anti-inflammatory effect of Gancaonin N in LPS-stimulated RAW264.7 cells, we
examined the inhibitory effect of Gancaonin N on NO and PGE2 production. NO, which
is most easily observed in macrophages of inflammatory disease patients, is produced
from L-arginine by nitric oxide synthases and contributes to anti-inflammatory activity
under normal physiological conditions [53]. However, an excessive production of NO
due to a physiological disorder promotes the biosynthesis of inflammatory mediators and
intensifies inflammation [53,54]. This leads to serious inflammatory diseases. In addition,
PGE2, a key inflammatory mediator, is a major product of COX-2 and actively participates
in inflammatory responses, contributing to chronic inflammation and various diseases,
including cancer [55,56]. Therefore, chemicals that inhibit NO and PGE2 production are
known to have anti-inflammatory effects and may be an alternative strategy for treating
inflammatory diseases. In this study, pretreatment with Gancaonin N dose-dependently re-
duced the NO production, induced via LPS stimulation, which was similar to that reported
in a recent study [39]. Therefore, we further investigated whether Gancaonin N can reduce
the protein expression levels of iNOS and COX-2. iNOS is a nitric oxide synthase (NOS), an
enzyme that produces NO, and unlike endothelial NOS (eNOS) and neuronal NOS (nNOS),
it is non-dependent on calcium/calmodulin [57]. iNOS is not normally expressed in cells,
but is expressed via transcriptional regulation when it is exposed to external stimulation or
pro-inflammatory stimulation, and produces a large amount of NO [58]. Cyclooxygenase
(COX) is divided into two isoforms, of which COX-2 is directly involved in the generation
of PGE2, causing pain and fever, and large amounts are expressed in inflammatory cells via
LPS, pro-inflammatory cytokines, growth factors, and tumor promotors [59]. Therefore, the
discovery of natural compounds that inhibit the production of NO and PG by inhibiting
the expression of iNOS and COX-2 can be an indicator of the development of natural
anti-inflammatory drugs with fewer side effects. The results of this study confirmed that
the protein levels of iNOS and COX-2 were increased in RAW264.7 cells stimulated with
LPS alone, but the protein expression levels of iNOS and COX-2 were suppressed when
Gancaonin N was used for pretreatment. The results show that Gancaonin N relieves the
inflammatory condition caused by LPS stimulation.

Despite the use of antibiotics to treat pneumonia, sometimes they do not relieve symp-
toms, and one of the most important factors is the specific inflammatory response of the
host [13,14]. Therefore, based on the anti-inflammatory activity of Gancaonin N described
above, in order to confirm whether Gancaonin N can help relieve the symptoms of pneu-
monia by improving the pulmonary inflammatory response, we additionally demonstrated
the effect of Gancaonin N on LPS-stimulated A549 alveolar epithelial cells. A549 cells,
which have the properties of type 2 alveolar epithelial cells, have been used in many studies
to investigate the treatment mechanisms related to lung inflammation due to the limitation
of the use of primary cultured human alveolar epithelial cells [60–62]. When LPS is used to
stimulate A549 cells, the expression of pro-inflammatory cytokines is induced and various
inflammatory mediators are produced, making it a widely used pneumonia model because
there is evidence that it causes and worsens lung damage [18,19,63]. Therefore, suppressing
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the production of pro-inflammatory cytokines and COX-2 in LPS-induced A549 cells is a
representative treatment method applicable to inflammatory symptoms caused by pneu-
monia. Inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, are essential cell signaling
proteins in the inflammatory response. TNF-α is expressed due to various external stimuli,
such as LPS and viruses, and when expressed it causes the influx of inflammatory cells
and various biological reactions, such as cell death, proliferation, and migration [64]. IL-1β
is a cytokine responsible for initiating and amplifying the inflammatory response and
activating NF-κB [65]. IL-6, which plays a role as a major pro-inflammatory mediator
for the induction of acute phase reactions, is known to regulate the differentiation and
activation of T lymphocytes by inducing the ERK pathway and is considered an important
biomarker in respiratory inflammatory diseases [66,67]. As a result of the experiment,
we confirmed that the expression of TNF-α, IL-1β IL-6, and COX-2 was upregulated in
A549 cells stimulated with LPS alone. This is consistent with previous research findings
in A549 cells stimulated with LPS [20]. Furthermore, the pretreatment with Gancaonin N
significantly inhibited the expression of TNF-α, IL-1β, IL-6, and COX-2 in LPS-stimulated
A549 cells. These results suggest that Gancaonin N inhibits the production of inflammatory
mediators produced by LPS stimulation in A549 cells and, thus, has a preventive effect
against the inflammatory response.

To characterize these effects, we further investigated whether Gancaonin N could
inhibit the activation of MAPK and NF-κB signaling pathways via immunoblotting. MAPK
is activated by various inflammatory and stress stimuli and is an intracellular signaling
pathway that regulates the immune response by regulating the expression of inflam-
matory cytokines and other inflammatory mediators in various cells [68]. The MAPK
pathway is largely classified into three subtypes: ERK, c-Jun N-terminal kinase (JNK), and
p38. Phosphorylation in these pathways can be easily detected in lung diseases related
to lung inflammation, such as pneumonia and chronic obstructive pulmonary disease
(COPD) [69,70]. Among them, ERK is involved in cell proliferation, growth, differentiation,
cell migration, and survival, and is related to pathological conditions, such as cancer and
chronic inflammation [71]. The p38 MAPK pathway, which acts as a link for signaling,
has a strong association with inflammation and is known to play an essential role in the
production of TNF-α, IL-1β, and IL-6 [72,73]. This study showed that Gancaonin N pre-
treatment inhibited the phosphorylation of ERK and p38, which was increased by LPS
stimulation in A549 cells. The NF-κB pathway is an important transcriptional regulator
involved in the regulation of the immune system and inflammatory response [74]. NF-κB
is present in the cytoplasm in a state bound to IκB in an inactive state; however, when
activated by LPS stimulation, NF-κB separates from IκB and moves into the nucleus, induc-
ing the expression of inflammatory cytokines and inducible enzymes, such as COX-2 and
iNOS [75]. Therefore, many studies have demonstrated the anti-inflammatory effects of
natural drugs on lung inflammation caused by LPS stimulation by inhibiting NF-κB nuclear
translocation [18–20]. The results of this study show that Gancaonin N significantly inhibits
the NF-κB nuclear translocation increased by LPS stimulation in A549 cells. To clarify
this, we further confirmed that Gancaonin N clearly inhibited the nuclear translocation of
NF-κB p65 in cells induced by LPS stimulation, using immunofluorescence. Therefore, we
presume that in LPS-stimulated A549 cells, Gancaonin N exhibits anti-inflammatory effects
by inhibiting the activation of the MAPK/NF-κB signaling pathway, which leads to the
production of inflammatory mediators.

5. Conclusions

We demonstrated the anti-inflammatory activity of Gancaonin N in LPS-stimulated
RAW264.7 and A549 cells, providing the potential to prevent acute pneumonia. Gancaonin
N was shown to inhibit inflammatory mediators such as NO, PGE2, iNOS, and COX-2 in
LPS-stimulated RAW264.7 cells. In addition, in LPS-stimulated A549 cells, Gancaonin N
inhibited the expression of TNF-α, IL-1β, IL-6, and COX-2, which is closely related to the
inactivation of the MAPK/NF-κB signaling pathway. These findings provide an experimental
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basis for the anti-inflammatory effect of Gancaonin N; therefore, it has been demonstrated that
Gancaonin N may be a natural anti-inflammatory agent that can prevent acute pneumonia. A
limitation of this study is that the cytotoxic and anti-inflammatory effects of Gancaonin N
were not sufficiently analyzed using lung cell lines other than A549, and anti-inflammatory
activity and stability should also be confirmed in an in vivo model in the future.
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